首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences in resistance to S. avenae were confirmed amongst eight spring wheat stocks in glasshouse tests. Taking these stocks as standards, a glasshouse screening technique was developed in which 15 plants of each entry were arranged randomly in one block and aphids were scattered over the whole at the stem-extension phase. When the infestation of individual plants was scored about 2 wk later, resistant and susceptible stocks were well differentiated. Provided that scoring was completed before or at ear emergence, separation of resistant entries was more efficient with older plants. Ranking of the standard stocks was little influenced by other variations of technique or environment. Twenty-six out of 91 previously untested spring wheat breeding lines appeared to be moderately resistant to S. avenae, suggesting that progress in the selection of resistant cultivars will depend more on the further development of suitable techniques than on the availability of heritable resistance.  相似文献   

2.
The bird cherry-oat aphid (Rhopalosiphum padi L.) is a major pest of wheat (Triticum aestivum L.) and can cause up to 30% yield losses. Heritable plant resistance to aphids is both an economically and ecologically sound method for managing aphids. Here we report how the behaviour and performance of R. padi differs on two resistant, one susceptible wheat landrace and a susceptible elite wheat variety. Feeding behaviour differed among the genotypes, with aphids on resistant lines spending longer in the pathway phase and less time phloem feeding. These behaviours suggest that both inter- and intracellular factors encountered during pathway and phloem feeding phases could be linked to the observed aphid resistance. Locomotion and antennal positioning choice tests also revealed a clear preference for susceptible lines. Although feeding studies revealed differences in the first probe indicating that the resistance factors might also be located in the peripheral layers of the plant tissue, scanning electron microscopy revealed no difference in trichrome length and density on the surface of leaves. Aphids are phloem feeders and limiting the nutrient uptake by the aphids may negatively affect their growth and development as shown here in lower weight and survival of nymphs on resistant genotypes and decreased reproductive potential, with lowest mean numbers of nymphs produced by aphids on W064 (54.8) compared to Solstice (71.9). The results indicate that resistant lines markedly alter the behaviour, reproduction and development potential of R. padi and possess both antixenosis and antibiosis type of resistance.  相似文献   

3.
Glasshouse assessments of resistance to S. avenae in 29 entries of wheat and two of rye were made by releasing half-grown aphids on randomised plants at the stem extension phase of growth. Wheat cvs Kador, Amigo, Highbury and Lutescens 1377 were resistant and cvs Sentry and Talavera de Bellevue partially resistant. Cv. Klein Acero, a breeding line TB68/6/10 and Lerma Rojo selections 197 to 200 were highly susceptible to S. avenae although the latter are moderately resistant to greenbug (Schizaphis graminum) (Starks & Merkle, 1977). The rye cultivars were susceptible to 5. avenae and no cultivar was found to be resistant to Metopolophium dirhodum. Clonal stocks of S. avenae, differing in colour, varied in their ability to form large populations on susceptible cultivars, and hence in their differentiation of susceptible from resistant wheat. No clone was detected with specific ability to attack the resistant cvs Kador and Amigo.  相似文献   

4.
1. The concept of plant defence syndrome states that plant species growing in similar biotic or abiotic constraints should have convergent defensive traits. This article is a first step to test the prediction of this concept, by conducting experiments on wild Solanum species (or accessions) that originated from the Andes. The nature and the tissue localisation of the resistance of five wild Solanum species known to be resistant against the aphids Myzus persicae and Macrosiphum euphorbiae were determined by olfactometry and electrical penetration graph experiments. 2. Volatile organic compounds may contribute to wild Solanum resistance, depending on Solanum accessions and aphid species. Volatiles of S. bukasovii and S. stoloniferum PI 275248 were not attractive to M. persicae, whereas S. bukasovii was repulsive to M. euphorbiae. In contrast, volatiles of S. stoloniferum PI 275248 were attractive for M. euphorbiae. 3. Some wild Solanum species presented a generalised resistance in all plant tissues, so as for S. bukasovii and S. stoloniferum PI 275248 against M. persicae. However, except for S. bukasovii which was susceptible to M. euphorbiae, all tested Solanum species presented a phloem‐based antixenosis resistance against the two aphid species. 4. A review of articles focused on the nature of resistance of wild Solanum species against aphids corroborated with our results, i.e. a phloem‐based antixenosis resistance against aphids is the rule concerning the system aphids–wild Solanum species.  相似文献   

