首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Background

Echinococcus granulosus is usually transmitted between canid definitive hosts and ungulate intermediate hosts.

Methodology/Principal Findings

Lesions found in the livers of ground squirrels, Spermophilus dauricus/alashanicus, trapped in Ningxia Hui Autonomous Region, an area in China co-endemic for both E. granulosus and E. multilocularis, were subjected to molecular genotyping for Echinococcus spp. DNA. One of the lesions was shown to be caused by E. granulosus and subsequently by histology to contain viable protoscoleces.

Conclusions/Significance

This is the first report of a natural infection of the ground squirrel with E. granulosus. This does not provide definitive proof of a cycle involving ground squirrels and dogs or foxes, but it is clear that there is active E. granulosus transmission occurring in this area, despite a recent past decline in the dog population in southern Ningxia.  相似文献   

2.

Background

Cystic echinococcosis (CE) caused by the Echinococcus granulosus, is a major public health problem worldwide, including India. The different genotypes of E. granulosus responsible for human hydatidosis have been reported from endemic areas throughout the world. However, the genetic characterization of E. granulosus infecting the human population in India is lacking. The aim of study was to ascertain the genotype(s) of the parasite responsible for human hydatidosis in North India.

Methodology/Principal Findings

To study the transmission patterns of E. granulosus, genotypic analysis was performed on hydatid cysts obtained from 32 cystic echinococcosis (CE) patients residing in 7 different states of North India. Mitochondrial cytochrome c oxidase subunit1 (cox1) sequencing was done for molecular identification of the isolates. Most of the CE patients (30/32) were found to be infected with hydatid cyst of either G3 (53.1%) or G1 (40.62%) genotype and one each of G5 (cattle strain) and G6 (camel strain) genotype.

Conclusions/Significance

These findings demonstrate the zoonotic potential of G1 (sheep strain) and G3 (buffalo strain) genotypes of E. granulosus as these emerged as predominant genotypes infecting the humans in India. In addition to this, the present study reports the first human CE case infected with G5 genotype (cattle strain) in an Asian country and presence of G6 genotype (camel strain) in India. The results may have important implications in the planning of control strategies for human hydatidosis.  相似文献   

3.

Background

Production of native antigens for serodiagnosis of helminthic infections is laborious and hampered by batch-to-batch variation. For serodiagnosis of echinococcosis, especially cystic disease, most screening tests rely on crude or purified Echinococcus granulosus hydatid cyst fluid. To resolve limitations associated with native antigens in serological tests, the use of standardized and highly pure antigens produced by chemical synthesis offers considerable advantages, provided appropriate diagnostic sensitivity and specificity is achieved.

Methodology/Principal Findings

Making use of the growing collection of genomic and proteomic data, we applied a set of bioinformatic selection criteria to a collection of protein sequences including conceptually translated nucleotide sequence data of two related tapeworms, Echinococcus multilocularis and Echinococcus granulosus. Our approach targeted alpha-helical coiled-coils and intrinsically unstructured regions of parasite proteins potentially exposed to the host immune system. From 6 proteins of E. multilocularis and 5 proteins of E. granulosus, 45 peptides between 24 and 30 amino acids in length were designed. These peptides were chemically synthesized, spotted on microarrays and screened for reactivity with sera from infected humans. Peptides reacting above the cut-off were validated in enzyme-linked immunosorbent assays (ELISA). Peptides identified failed to differentiate between E. multilocularis and E. granulosus infection. The peptide performing best reached 57% sensitivity and 94% specificity. This candidate derived from Echinococcus multilocularis antigen B8/1 and showed strong reactivity to sera from patients infected either with E. multilocularis or E. granulosus.

Conclusions/Significance

This study provides proof of principle for the discovery of diagnostically relevant peptides by bioinformatic selection complemented with screening on a high-throughput microarray platform. Our data showed that a single peptide cannot provide sufficient diagnostic sensitivity whereas pooling several peptide antigens improved sensitivity; thus combinations of several peptides may lead the way to new diagnostic tests that replace, or at least complement conventional immunodiagnosis of echinococcosis. Our strategy could prove useful for diagnostic developments in other pathogens.  相似文献   

4.

