首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 627 毫秒
1.
Gao X  Zhou X  Gulari E 《Proteomics》2003,3(11):2135-2141
Peptide and peptidomimetic molecule arrays are emerging powerful tools for parallel screening of binding in proteomics and pharmaceutical discovery research. Up to now the common method of preparing peptide arrays was based on spotting on glass using a library of presynthesized peptides. However, due to the large number of monomers (amino acids) it is not possible to have combinatorial libraries which include all combinations of natural and synthetic amino acids. We describe a very flexible on-chip oligopeptide synthesis method which uses the well developed t-Boc based solid state synthesis chemistry. A very high degree of flexibility is achieved by using light photo generated acids and maskless projection lithography for spatially directed deprotection. Use of microfluidic chips enables moderately high densities, short reaction times and off-the-shelf chemicals. Examples are given from synthesis of metal ion binding peptides and epitope binding assays.  相似文献   

2.
The early applications of microarrays and detection technologies have been centered on DNA-based applications. The application of array technologies to proteomics is now occurring at a rapid rate. Numerous researchers have begun to develop technologies for the creation of microarrays of protein-based screening tools. The stability of antibody molecules when bound to surfaces has made antibody arrays a starting point for proteomic microarray technology. To minimize disadvantages due to size and availability, some researchers have instead opted for antibody fragments, antibody mimics or phage display technology to create libraries for protein chips. Even further removed from antibodies are libraries of aptamers, which are single-stranded oligonucleotides that express high affinity for protein molecules. A variation on the theme of protein chips arrayed with antibody mimics or other protein capture ligand is that of affinity MS where the protein chips are directly placed in a mass spectrometer for detection. Other approaches include the creation of intact protein microarrays directly on glass slides or chips. Although many of the proteins may likely be denatured, successful screening has been demonstrated. The investigation of protein-protein interactions has formed the basis of a technique called yeast two-hybrid. In this method, yeast "bait" proteins can be probed with other yeast "prey" proteins fused to DNA binding domains. Although the current interpretation of protein arrays emphasizes microarray grids of proteins or ligands on glass slides or chips, 2-D gels are technically macroarrays of authentic proteins. In an innovative departure from the traditional concept of protein chips, some researchers are implementing microfluidic printing of arrayed chemistries on individual protein spots blotted onto membranes. Other researchers are using in-jet printing technology to create protein microarrays on chips. The rapid growth of proteomics and the active climate for new technology is driving a new generation of companies and academic efforts that are developing novel protein microarray techniques for the future.  相似文献   

3.
Hawkins ME 《Nature protocols》2007,2(4):1013-1021
Fluorescent nucleoside analogs provide a means to study DNA interactive systems through direct measurement of fluorescence properties. As integrated parts of DNA, these probes provide opportunities for monitoring subtle changes in DNA structure as it meets and reacts with other molecules. This protocol describes modifications to standard DNA synthesis to efficiently use smaller volumes of the probe phosphoramidite, purification of pteridine-containing sequences and a deprotection procedure specific for 6MI-containing sequences. Yields for probe incorporation in DNA synthesis are comparable to those for standard phosphoramidites. Examples of the fluorescence signals one can expect are described. Automated synthesis, which is dependent on the length of the sequence, takes about 4-5 h for a 20-mer. The deprotection of 6MI-containing sequences takes approximately 6-7 h before the standard ammonium hydroxide overnight incubation. Purification through polyacrylamide gels, electroelution and ethanol precipitation can be accomplished in 6-8 h.  相似文献   

4.
DNA microarray is an important tool in biomedical research. Up to now, there are no chips that can allow both quality analysis and hybridization using the same chip. It is risky to draw conclusions from results of different chips if there is no knowledge of the quality of the chips before hybridization. In this article, we report a colorimetric method to do quality control on an array. The quality analysis of probe spots can be obtained by using gold nanoparticles with positive charges to label DNA through electrostatic attraction. The probe spots can also be detected by a simple personal computer scanner. Gold nanoparticles deposited on a glass surface can be dissolved in bromine-bromide solution. The same microarray treated with gold particles staining and destaining can still be used for hybridization with nearly the same efficiency. This approach makes quality control of a microarray chip feasible and should be a valuable tool for biomarker discovery in the future.  相似文献   