5.
Greenbug, Schizaphis graminum (Rondani), is a worldwide pest of cereals including rice, sorghum, wheat, barley, etc. The relative impact of resistance modalities, including antibiosis and antixenosis, and tolerance of seven wheat cultivars and lines (three wheat cultivars, namely Kouhdasht, Bezostaya and Hirmand, and four wheat lines, namely ERWYT 87-7, ERWYT 87-8, ERWYT 87-15 and ERWYT 87-16) with different levels of resistance against S. graminum was studied under laboratory conditions in Ardabil, Iran. In the antibiosis test, S. graminum produced the most and fewest progeny on Kouhdasht and ERWYT 87-16 in the reproduction period, respectively. In the tolerance test, ERWYT 87-16 and ERWYT 87-7 had the highest tolerance against S. graminum. However, in the antixenosis test, we did not detect any significant differences among tested cultivars and lines in terms of the number of adult aphids attracted to them. Overall, the plant resistance index (PRI) values were greatest for ERWYT 87-16 (4.95) and ERWYT 87-7 (4.11) and least for Hirmand (1.11) and Kouhdasht (1.20).  相似文献   

6.
A study to determine yield response to the Russian wheat aphid, Diuraphis noxia (Mordvilko), was conducted during the 1997-1998 and 1998-1999 growing seasons at three eastern Colorado locations, Akron, Fort Collins, and Lamar, with three wheat lines containing either Russian wheat aphid-resistant Dn4 gene, Dn6 gene, or resistance derived from PI 222668, and TAM 107 as the susceptible control. Russian wheat aphids per tiller were greater on TAM 107 than the resistant wheat lines at the 10x infestation level at Fort Collins and Akron in 1999. Yield, seed weight, and number of seeds per spike for each wheat line were somewhat affected by Russian wheat aphid per tiller mainly at Fort Collins. The infested resistant wheat lines harbored fewer Russian wheat aphids and yielded more than the infested susceptible wheat lines. Wheat lines containing the Dn4, Dn6, and PI 222668 genes contain different levels of antibiosis or antixenosis and tolerance. Although differences existed among sites and resistance, there is a benefit to planting resistant wheat when there is a potential for Russian wheat aphid infestations.  相似文献   

7.
Screening of durum wheat germplasm for resistance to common bunt (Tilletia foetida and T. caries) resulted in the identification of 26 resistant genotypes. The screening was made using nine common bunt isolates from the West Asia and North Africa (WANA) region. In one isolate the two pathogens were represented in ratio of 1:1, whereas eight isolates contained only T. foetida. The correlation, principal components and clustering analyses grouped the genotypes into three clusters., Cluster one comparised genotypes close to Senatore (S.) Cappelli and Haurani, the latter is a landrace from Syria. Cluster three comprised advanced genotypes containing resistance genes from Mindum, a Turkish landrace. Results indicated that donor sources of resistance appear to be related to the three major sources mentioned. Cultivar S. Cappelli is considered resistant since it has been grown by farmers on a large scale for many years and remained resistant to common bunt throughout 7 years of testing. This resistance is assumed to be of a durable type. The isolates were also grouped into three clusters representing different ecological areas and the wheat types from which the isolates originated. We infer that the different clusters reflect the presence of three pathotype groups of the pathogens.  相似文献   

8.
Differences in inherited resistance among seven sugar-beet stocks had similar effects on Myzus persicae clones representing the range of variation in aphid response to resistant and susceptible sugar beet observed in fifty-eight clones collected between 1969 and 1971. Three sugar-beet stocks were consistently resistant. Statistically significant interactions between beet stocks and aphid clones did not indicate the existence of biotypes with specific abilities to overcome resistance. M. persicae clones differed in their vigour of colonizing sugar beet, irrespective of the differences between beet stocks. The readiness of adult aphids to settle determined the size of aphid population produced and included a component related to the response of the aphid clone to sugar beet as a host, and a component related to the resistance ranking of the beet stock. Breeding sugar beet with resistance to aphids will be simplified, as the results indicate that, at present, differences between aphid biotypes need not be considered a problem.  相似文献   