Background

Echinococcosis is a complex zoonosis that has domestic and sylvatic lifecycles, and a range of different intermediate and definitive host species. The complexities of its transmission and the sparse evidence on the effectiveness of control strategies in diverse settings provide significant challenges for the design of effective public health policy against this disease. Mathematical modelling is a useful tool for simulating control packages under locally specific transmission conditions to inform optimal timing and frequency of phased interventions for cost-effective control of echinococcosis. The aims of this review of 30 years of Echinococcus modelling were to discern the epidemiological mechanisms underpinning models of Echinococcus granulosus and E. multilocularis transmission and to establish the need to include a human transmission component in such models.

Methodology/Principal Findings

A search was conducted of all relevant articles published up until July 2012, identified from the PubMED, Web of Knowledge and Medline databases and review of bibliographies of selected papers. Papers eligible for inclusion were those describing the design of a new model, or modification of an existing mathematical model of E. granulosus or E. multilocularis transmission. A total of 13 eligible papers were identified, five of which described mathematical models of E. granulosus and eight that described E. multilocularis transmission. These models varied primarily on the basis of six key mechanisms that all have the capacity to modulate model dynamics, qualitatively affecting projections. These are: 1) the inclusion of a ‘latent’ class and/or time delay from host exposure to infectiousness; 2) an age structure for animal hosts; 3) the presence of density-dependent constraints; 4) accounting for seasonality; 5) stochastic parameters; and 6) inclusion of spatial and risk structures.

Conclusions/Significance

This review discusses the conditions under which these mechanisms may be important for inclusion in models of Echinococcus transmission and proposes recommendations for the design of dynamic human models of transmission. Accounting for the dynamic behaviour of the Echinococcus parasites in humans will be key to predicting changes in the disease burden over time and to simulate control strategies that optimise public health impact.  相似文献   

5.
6.
7.

Background

Zoonotic visceral leishmaniasis (VL) is a severe infectious disease caused by protozoan parasites of the genus Leishmania and the domestic dogs are the main urban parasite reservoir hosts. In Brazil, indirect fluorescence antibody tests (IFAT) and indirect enzyme linked immunosorbent assay (ELISA) using promastigote extracts are widely used in epidemiological surveys. However, their sensitivity and specificity have often been compromised by the use of complex mixtures of antigens, which reduces their accuracy allowing the maintenance of infected animals that favors transmission to humans. In this context, the use of combinations of defined peptides appears favorable. Therefore, they were tested by combinations of five peptides derived from the previously described Leishmania diagnostic antigens A2, NH, LACK and K39.

Methodology/Principal Findings

Combinations of peptides derived A2, NH, LACK and K39 antigens were used in ELISA with sera from 44 human patients and 106 dogs. Improved sensitivities and specificities, close to 100%, were obtained for both sera of patients and dogs. Moreover, high sensitivity and specificity were observed even for canine sera presenting low IFAT anti-Leishmania antibody titers or from asymptomatic animals.

Conclusions/Significance

The use of combinations of B cell predicted synthetic peptides derived from antigens A2, NH, LACK and K39 may provide an alternative for improved sensitivities and specificities for immunodiagnostic assays of VL.  相似文献   

8.

Background

Currently, the serodiagnosis of cystic echinococcosis relies mostly on crude Echinococcus granulosus hydatid cyst fluid as the antigen. Consequently, available immunodiagnostic tests lack standardization of the target antigen and, in turn, this is reflected on poor sensitivity and specificity of the serological diagnosis.

Methodology/Principal Findings

Here, a chromatographic method enabling the generation of highly enriched Antigen 5 (Ag5) is described. The procedure is very easy, efficient and reproducible, since different hydatid cyst fluid (HCF) sources produced very similar chromatograms, notwithstanding the clearly evident and extreme heterogeneity of the starting material. In addition, the performance of the antigen preparation in immunological assays was preliminarily assessed by western immunoblotting and ELISA on a limited panel of cystic echinococcosis patients and healthy controls. Following western immunoblotting and ELISA experiments, a high reactivity of patient sera was seen, with unambiguous and highly specific results.

Conclusions/Significance

The methods and results reported open interesting perspectives for the development of sensitive diagnostic tools to enable the timely and unambiguous detection of cystic echinococcosis antibodies in patient sera.  相似文献   

9.

Background

Since free radical scavengers of parasite origin like glutathione-S-transferase and superoxide dismutase are being explored as prospective vaccine targets, availability of these molecules within the parasite infecting different hosts as well as different sites of infection is of considerable importance. Using Clinostomum complanatum, as a model helminth parasite, we analysed the effects of habitat of in vivo transformation on free radical scavengers of this trematode parasite.

