首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While water and sediment microbial communities exhibit pronounced spatio-temporal patterns in freshwater lakes, the underlying drivers are yet poorly understood. Here, we evaluated the importance of spatial and temporal variation in abiotic environmental factors for bacterial and microeukaryotic community assembly and distance–decay relationships in water and sediment niches in Hongze Lake. By sampling across the whole lake during both Autumn and Spring sampling time points, we show that only bacterial sediment communities were governed by deterministic community assembly processes due to abiotic environmental drivers. Nevertheless, consistent distance–decay relationships were found with both bacterial and microeukaryotic communities, which were relatively stable with both sampling time points. Our results suggest that spatio-temporal variation in environmental factors was important in explaining mainly bacterial community assembly in the sediment, possibly due lesser disturbance. However, clear distance–decay patterns emerged also when the community assembly was stochastic. Together, these results suggest that abiotic environmental factors do not clearly drive the spatial structuring of lake microbial communities, highlighting the need to understand the role of other potential drivers, such as spatial heterogeneity and biotic species interactions.  相似文献   

2.
The bacterial community assembly patterns and processes are poorly understood in pig manure slurry. We collected pig manure slurry samples during the winter and summer seasons from eight commercial pig farms in South Korea. The V3 region of 16S rRNA genes was PCR amplified and sequenced using paired-end Illumina technology for in-depth characterization of bacterial community. Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, and Tenericutes were the predominant bacterial phyla present in slurry samples. Bacterial taxonomic community composition was not influenced by the season; however, phylogenetic community composition was affected by seasonal variations. The community composition and diversity patterns were strongly influenced by pH. The bacterial diversity indices showed a unimodal relationship with pH. Phylogenetic signals were detected over only short phylogenetic distances, revealing that closely related bacterial operational taxonomic units (OTUs) tend to co-occur in the same environment; hence, they are ecologically similar. Across all samples, a niche-based process, through strong environmental filtering imposed by pH, primarily governed bacterial community assembly; however, in samples close to the neutral pH range, the role of environmental filtering was decreased due to neutral community assembly. In summary, pH emerged as the major physico-chemical variable in pig manure slurry that regulates the relative importance of niche-based and neutral processes in shaping the community assembly of bacteria.  相似文献   

3.
Ecological theory suggests that communities are not random combinations of species but rather the results of community assembly processes filtering and sorting species that are able to coexist together. To date, such processes (i.e., assembly rules) have been inferred from observed spatial patterns of biodiversity combined with null model approaches, but relatively few attempts have been made to assess how these processes may be changing through time. Specifically, in the context of the ongoing biodiversity crisis and global change, understanding how processes shaping communities may be changing and identifying the potential drivers underlying these changes become increasingly critical. Here, we used time series of 460 French freshwater fish communities and assessed both functional and phylogenetic diversity patterns to determine the relative importance of two key assembly rules (i.e., habitat filtering and limiting similarity) in shaping these communities over the last two decades. We aimed to (a) describe the temporal changes in both functional and phylogenetic diversity patterns, (b) determine to what extent temporal changes in processes inferred through the use of standardized diversity indices were congruent, and (c) test the relationships between the dynamics of assembly rules and both climatic and biotic drivers. Our results revealed that habitat filtering, although already largely predominant over limiting similarity, became more widespread over time. We also highlighted that phylogenetic and trait‐based approaches offered complementary information about temporal changes in assembly rules. Finally, we found that increased environmental harshness over the study period (especially higher seasonality of temperature) led to an increase in habitat filtering and that biological invasions increased functional redundancy within communities. Overall, these findings underlie the need to develop temporal perspectives in community assembly studies, as understanding ongoing temporal changes could provide a better vision about the way communities could respond to future global changes.  相似文献   

4.
The cichlid family features some of the most spectacular examples of adaptive radiation. Evolutionary studies have highlighted the importance of both trophic adaptation and sexual selection in cichlid speciation. However, it is poorly understood what processes drive the composition and diversity of local cichlid species assemblages on relatively short, ecological timescales. Here, we investigate the relative importance of niche‐based and neutral processes in determining the composition and diversity of cichlid communities inhabiting various environmental conditions in the littoral zone of Lake Tanganyika, Zambia. We collected data on cichlid abundance, morphometrics, and local environments. We analyzed relationships between mean trait values, community composition, and environmental variation, and used a recently developed modeling technique (STEPCAM) to estimate the contributions of niche‐based and neutral processes to community assembly. Contrary to our expectations, our results show that stochastic processes, and not niche‐based processes, were responsible for the majority of cichlid community assembly. We also found that the relative importance of niche‐based and neutral processes was constant across environments. However, we found significant relationships between environmental variation, community trait means, and community composition. These relationships were caused by niche‐based processes, as they disappeared in simulated, purely neutrally assembled communities. Importantly, these results can potentially reconcile seemingly contrasting findings in the literature about the importance of either niche‐based or neutral‐based processes in community assembly, as we show that significant trait relationships can already be found in nearly (but not completely) neutrally assembled communities; that is, even a small deviation from neutrality can have major effects on community patterns.  相似文献   