9.
Performance and prospects of Rag genes for management of soybean aphid   总被引:1,自引:0,他引:1  
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an invasive insect pest of soybean [Glycine max (L.) Merr. (Fabaceae)] in North America, and it has led to extensive insecticide use in northern soybean‐growing regions there. Host plant resistance is one potential alternative strategy for managing soybean aphid. Several Rag genes that show antibiosis and antixenosis to soybean aphid have been recently identified in soybean, and field‐testing and commercial release of resistant soybean lines have followed. In this article, we review results of field tests with soybean lines containing Rag genes in North America, then present results from a coordinated regional test across several field sites in the north‐central USA, and finally discuss prospects for use of Rag genes to manage soybean aphids. Field tests conducted independently at multiple sites showed that soybean aphid populations peaked in late summer on lines with Rag1 or Rag2 and reached economically injurious levels on susceptible lines, whereas lines with a pyramid of Rag1 + Rag2 held soybean aphid populations below economic levels. In the regional test, aphid populations were generally suppressed by lines containing one of the Rag genes. Aphids reached putative economic levels on Rag1 lines for some site years, but yield loss was moderated, indicating that Rag1 may confer tolerance to soybean aphid in addition to antibiosis and antixenosis. Moreover, no yield penalty has been found for lines with Rag1, Rag2, or pyramids. Results suggest that use of aphid‐resistant soybean lines with Rag genes may be viable for managing soybean aphids. However, virulent biotypes of soybean aphid were identified before release of aphid‐resistant soybean, and thus a strategy for optimal deployment of aphid‐resistant soybean is needed to ensure sustainability of this technology.  相似文献   

10.
Interactions between biotype E greenbug, Schizaphis graminum (Rondani), and wheat, Triticum aestivum L., were investigated using resistant and susceptible near isogenic lines of the greenbug resistance gene Gb3. In an antixenosis test, the greenbugs preferred susceptible plants to resistant ones when free choice of hosts was allowed. Aphid feeding resulted in quick and severe damage to susceptible plants, which seemed to follow a general pattern spatially and was affected by the position where the greenbugs were initially placed. Symptom of damage in resistant plants resembled senescence. Within-plant distribution of aphids after infestation was clearly different between the two genotypes. Significantly more greenbugs fed on the first (oldest) leaf than on the stem in resistant plants, but this preference was reversed in the susceptible one. After reaching its peak, aphid population on the susceptible plants dropped quickly. All susceptible plants were dead in 10-14 d after infestation due to greenbug feeding. Aphid population dynamics on resistant plants exhibited a multipeak curve. After the first peak, the greenbug population declined slowly. More than 70% of resistant plants were killed 47 d after infestation. Performance of both biotype E and I greenbugs on several Gb3-related wheat germplasm lines were also examined. It seems that the preference-on-stem that was characteristic of biotype E greenbugs on the susceptible plants was aphid biotype- and host genotype-dependent. Results from this study suggested that antixenosis, antibiosis, and tolerance in the resistant plants of wheat might all contribute to resistance against greenbug feeding.  相似文献   

11.
Analysis of electrically recorded feeding behaviour of aphids was combined with colony‐development tests to search for sources of resistance to Myzus persicae (Sulzer) (Homoptera: Aphididae) in tuber‐bearing Solanum species (Solanaceae), aiming at a reduction of potato leaf roll virus (PLRV) transmission. Twenty genotypes, originating from 14 gene bank accessions, representing 13 wild tuber‐bearing Solanum spp., three Solanum tuberosum L. (potato) cultivars, and one S. tuberosum breeding line, were selected. Colony‐development tests were carried out in no‐choice experiments by placing adult aphids on plants of each genotype and counting numbers of nymphs and adults on young plants after 8 and 15 days, and on flowering plants after 14 and 30 days. Large differences were observed among genotypes: some developed small colonies and others developed large ones. Also, in a few genotypes, resistance in mature plants was different for leaves of different ages; young leaves were resistant to aphids whereas old senescent leaves were susceptible. The electrical penetration graph (DC‐EPG system) technique was used to study aphid feeding behaviour on each Solanum genotype for 6 h. Electrical penetration graph (EPG) results also showed large differences among the genotypes, indicating resistance at the leaf surface and at three different levels of plant tissue (epidermis, mesophyll, and phloem). Therefore, it was concluded that different mechanisms of resistance to M. persicae exist among the genotypes analysed. EPGs recorded from aphids on Solanum berthaultii Hawkes and Solanum tarijense Hawkes with and without glandular trichomes showed that strong surface resistance can bias EPG parameters associated with resistance located in deeper tissues. Experimental evidence is presented that the resistance to aphids in the genotypes with glandular trichomes strongly depends on these morphological structures.  相似文献   