5.
The use of the DNA-rubomycin complex resulted in appearance of one-thread breaks (OB) in DNA and markedly increased the number of the DNA OB determined immediately after irradiation. The DNA-rubomycin complex decreased the volume of the repaired OB and induced postreparation degradation of the one-bond DNA (oDNA) in the sarcoma 180 cells. The effect of the decrease in the molecular mass of the oDNA 6 hours after the irradiation to the level of the initial damage is probably in favour of the fact that degradation takes place in the areas of the repaired breaks. The data indicated that the viscosimetric method for the analysis of the OB in DNA may be promising in estimation of the efficacy of radiation and chemotherapy of solid tumors.  相似文献   

6.
Viral diagnosis in Indian livestock using customized microarray chips is gaining momentum in recent years. Hence, it is possible to design customized microarray chip for viruses infecting livestock in India. Customized microarray chips identified Bovine herpes virus-1 (BHV-1), Canine Adeno Virus-1 (CAV-1), and Canine Parvo Virus-2 (CPV-2) in clinical samples. Microarray identified specific probes were further confirmed using RT-PCR in all clinical and known samples. Therefore, the application of microarray chips during viral disease outbreaks in Indian livestock is possible where conventional methods are unsuitable. It should be noted that customized application requires a detailed cost efficiency calculation.  相似文献   

7.
DNA芯片与应用   总被引:4,自引:0,他引:4  
DNA芯片就是利用光导原位化学合成或液相合成自动化点样,将数以万计的寡核苷酸固定于固相支持物硅片、尼龙膜上,与荧光素或同位素标记的特检样本DNA/cDNA杂交,通过对杂交信号分析反映样本中的DNA序列信息。它广泛应用基因表达、DNA测序、基因分型、基因突变与多态性检测和遗传作图等生物医学研究领域。  相似文献   

8.
Oligonucleotides containing modified bases are commonly used for biochemical and biophysical studies to assess the impact of specific types of chemical damage on DNA structure and function. In contrast to the synthesis of oligonucleotides with normal DNA bases, oligonucleotide synthesis with modified bases often requires modified synthetic or deprotection conditions. Furthermore, several modified bases of biological interest are prone to further damage during synthesis and oligonucleotide isolation. In this article, we describe the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to the characterization of a series of modified synthetic oligonucleotides. The potential for and limits in obtaining high mass accuracy for confirming oligonucleotide composition are discussed. Examination of the isotope cluster is also proposed as a method for confirming oligonucleotide elemental composition. MALDI-TOF-MS analysis of the unpurified reaction mixture can be used to confirm synthetic sequence and to reveal potential problems during synthesis. Analysis during and after purification can yield important information on depurination and base oxidation. It can also reveal unexpected problems that can occur with nonstandard synthesis, deprotection, or purification strategies. Proper characterization of modified oligonucleotides is essential for the correct interpretation of experiments performed with these substrates, and MALDI-TOF-MS analysis provides a simple yet extensive method of characterization that can be used at multiple stages of oligonucleotide production and use.  相似文献   

9.
细小病毒B19 Oligo探针设计   总被引:1,自引:0,他引:1  
利用BLAST软件对细小病毒B19的序列进行序列比对,获得特异序列;利用生物学软件Oligo6.40设计特异性高、Tm值接近、长度均一的Oligo探针。结果获得了13条70bp的Oligo探针,用于芯片打印及细小病毒B19的检测。表明利用BLAST系统和生物学软件Oligo6.40设计细小病毒B19诊断芯片的探针是一种简便而有效的方法。  相似文献   