Methods

Using three different animal models for in vivo transformation and markedly different sites of infection, progenetic metacercaria of C. complanatum were transformed to adult ovigerous worms. Whole worm homogenates were used to estimate the levels of lipid peroxidation, a marker of oxidative stress and free radical scavengers.

Results

Site of in vivo transformation was found to drastically affect the levels of free radical scavengers in this model trematode parasite. It was observed that oxygen availability at the site of infection probably influences levels of free radical scavengers in trematode parasites.

Conclusion

This is the first report showing that habitat of in vivo transformation affects levels of free radical scavengers in trematode parasites. Since free radical scavengers are prospective vaccine targets and parasite infection at ectopic sites is common, we propose that infections at different sites, may respond differently to free radical scavenger based vaccines.  相似文献   

10.
11.

Background

Introduced parasites are a particular threat to small populations of hosts living on islands because extinction can occur before hosts have a chance to evolve effective defenses. An experimental approach in which parasite abundance is manipulated in the field can be the most informative means of assessing a parasite''s impact on the host. The parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, feeds on nestling Darwin''s finches and other land birds. Several correlational studies, and one experimental study of mixed species over several years, reported that the flies reduce host fitness. Here we report the results of a larger scale experimental study of a single species at a single site over a single breeding season.

Methodology/Principal Findings

We manipulated the abundance of flies in the nests of medium ground finches (Geospiza fortis) and quantified the impact of the parasites on nestling growth and fledging success. We used nylon nest liners to reduce the number of parasites in 24 nests, leaving another 24 nests as controls. A significant reduction in mean parasite abundance led to a significant increase in the number of nests that successfully fledged young. Nestlings in parasite-reduced nests also tended to be larger prior to fledging.

Conclusions/Significance

Our results confirm that P. downsi has significant negative effects on the fitness of medium ground finches, and they may pose a serious threat to other species of Darwin''s finches. These data can help in the design of management plans for controlling P. downsi in Darwin''s finch breeding populations.  相似文献   

12.

Background and Aims

Orobanche minor is a root-holoparasitic angiosperm that attacks a wide range of host species, including a number of commonly cultivated crops. The extent to which genetic divergence among natural populations of O. minor is influenced by host specificity has not been determined previously. Here, the host specificity of natural populations of O. minor is quantified for the first time, and evidence that this species may comprise distinct physiological races is provided.

Methods

A tripartite approach was used to examine the physiological basis for the divergence of populations occurring on different hosts: (1) host–parasite interactions were cultivated in rhizotron bioassays in order to quantify the early stages of the infection and establishment processes; (2) using reciprocal-infection experiments, parasite races were cultivated on their natural and alien hosts, and their fitness determined in terms of biomass; and (3) the anatomy of the host–parasite interface was investigated using histochemical techniques, with a view to comparing the infection process on different hosts.

Key Results

Races occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota ssp. gummifer) showed distinct patterns of host specificity: parasites cultivated in cross-infection studies showed a higher fitness on their natural hosts, suggesting that races show local adaptation to specific hosts. In addition, histological evidence suggests that clover and carrot roots vary in their responses to infection. Different root anatomy and responses to infection may underpin a physiological basis for host specificity.

Conclusions

It is speculated that host specificity may isolate races of Orobanche on different hosts, accelerating divergence and ultimately speciation in this genus. The rapid life cycle and broad host range of O. minor make this species an ideal model with which to study the interactions of parasitic plants with their host associates.Key words: Parasitic plant, Orobanche, speciation, divergence, host-specificity, host-specific races  相似文献   

13.

Background

Echinococcus multilocularis is the source of alveolar echinococcosis, a potentially fatal zoonotic disease. This investigation assessed the presence of E. multilocularis infection in definitive hosts in the Chenaran region of Razavi Khorasan Province, northeastern Iran.