5.
The response of local communities to marine–freshwater transitions and the processes that underlie community assembly are unclear, particularly with respect to bacteria that differ in their life strategies. Here, we implemented a transplant experiment where bacterioplankton from three regions of the Baltic Sea with differing salinities (~3, 7 and 28 psu) were exposed to each other's environmental conditions. We found that habitat specialists were more abundant than generalists after exposure to salinity changes, irrespective of their origins. Most specialists that were selected following a salinity change were rare in the starting communities. Selection for generalists, however, was not specifically driven by the recruitment of either rare or abundant members, suggesting that taxon's initial abundance is minor relevant to the growth of generalists. Patterns in phylogenetic relatedness indicated that environmental filtering was the most influential assembly mechanism for specialists, whereas competitive interaction was more important for the assembly of generalists. Altogether, this study shows that large salinity changes promote the establishment of habitat specialists and that deterministic processes vary during community assembly for ecologically dissimilar taxa. We, therefore, propose that distinguishing assembly mechanisms of different community members helps understand and predict community dynamics in response to environmental change.  相似文献   

6.
Uncovering which environmental factors govern community diversity patterns and how ecological processes drive community turnover are key questions related to understand the community assembly. However, the ecological mechanisms regulating long‐term variations of bacterioplankton communities in lake ecosystems remain poorly understood. Here we present nearly a decade‐long study of bacterioplankton communities from the eutrophic Lake Donghu (Wuhan, China) using 16S rRNA gene amplicon sequencing with MiSeq platform. We found strong repeatable seasonal diversity patterns in terms of both common (detected in more than 50% samples) and dominant (relative abundance >1%) bacterial taxa turnover. Moreover, community composition tracked the seasonal temperature gradient, indicating that temperature is a key environmental factor controlling observed diversity patterns. Total phosphorus also contributed significantly to the seasonal shifts in bacterioplankton composition. However, any spatial pattern of bacterioplankton communities across the main lake areas within season was overwhelmed by their temporal variabilities. Phylogenetic analysis further indicated that 75%–82% of community turnover was governed by homogeneous selection due to consistent environmental conditions within seasons, suggesting that the microbial communities in Lake Donghu are mainly controlled by niche‐based processes. Therefore, dominant niches available within seasons might be occupied by similar combinations of bacterial taxa with modest dispersal rates throughout different lake areas.  相似文献   

7.
Metacommunity studies on lake bacterioplankton indicate the importance of environmental factors in structuring communities. Yet most of these studies cover relatively small spatial scales. We assessed the relative importance of environmental and spatial factors in shaping bacterioplankton communities across a > 6000 km latitudinal range, studying 48 shallow lowland lakes in the tropical, tropicali (isothermal subzone of the tropics) and tundra climate regions of South America using denaturing gradient gel electrophoresis. Bacterioplankton community composition (BCC) differed significantly across regions. Although a large fraction of the variation in BCC remained unexplained, the results supported a consistent significant contribution of local environmental variables and to a lesser extent spatial variables, irrespective of spatial scale. Upon correction for space, mainly biotic environmental factors significantly explained the variation in BCC. The abundance of pelagic cladocerans remained particularly significant, suggesting grazer effects on bacterioplankton communities in the studied lakes. These results confirm that bacterioplankton communities are predominantly structured by environmental factors, even over a large‐scale latitudinal gradient (6026 km), and stress the importance of including biotic variables in studies that aim to understand patterns in BCC.  相似文献   