10.
DNA芯片技术研究进展   总被引:66,自引:5,他引:61  
DNA芯片技术是近年来发展迅速的生物高技术 .其基本过程是采用寡核苷酸原位合成或显微打印手段 ,将大量探针片段有序地固化于支持物如硅芯片的表面 ,然后与扩增、标记的生物样品杂交 ,通过对杂交信号的检测分析 ,即可得出样品的遗传信息 .该技术不仅可以对遗传信息进行定性、定量分析 ,而且扩展到基因组研究和基因诊断等方面的应用 .尽管目前在硬件和软件上还面临一些困难 ,但其发展和应用的前景广阔 .  相似文献   

11.
DNA microarray is a powerful tool for the parallel of nucleic acids and other biologically significant molecules. In this communication we report an easy and cheap synthesis route for incorporating organic dyes into monodisperse inorganic silica nanoparticles and their application on the detection of carcinogenic risky Human Papilloma Virus using DNA microarray technology. We correlate our system with conventional direct dyes and commercial quantum dots, with a promising increase in optical signal, and a related decrease of the limit of detection, thus giving a remarkable improvement in this technique towards early diagnosis of diseases and trace level detection of dangerous biological contaminants.  相似文献   

12.
文章讨论了DNA芯片的制作原理和杂交信号的检测方法。依其结构,DNA芯片可分为两种形式,DNA阵列和寡核苷酸微芯片。DNA芯片的制作方法主要有光导原位合成法和自动化点样法。DNA芯片与标记的探针或DNA样品杂交,并通过探测杂交信号谱型来实现DNA序列或基因表达的分析。适应于DNA芯片的发展,同时出现了许多新型的杂交信号检测方法。主要有激光荧光扫描显微镜、激光扫描共焦显微镜、结合使用CCD相机的荧光显微镜、光纤生物传感器、化学发生法、光激发磷光物质存储屏法、光散射法等。  相似文献   

13.
DNA microarray analysis represents one of the major advances leading to the development of functional genomics and proteomics. It involves the fabrication of DNA either by in situ or on‐chip photolithographic synthesis or by inkjet or microjet deposition, as microspots immobilized on the surface of miniaturized substrates like glass or membranes. The immobilized DNA molecules are then allowed to hybridize with labeled complementary DNA. The hybrid DNA so formed is read through scanning devices, such as fluorescence and radioactivity. Further, computational approaches, for example, normalization and clustering allow thousands of genetic parameters in a single experiment to be simultaneously analyzed. This review discusses the fundamental principles and data analysis of the microarray technology, while focusing on its application in gene expression analysis, genotyping for point mutation and diseases diagnostics.  相似文献   

14.
A microfluidic microarray device, which has been developed for parallel DNA detection, is now further optimized for more rapid and sensitive DNA detection and for the single-base-pair discrimination of two fungal pathogenic PCR products. Two poly(dimethylsiloxane) (PDMS)-based microfluidic chips consist of radial and spiral microchannels in which flexible probe creation and convenient sample delivery have been achieved by centrifugal pumping. The microarray hybridizations occurred at the cross sections within the spiral channels intersecting the preprinted radial probe lines. The centrifugal pumping method showed advantages over the vacuum suction method in terms of parallel solution delivery and less signal variations between replicate samples. The effect of microchannel depth was studied, and hybridization time is predictable at a certain rotation speed. Cy5 dye labels were proved to show much higher hybridization efficiency as well as less photobleaching effect as compared with the fluorescein dye labels used in our previous work. With these optimized conditions, the method was applied to the detection of three fungal pathogenic polymerase chain reaction (PCR) products with a sample load of 0.2 ng (in 1 μl). Furthermore, the single-base-pair discrimination between the PCR products of two relevant Botrytis species (B. cinerea and B. squamosa) was achieved in a duration as short as 3 min.  相似文献   