Methodology/Principal Findings

Fecal samples from 77 domestic and stray dogs and 14 wild carnivores were examined using the flotation/sieving method followed by multiplex PCR of mitochondrial genes. The intestinal scraping technique (IST) and the sedimentation and counting technique (SCT) revealed adult Echinococcus in the intestines of five of 10 jackals and of the single wolf examined. Three jackals were infected only with E. multilocularis but two, and the wolf, were infected with both E. multilocularis and E. granulosus. Multiplex PCR revealed E. multilocularis, E. granulosus, and Taenia spp. in 19, 24, and 28 fecal samples, respectively. Echinococcus multilocularis infection was detected in the feces of all wild carnivores sampled including nine jackals, three foxes, one wolf, one hyena, and five dogs (6.5%). Echinococcus granulosus was found in the fecal samples of 16.9% of dogs, 66.7% of jackals, and all of the foxes, the wolf, and the hyena. The feces of 16 (21.8%) dogs, 7 of 9 (77.8%) jackals, and all three foxes, one wolf and one hyena were infected with Taenia spp.

Conclusions/Significance

The prevalence of E. multilocularis in wild carnivores of rural areas of the Chenaran region is high, indicating that the life cycle is being maintained in northeastern Iran with the red fox, jackal, wolf, hyena, and dog as definitive hosts.  相似文献   

14.
Kajla MK  Shi L  Li B  Luckhart S  Li J  Paskewitz SM 《PloS one》2011,6(5):e19649

Background

Plasmodium requires an obligatory life stage in its mosquito host. The parasites encounter a number of insults while journeying through this host and have developed mechanisms to avoid host defenses. Lysozymes are a family of important antimicrobial immune effectors produced by mosquitoes in response to microbial challenge.

Methodology/Principal Findings

A mosquito lysozyme was identified as a protective agonist for Plasmodium. Immunohistochemical analyses demonstrated that Anopheles gambiae lysozyme c-1 binds to oocysts of Plasmodium berghei and Plasmodium falciparum at 2 and 5 days after infection. Similar results were observed with Anopheles stephensi and P. falciparum, suggesting wide occurrence of this phenomenon across parasite and vector species. Lysozyme c-1 did not bind to cultured ookinetes nor did recombinant lysozyme c-1 affect ookinete viability. dsRNA-mediated silencing of LYSC-1 in Anopheles gambiae significantly reduced the intensity and the prevalence of Plasmodium berghei infection. We conclude that this host antibacterial protein directly interacts with and facilitates development of Plasmodium oocysts within the mosquito.

Conclusions/Significance

This work identifies mosquito lysozyme c-1 as a positive mediator of Plasmodium development as its reduction reduces parasite load in the mosquito host. These findings improve our understanding of parasite development and provide a novel target to interrupt parasite transmission to human hosts.  相似文献   

15.
16.

Background

Schistosoma japonicum, which remains a major public health problem in the Philippines and mainland China, is the only schistosome species for which zoonotic transmission is considered important. While bovines are suspected as the main zoonotic reservoir in parts of China, the relative contributions of various non-human mammals to S. japonicum transmission in the Philippines remain to be determined. We examined the population genetics of S. japonicum in the Philippines in order to elucidate transmission patterns across host species and geographic areas.

Methodology/Principal Findings

S. japonicum miracidia (hatched from eggs within fecal samples) from humans, dogs, pigs and rats, and cercariae shed from snail-intermediate hosts, were collected across two geographic areas of Samar Province. Individual isolates were then genotyped using seven multiplexed microsatellite loci. Wright''s FST values and phylogenetic trees calculated for parasite populations suggest a high frequency of parasite gene-flow across definitive host species, particularly between dogs and humans. Parasite genetic differentiation between areas was not evident at the definitive host level, possibly suggesting frequent import and export of infections between villages, although there was some evidence of geographic structuring at the snail–intermediate host level.

Conclusions/Significance

These results suggest very high levels of transmission across host species, and indicate that the role of dogs should be considered when planning control programs. Furthermore, a regional approach to treatment programs is recommended where human migration is extensive.  相似文献   

17.
Goodman BA  Johnson PT 《PloS one》2011,6(5):e20193

Background

By definition, parasites harm their hosts. However, some forms of parasite-induced alterations increase parasite transmission between hosts, such that manipulated hosts can be considered extensions of the parasite''s phenotype. While well accepted in principle, surprisingly few studies have quantified how parasite manipulations alter host performance and survival under field and laboratory conditions.