8.
Whether niche processes, like environmental filtering, or neutral processes, like dispersal limitation, are the primary forces driving community assembly is a central question in ecology. Here, we use a natural experimental system of isolated tree “islands” to test whether environment or geography primarily structures fungal community composition at fine spatial scales. This system consists of isolated pairs of two distantly related, congeneric pine trees established at varying distances from each other and the forest edge, allowing us to disentangle the effects of geographic distance vs. host and edaphic environment on associated fungal communities. We identified fungal community composition with Illumina sequencing of ITS amplicons, measured all relevant environmental parameters for each tree—including tree age, size and soil chemistry—and calculated geographic distances from each tree to all others and to the nearest forest edge. We applied generalized dissimilarity modelling to test whether total and ectomycorrhizal fungal (EMF) communities were primarily structured by geographic or environmental filtering. Our results provide strong evidence that as in many other organisms, niche and neutral processes both contribute significantly to turnover in community composition in fungi, but environmental filtering plays the dominant role in structuring both free‐living and symbiotic fungal communities at fine spatial scales. In our study system, we found pH and organic matter primarily drive environmental filtering in total soil fungal communities and that pH and cation exchange capacity—and, surprisingly, not host species—were the largest factors affecting EMF community composition. These findings support an emerging paradigm that pH may play a central role in the assembly of all soil‐mediated systems.  相似文献   

9.
Knowledge about the phylogeny and ecology of communities along environmental gradients helps to disentangle the role of competition-driven processes and environmental filtering for community assembly. In this study, we evaluated patterns in species richness, phylogenetic structure and life-history traits of bee communities along altitudinal gradients in the Alps, Germany. We found a linear decline in species richness and abundance but increasing phylogenetic clustering in communities with increasing altitude. The proportion of social- and ground-nesting species, as well as mean body size and altitudinal range of bee communities, increased with increasing altitude, whereas the mean geographical distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, whereas the relative importance of competition increases at low altitudes. We conclude that inherent phylogenetic and ecological species attributes at high altitudes pose a threat for less competitive alpine specialists with ongoing climate change.  相似文献   

10.
The relative importance of environmental filtering, biotic interactions and neutral processes in community assembly remains an openly debated question and one that is increasingly addressed using phylogenetic approaches. Closely related species may occur together more frequently than expected (phylogenetic clustering) if environmental filtering operates on traits with significant phylogenetic signal. Recent studies show that phylogenetic clustering tends to increase with spatial scale, presumably because greater environmental variation is encompassed at larger spatial scales, providing opportunities for species to sort across environmental gradients. However, if environmental filtering is the cause of species sorting along environmental gradients, then environmental variation rather than spatial scale per se should drive the processes governing community assembly. Using species abundance and light availability data from a long‐term experiment in Minnesota oak savanna understory communities, we explicitly test the hypothesis that greater environmental variation results in greater phylogenetic clustering when spatial scale is held constant. Concordant with previous studies, we found that phylogenetic community structure varied with spatial extent. At the landscape scale (~1000 ha), communities were phylogenetically clustered. At the local scale (0.375ha), phylogenetic community structure varied among plots. As hypothesized, plots encompassing the greatest environmental variation in light availability exhibited the strongest phylogenetic clustering. We also found strong correlations between species functional traits, particularly specific leaf area (SLA) and perimeter per area (PA), and species light availability niche. There was also a phylogenetic signal in both functional traits and species light availability niche, providing a mechanistic explanation for phylogenetic clustering in relation to light availability. We conclude that the pattern of increased phylogenetic clustering with increased environmental variation is a consequence of environmental filtering acting on phylogenetically conserved functional traits. These results indicate that the importance of environmental filtering in community assembly depends not on spatial scale per se, but on the steepness of the environmental gradient.  相似文献   

11.
生物多样性的形成和维持机制是生态学研究的核心问题,其中环境和空间因子在群落构建中的相对重要性是生态学家面临的重要挑战。为探究黄河口湿地底栖动物群落的关键影响因子,及环境和空间因子对底栖动物群落结构的相对调控作用。于2017年10月与2018年5月对黄河口湿地32个样点(淡水恢复湿地19个和自然湿地13个)的底栖动物和水体理化指标进行采集分析。非度量多维标度排序(NMDS)结果显示,黄河口淡水恢复湿地和自然湿地的底栖动物群落结构显著不同。典范对应分析(CCA)表明,影响淡水恢复湿地底栖动物群落结构的环境因子主要为电导率、盐度和氧化还原电位;而自然湿地底栖动物群落结构主要受pH和无机碳的影响;盐度是两类湿地底栖动物群落组成差异的关键因子。变差分解(VPA)结果显示,环境过滤对淡水恢复湿地底栖动物群落起主导作用;在自然湿地中,空间因子对底栖动物群落具有主要的调控作用,同时环境和空间因子的相互作用也至关重要。本研究明确了黄河口的自然和恢复湿地中环境和空间因素对底栖动物群落特征的相对作用,对黄河三角洲河口湿地中生物多样性的保护和生态系统管理提供参考。  相似文献   