12.
The effect of wheat resistance in lines of Triticum monococcum L., on the reproductive performances of the cereal aphid (Sitobion avenae F.) was investigated. Aphids were reared from birth to adult moult either on resistant or susceptible wheat lines, and transferred as apterae to both host genotypes. The influence of these transfers on the subsequent adult weight, gonad status and reproductive performances was evaluated. Aphids transferred from resistant to susceptible plants proved able to compensate for their poor nymphal growth, mainly through additional embryo growth and an increase in the number of matured embryos within the first 10 days of their adult life. Most aphids transferred from susceptible to resistant plants died within the first week following the transfer. Their most advanced embryos matured and were born, but subsequent embryo growth was quickly reduced. The reproductive strategies adopted by S. avenae when facing plant resistance, and the hypothesis of a resistant mechanism based on a poor nutritional state of the resistant plants are discussed.  相似文献   

13.
Six cabbage (Brassica oleracea var. capitata) varieties with different levels of resistance to Mamestra brassicae (Lepidoptera: Noctuidae) were investigated in order to assess whether antibiosis and antixenosis mechanisms are involved in the resistance to this pest or not. Four experiments were conducted to determine the effect of variety and plant ontogeny on larval behaviour, adult oviposition and leaf damages in non‐choice and choice tests. Larval survival, time to development and larval weights differed depending on the varieties and plant stages that we tested. At the pre‐head stage, larval mortality was higher, larvae died faster, time to pupation was shorter, pupae were lighter and the percentage of viable pupae and growth index (GI) values were lower than larvae reared from plants at the head stage. The commercial hybrid ‘Corazón de buey’ and the local variety named ‘BRS0535’ exhibited antibiosis to M. brassicae as they reduced its survival and growth and delayed its development time. In addition, these varieties were the most resistant after artificial infestation in terms of head foliage consumption and number of larvae per plant. Oviposition tests demonstrated that resistance found in ‘Corazón de buey’ and BRS0535 could be also based on antixenosis mechanisms as they resulted in fewer egg batches on plants, whereas BRS0402 could be classified as resistant because M. brassicae larvae showed less preference for it. Thus, resistance to M. brassicae found in cabbage crops may be due to the joint action of several factors involving antibiosis and antixenosis. We found significant differences in the resistance of BRS0535 depending on the plant ontogeny as it loses its resistance while developing. Further studies are required to identify the mechanism of antibiotic resistance which is present in this variety at the pre‐head stage and the changes that occur in plant defence as it grows.  相似文献   

14.
Russian wheat aphid,Diuraphis noxia(Mordvilko), as a pest of small grains, has prompted research into biological control and host plant resistance. In the presence of Russian wheat aphid, leaves of a susceptible barley (Morex) are curled and chlorotic and sustain large densities of this aphid, while leaves of a resistant barley (STARS-9301B) remain flat and green and sustain fewer aphids. Might parasitism of Russian wheat aphid byAphelinus albipodusHayat & Fatima andDiaeretiella rapaeMcIntosh be affected differently by these plant types? When presented the plants separately and based on parasitism rate relative to aphid density, the largerD. rapaewas more effective in parasitizing relatively high densities of aphids within curled leaves of Morex than relatively low densities of aphids on uncurled leaves of STARS-9301B. Parasitism byA. albipodusdid not significantly differ among the plants. When given a choice of plants, approximately equal rates of parasitism occurred on the two plant lines for both parasitoid species, and parasitism byD. rapaewas greater thanA. albipodus.These data indicate that using parasitoid size as an indicator of success in a physically restricted environment may be misleading, when considered in a plant environment responsive in several manners to aphids (chlorosis, curling, and ability to sustain Russian wheat aphid). We expect that use of resistant barley will result in decreased parasitoid abundance as aphid densities decrease. However, parasitism rates are expected to be approximately equal on resistant and susceptible barley. In this system, plant resistance and biocontrol are compatible management strategies.  相似文献   