Methodology/Principal Findings

By interfering with limb development, the trematode Ribeiroia ondatrae causes particularly severe morphological alterations within amphibian hosts that provide an ideal system to evaluate parasite-induced changes in phenotype. Here, we coupled laboratory performance trials with a capture-mark-recapture study of 1388 Pacific chorus frogs (Pseudacris regilla) to quantify the effects of parasite-induced malformations on host locomotion, foraging, and survival. Malformations, which affected ∼50% of metamorphosing frogs in nature, caused dramatic reductions in all measures of organismal function. Malformed frogs exhibited significantly shorter jumping distances (41% reduction), slower swimming speeds (37% reduction), reduced endurance (66% reduction), and lower foraging success relative to infected hosts without malformations. Furthermore, while normal and malformed individuals had comparable survival within predator-free exclosures, deformed frogs in natural populations had 22% lower biweekly survival than normal frogs and rarely recruited to the adult population over a two-year period.

Conclusions/Significance

Our results highlight the ability of parasites to deeply alter multiple dimensions of host phenotype with important consequences for performance and survival. These patterns were best explained by malformation status, rather than infection per se, helping to decouple the direct and indirect effects of parasitism on host fitness.  相似文献   

18.
Aguas R  White LJ  Snow RW  Gomes MG 《PloS one》2008,3(3):e1767

Background

A characteristic of Plasmodium falciparum infections is the gradual acquisition of clinical immunity resulting from repeated exposures to the parasite. While the molecular basis of protection against clinical malaria remains unresolved, its effects on epidemiological patterns are well recognized. Accumulating epidemiological data constitute a valuable resource that must be intensively explored and interpreted as to effectively inform control planning.

Methodology/Principal Finding

Here we apply a mathematical model to clinical data from eight endemic regions in sub-Saharan Africa. The model provides a quantitative framework within which differences in age distribution of clinical disease are assessed in terms of the parameters underlying transmission. The shorter infectious periods estimated for clinical infections induce a regime of bistability of endemic and malaria-free states in regions of mesoendemic transmission. The two epidemiological states are separated by a threshold that provides a convenient measure for intervention design. Scenarios of eradication and resurgence are simulated.

Conclusions/Significance

In regions that support mesoendemic transmission, intervention success depends critically on reducing prevalence below a threshold which separates endemic and malaria-free regimes.  相似文献   

19.

Background

The transmission of schistosomiasis japonica in a local setting is still poorly understood in the lake regions of the People''s Republic of China (P. R. China), and its transmission patterns are closely related to human, social and economic factors.

Methodology/Principal Findings

We aimed to apply the integrated approach of artificial neural network (ANN) and logistic regression model in assessment of transmission risks of Schistosoma japonicum with epidemiological data collected from 2339 villagers from 1247 households in six villages of Jiangling County, P.R. China. By using the back-propagation (BP) of the ANN model, 16 factors out of 27 factors were screened, and the top five factors ranked by the absolute value of mean impact value (MIV) were mainly related to human behavior, i.e. integration of water contact history and infection history, family with past infection, history of water contact, infection history, and infection times. The top five factors screened by the logistic regression model were mainly related to the social economics, i.e. village level, economic conditions of family, age group, education level, and infection times. The risk of human infection with S. japonicum is higher in the population who are at age 15 or younger, or with lower education, or with the higher infection rate of the village, or with poor family, and in the population with more than one time to be infected.

Conclusion/Significance

Both BP artificial neural network and logistic regression model established in a small scale suggested that individual behavior and socioeconomic status are the most important risk factors in the transmission of schistosomiasis japonica. It was reviewed that the young population (≤15) in higher-risk areas was the main target to be intervened for the disease transmission control.  相似文献   

20.
Marathe A  Lewis B  Chen J  Eubank S 《PloS one》2011,6(8):e22461

Objective

Study the influence of household contact structure on the spread of an influenza-like illness. Examine whether changes to in-home care giving arrangements can significantly affect the household transmission counts.

Method

We simulate two different behaviors for the symptomatic person; either s/he remains at home in contact with everyone else in the household or s/he remains at home in contact with only the primary caregiver in the household. The two different cases are referred to as full mixing and single caregiver, respectively.

Results

The results show that the household’s cumulative transmission count is lower in case of a single caregiver configuration than in the full mixing case. The household transmissions vary almost linearly with the household size in both single caregiver and full mixing cases. However the difference in household transmissions due to the difference in household structure grows with the household size especially in case of moderate flu.

Conclusions

These results suggest that details about human behavior and household structure do matter in epidemiological models. The policy of home isolation of the sick has significant effect on the household transmission count depending upon the household size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号