12.
13.
Ecological approaches to community assembly have emphasized the interplay between neutral processes, niche-based environmental filtering and niche-based species sorting in an interactive milieu. Recently, progress has been made in terms of aligning our vocabulary with conceptual advances, assessing how trait-based community functional parameters differ from neutral expectation and assessing how traits vary along environmental gradients. Experiments have confirmed the influence of these processes on assembly and have addressed the role of dispersal in shaping local assemblages. Community phylogenetics has forged common ground between ecologists and biogeographers, but it is not a proxy for trait-based approaches. Community assembly theory is in need of a comparative synthesis that addresses how the relative importance of niche and neutral processes varies among taxa, along environmental gradients, and across scales. Towards that goal, we suggest a set of traits that probably confer increasing community neutrality and regionality and review the influences of stress, disturbance and scale on the importance of niche assembly. We advocate increasing the complexity of experiments in order to assess the relative importance of multiple processes. As an example, we provide evidence that dispersal, niche processes and trait interdependencies have about equal influence on trait-based assembly in an experimental grassland.  相似文献   

14.
Environmental controls were traditionally considered as sole determinants of community assembly for freshwater bioassessment studies, whereas potential importance of dispersal processes and spatial scale have received limited attention. We conducted a bioassessment of lakes across northeast Alberta, Canada using crustacean zooplankton to develop a framework for evaluating if and how atmospheric emissions from the nearby Athabasca Oil Sands Region could impact their community assemblages. We quantified the effects of environmental gradients and spatially contingent dispersal processes for determining zooplankton community composition of 97 lakes at two spatial scales (regional and sub-regional) using constrained ordination, spatial modeling and variance partitioning techniques. Our findings indicated that effects of both environmental gradients and dispersal processes on species composition were scale-dependent. Zooplankton community composition was significantly correlated to environmental parameters that are directly and indirectly sensitive to industrial deposition including nitrate, sulphate, dissolved organic carbon, base cation, chloride, trace metal concentrations and predation regime, indicating their potential to track future environmental impacts. The relative importance of these environmental predictors varied with spatial scale, yet unraveling the effects of natural environmental heterogeneity vs. industrial deposition on this scale-dependency was not possible due to lack of regional baseline information. Dispersal processes were not important in shaping zooplankton communities at the sub-regional scale, but had limited, yet significant influence on species composition at the regional scale, emphasizing the need for cautious interpretation of broad-scale community patterns. Beyond establishing crucial regional baselines, our study highlights the necessity for explicit incorporation of dispersal effects and spatial scale in bioassessment of lakes across landscapes.  相似文献   

15.
One major goal in microbial ecology is to establish the importance of deterministic and stochastic processes for community assembly. This is relevant to explain and predict how diversity changes at different temporal scales. However, understanding of the relative quantitative contribution of these processes and particularly of how they may change over time is limited. Here, we assessed the importance of deterministic and stochastic processes based on the analysis of the bacterial microbiome in one alpine oligotrophic and in one subalpine mesotrophic lake, which were sampled over two consecutive years at different time scales. We found that in both lakes, homogeneous selection (i.e., a deterministic process) was the main assembly process at the annual scale and explained 66.7% of the bacterial community turnover, despite differences in diversity and temporal variability patterns between ecosystems. However, in the alpine lake, homogenizing dispersal (i.e., a stochastic process) was the most important assembly process at the short‐term (daily and weekly) sampling scale and explained 55% of the community turnover. Alpha diversity differed between lakes, and seasonal stability of the bacterial community was more evident in the oligotrophic lake than in the mesotrophic one. Our results demonstrate how important forces that govern temporal changes in bacterial communities act at different time scales. Overall, our study validates on a quantitative basis, the importance and dominance of deterministic processes in structuring bacterial communities in freshwater environments over long time scales.  相似文献   

16.
Despite recent interest in microbial diversity and community structure of lakes across various spatial scales, a global biogeographic distribution pattern and its controlling factors have not been fully disclosed. Here, we compiled and analyzed 88,334,735 environmental 16S rRNA sequences from 431 lakes across a wide range of geographical distance and environmental conditions(in particular, salinity, 0–373.3 gL~(–1)). Our results showed that lake sediments inhabit significantly(ANOVA: P0.001) more diverse microbial communities than lake waters. Non-metric dimensional scaling(NMDS) ordinations indicated that microbial community compositions differed distinctly among sample types(freshwater vs. saline, water vs. sediment) and geographic locations. Mantel and partial Mantel tests showed that microbial community composition in lake water was significantly(P=0.001) correlated with geographic distance, salinity, and pH. Statistical analyses based on neutral community and null models indicated that stochastic processes may play predominant roles in shaping the microbial biogeographic distribution patterns in the studied global lake waters. The dispersal-related stochasticity(e.g., homogenizing dispersal) exhibited a stronger influence on the distribution of microbial community in freshwater lakes than in saline lakes. Overall, this work expands our understanding of the impact of geographic distance, environmental conditions, and stochastic processes on microbial distribution in global lakes.  相似文献   