15.
Results of glasshouse experiments have confirmed that inbred lines of sugar beet differ in each of three types of resistance to Myzus persicae Sulz. and Aphis fabae Scop., namely: resistance to settling, resistance to multiplication, and tolerance. Resistance to multiplication was not invariably associated with resistance to settling, although plants of some lines showed both forms of resistance. Plants that were resistant to settling of alatae were not always resistant to apterae of the same species, and there was not a close relationship between resistance to M. persicae and to A. fabae. The mechanisms involved in resistance to aphids in sugar beet are not understood. Progenies of plants, selected for resistance to aphids from inbred lines, were often more resistant than progenies of unselected plants. Inheritance of each type of resistance is probably polygenic. The potential value of the different kinds of resistance, in reducing direct feeding damage and controlling the spread of virus yellows in the field, is discussed. The ultimate breeding objective is to produce commercial varieties in which appropriate kinds of resistance to aphids are combined with resistance to virus yellows. The use of such varieties would reduce the need to control aphids in the field by applications of chemicals.  相似文献   

16.
The short-term response of redlegged earth mite, Halotydeus destructor (Tucker) (Acarina: Penthaleidae) to cotyledons of different varieties of subterranean clover (Trifolium subterraneum subsp. subterraneum L.) was assessed by means of paired choice tests, and no-choice tests. H. destructor had lower numbers and fed less on detached cotyledons of resistant than susceptible varieties, yielding a correlation between the numbers of mites and feeding damage to the cotyledons during a three hour test period. For a number of resistant and susceptible varieties, there was a negative correlation between cotyledon deterrence in the three hour choice test and feeding damage to seedling after a two week period. Since the response of the mites to different subclover varieties occurred within three hours, it is concluded that the resistance is based on antixenosis.No evidence was obtained for antifeedant activity in organic solvent extracts from the variety DGI007 (resistant) in comparison with those from the variety Dalkeith (susceptible). Water soluble compounds from DGI007 cotyledons were preferred by mites, in feeding tests in terms of numbers, over those from Dalkeith (susceptible). Squeezed sap from the cotyledons of both varieties showed the same effects on mites as 5% glucose and were more phagostimulatory than water extracts. Mechanically damaged cotyledons of Dalkeith and DGI007 attracted more mites than the undamaged counterparts. The toughness of cotyledons in 17 varieties of T. subterraneum subsp. subterraneum was measured with a manual penetrometer. Results showed a negative correlation between toughness values and mite feeding damage scores (r2=0.752) for all varieties except S3615D (resistant). This implies a likely involvement of epidermal toughness as a contributor in the antixenotic resistance of these varieties. Other mechanisms may be involved in the resistance of S3615D.  相似文献   

17.
Susceptible and resistance wheat cultivars, Triticum aestivum L, were presented to two biotypes of Russian wheat aphid, Diuraphis noxia (Mordvilko), in multiple choice tests to assay their relative acceptability as host plants. Both apterae (third and fourth instars) and alate adults were offered plants at the two-leaf stage in different cultivar combinations at 22±1℃ and 16:8 (L: D) hour photoperiod. Apterae were released from Petri dishes in the center of a circle of test plants, whereas alatae dispersed from a mature aphid colony to settle on plants arranged in rows. Both alatae and apterous nymphs of both biotypes readily colonized all cultivars tested:‘2137', ‘Akron',‘Ankor’,‘ Halt’ ,‘ Jagger’ ,‘ Prairie Red’ , ‘Stanton',‘TAM 107',‘TAM 110',‘Trego', ‘ Yuma', and ‘Yumar'. Fewer biotype I apterae responded (settled and fed) in the combination containing more resistant (Dn4- and Dny-expressing) cultivars, compared to the combinations that had fewer. The reverse was true for biotype 2 apterae; more aphids responded in the combination containing the largest number of Dn4 expressing cultivars. Differential colonization of cultivars was observed in only one combination, in which biotype 2 apterae colonized Akron and Yumar in larger numbers than they did Stanton and Yuma. A separate experiment confirmed that, 48 hours after infestation, more biotype 2 apterae abandoned plants of Yuma than plants of Yumar. This differential response was likely due to genetic differences between the two ' near isogenic' lines that include the lack of Dn4 expression in Yuma. Choice tests with alatae did not result in differential rates of cultivar colonization by either biotype in any combination tested. These results suggest that young wheat plants appear to lack any meaningful antixenosis toward D. noxia, even though the aphids appear to perceive, and sometimes respond to, certain differences in cultivar suitability.  相似文献   