17.
Although recent work has shown that both deterministic and stochastic processes are important in structuring microbial communities, the factors that affect the relative contributions of niche and neutral processes are poorly understood. The macrobiological literature indicates that ecological disturbances can influence assembly processes. Thus, we sampled bacterial communities at 4 and 16 weeks following a wildfire and used null deviation analysis to examine the role that time since disturbance has in community assembly. Fire dramatically altered bacterial community structure and diversity as well as soil chemistry for both time-points. Community structure shifted between 4 and 16 weeks for both burned and unburned communities. Community assembly in burned sites 4 weeks after fire was significantly more stochastic than in unburned sites. After 16 weeks, however, burned communities were significantly less stochastic than unburned communities. Thus, we propose a three-phase model featuring shifts in the relative importance of niche and neutral processes as a function of time since disturbance. Because neutral processes are characterized by a decoupling between environmental parameters and community structure, we hypothesize that a better understanding of community assembly may be important in determining where and when detailed studies of community composition are valuable for predicting ecosystem function.  相似文献   

18.
森林群落的构建即多样性维持机制是当今生态学研究的热点问题。然而, 当前群落构建和群落多样性的研究多在间接梯度上进行, 而在水、热等影响物种在区域内定植的关键且直接的环境梯度上研究群落构建和多样性模式则鲜有报道。结合环境因子, 基于物种组成和谱系方法探讨不同群落的分布成因, 有助于解释群落构建过程中的关键问题。该研究基于华北森林群落调查数据和环境数据, 涉及7个省市区的29个以壳斗科、桦木科为优势种的群落, 探讨了直接环境梯度上的群落构建和多样性模式, 同时用典范对应分析研究了不同群落分布的环境解释。结果发现, 相似的群落具有相似的生境偏好, 相似的生境条件会形成物种组成相同或相似的群落。环境热量主导了本区域的谱系关系, 在年平均气温较低的地区, 群落构建主要表现为生境过滤的模式。此外, 随着年降水量的增加, 生境过滤作用逐渐增加。在温度梯度上, 谱系多样性表现为钟形模式, 而降水量的增加能导致谱系多样性的增加。  相似文献   

19.
Patterns of phylogenetic relatedness within communities have been widely used to infer the importance of different ecological and evolutionary processes during community assembly, but little is known about the relative ability of community phylogenetics methods and null models to detect the signature of processes such as dispersal, competition and filtering under different models of trait evolution. Using a metacommunity simulation incorporating quantitative models of trait evolution and community assembly, I assessed the performance of different tests that have been used to measure community phylogenetic structure. All tests were sensitive to the relative phylogenetic signal in species metacommunity abundances and traits; methods that were most sensitive to the effects of niche-based processes on community structure were also more likely to find non-random patterns of community phylogenetic structure under dispersal assembly. When used with a null model that maintained species occurrence frequency in random communities, several metrics could detect niche-based assembly when there was strong phylogenetic signal in species traits, when multiple traits were involved in community assembly, and in the presence of environmental heterogeneity. Interpretations of the causes of community phylogenetic structure should be modified to account for the influence of dispersal.  相似文献   

20.
It is unknown whether bacterioplankton and biofilm communities are structured by the same ecological processes, and whether they influence each other through continuous dispersal (known as mass effects). Using a hierarchical sampling approach we compared the relative importance of ecological processes structuring the dominant fraction (relative abundance ≥0.1%) of bacterioplankton and biofilm communities from three microhabitats (open water, Nuphar and Phragmites sites) at within‐ and among‐pond scale in a set of 14 interconnected shallow ponds. Our results demonstrate that while bacterioplankton and biofilm communities are highly distinct, a similar hierarchy of ecological processes is acting on them. For both community types, most variation in community composition was determined by pond identity and environmental variables, with no effect of space. The highest β‐diversity within each community type was observed among ponds, while microhabitat type (Nuphar, Phragmites, open water) significantly influenced biofilm communities but not bacterioplankton. Mass effects among bacterioplankton and biofilm communities were not detected, as suggested by the absence of within‐site covariation of biofilm and bacterioplankton communities. Both biofilm and plankton communities were thus highly structured by environmental factors (i.e., species sorting), with among‐lake variation being more important than within‐lake variation, whereas dispersal limitation and mass effects were not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号