18.
The Russian wheat aphid is a significant pest problem in wheat and barley in North America. Genetic resistance in wheat is the most effective and economical means to control the damage caused by the aphid. Dn7 is a rye gene located on chromosome 1RS that confers resistance to the Russian wheat aphid. The gene was previously transferred from rye into a wheat background via a 1RS/1BL translocation. This study was conducted to genetically map Dn7 and to characterize the type of resistance the gene confers. The resistant line '94M370' was crossed with a susceptible wheat cultivar that also contains a pair of 1RS/1BL translocation chromosomes. The F2 progeny from this cross segregated for resistance in a ratio of 3 resistant: 1 susceptible, indicating a single dominant gene. One-hundred and eleven RFLP markers previously mapped on wheat chromosomes 1A, 1B and 1D, barley chromosome 1H and rye chromosome 1R, were used to screen the parents for polymorphism. A genetic map containing six markers linked to Dn7, encompassing 28.2 cM, was constructed. The markers flanking Dn7 were Xbcd1434 and XksuD14, which mapped 1.4 cM and 7.4 cM from Dn7, respectively. Dn7 confers antixenosis, and provides a higher level of resistance than that provided by Dn4. The applications of Dn7 and the linked markers in wheat breeding are discussed.Communicated by J. Dvorak  相似文献   

19.
Insect pests can reduce wheat yield by direct feeding and transmission of plant viruses. Here we report results from laboratory and field phenotyping studies on a wide range of wheat, including landraces from the Watkins collection deriving from before the green revolution, more modern cultivars from the Gediflux collection (north‐western Europe) and modern UK Elite varieties, for resistance to the bird cherry‐oat aphid, Rhopalosiphum padi (Homoptera: Aphididae) and the English grain aphid, Sitobion avenae (Homoptera: Aphididae). A total of 338 lines were screened for R. padi and 340 lines for S. avenae. Field trials were also conducted on 122 Watkins lines to identify wheat bulb fly, Delia coarctata, preference on these landraces. Considerable variation was shown in insect performance among and within different wheat collections, with reduced susceptibility in a number of varieties, but phenotyping did not identify strong resistance to aphids or wheat bulb fly. Field trials showed within collection differences in aphid performance, with fewer aphids populating lines from the Watkins collection. This differs from development data in laboratory bioassays and suggests that there is a pre‐alighting cue deterring aphid settlement and demonstrates differences in aphid preference and performance on older plants in the field compared with seedlings in the laboratory, highlighting the need for phenotyping for aphid resistance at different plant growth stages. No association was identified between performance of the different insect species on individual varieties, potentially suggesting different nutritional requirements or resistance mechanisms.  相似文献   

20.
The cucumber mosaic virus (CMV) 2a RNA-dependent RNA polymerase protein has an additional function in Arabidopsis thaliana, which is to stimulate feeding deterrence (antixenosis) against aphids. Antixenosis is thought to increase the probability that aphids, after acquiring CMV particles from brief probes of an infected plant's epidermal cells, will be discouraged from settling and instead will spread inoculum to neighbouring plants. The amino acid sequences of 2a proteins encoded by a CMV strain that induces antixenosis in A. thaliana (Fny-CMV) and one that does not (LS-CMV) were compared to identify residues that might determine the triggering of antixenosis. These data were used to design reassortant viruses comprising Fny-CMV RNAs 1 and 3, and recombinant CMV RNA 2 molecules encoding chimeric 2a proteins containing sequences derived from LS-CMV and Fny-CMV. Antixenosis induction was detected by measuring the mean relative growth rate and fecundity of aphids (Myzus persicae) confined on infected and on mock-inoculated plants. An amino acid sequence determining antixenosis induction by CMV was found to reside between 2a protein residues 200 and 300. Subsequent mutant analysis delineated this to residue 237. We conjecture that the Fny-CMV 2a protein valine-237 plays some role in 2a protein-induced antixenosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号