15.
Individually addressable parallel peptide synthesis on microchips   总被引:4,自引:0,他引:4  
Miniaturized, spatially addressable microchips of peptides and peptidomimetics are powerful tools for high-throughput biomedical and pharmaceutical research and the advancement of proteomics. Here we report an efficient and flexible method for the parallel synthesis of peptides on individually addressable microchips, using digital photolithography and photogenerated acid in the deprotection step. We demonstrate that we are able to synthesize thousands of peptides in a 1 cm(2) area on a microchip using 20 natural amino acids as well as synthetic amino acid analogs, with high stepwise yields and short reaction-cycle times. Epitope screening experiments using a p53 antibody (PAb240) produced clearly defined binding patterns. The peptidomimetic sequences on the microchip show specific antibody binding and provide insights into the molecular details responsible for specificity of epitope binding. Our approach requires just a conventional synthesizer and a computer-controllable optical module, thereby allowing potential development of peptide microchips for various pharmaceutical and proteomic applications in routine research laboratories.  相似文献   

16.
We report the synthesis of new phosphoramidite building blocks and their use for the modification of oligonucleotides with hydrazides. The reaction of these hydrazide oligonucleotides with active esters and aldehydes is demonstrated for solution conjugation and immobilization. Compared with the established amino modified oligonucleotides, hydrazides show enhanced reactivity at neutral and acidic buffer conditions. One method to introduce hydrazides is using amidites with preformed, protected hydrazides. A completely novel approach is the generation of the hydrazide functionality during the oligonucleotide cleavage and deprotection with hydrazine. Therefore, building blocks for the introduction of esters as hydrazide precursors are described. For the enhanced attachment on surfaces branched modifier amidites, which introduce up to four reactive groups to the oligonucleotide, are applied. The efficiency of branched hydrazide oligonucleotides compared with standard amino modified oligonucleotides for the immobilization of DNA on active electronic Nanogen chips is demonstrated.  相似文献   

17.
Experiments show that deflections of microcantilever-DNA chip can be induced by many factors, such as grafting density, hybridization efficiency, concentration, length and sequence of DNA molecules, buffer salt concentration, time, and temperature variation. However, there are few theoretical works on microcantilever-DNA chips. The present paper is aimed to study the influence of counterion effects of single-stranded DNA (ssDNA) polyelectrolyte solution on the nanomechanical behaviors of microcantilever-based ssDNA chips during packing process. First, the effect of osmotic pressure induced by ingress of counterions into DNA brush structures is studied with Hagan’s model for a cylindrical polyelectrolyte brush system on the basis of Poisson-Boltzmann distribution hypothesis. Second, Zhang’s two-variable method for a laminated cantilever is used to formulate a four-layer energy model for ssDNA chips with weak interactions. Third, the influence of grafting density, ssDNA chain length, and salt concentration on packing deflection is investigated using the principle of minimum energy. The predictive tendency is qualitatively similar to those observed in some related ssDNA chip experiments. The difference between the four-layer model and the simplified two-layer model for ssDNA chips is also discussed.  相似文献   

18.
LeProust E  Zhang H  Yu P  Zhou X  Gao X 《Nucleic acids research》2001,29(10):2171-2180
Achieving high fidelity chemical synthesis on glass plates has become increasingly important, since glass plates are substrates widely used for miniaturized chemical and biochemical reactions and analyses. DNA chips can be directly prepared by synthesizing oligonucleotides on glass plates, but the characterization of these micro-syntheses has been limited by the sub-picomolar amount of material available. Most DNA chip syntheses have been assayed using in situ coupling of fluorescent molecules to the 5′-OH of the synthesized oligonucleotides. We herein report a systematic investigation of oligonucleotide synthesis on glass plates with the reactions carried out in an automated DNA synthesizer using standard phosphoramidite chemistry. The analyses were performed using 32P gel electrophoresis of the oligonucleotides cleaved from glass plates to provide product distribution profiles according to chain length of oligonucleotides. 5′-Methoxythymidine was used as the chain terminator, which permits assay of coupling reaction yields as a function of chain length growth. The results of this work reveal that a major cause of lower fidelity synthesis on glass plates is particularly inefficient reactions of the various reagents with functional groups close to glass plate surfaces. These problems cannot be detected by previous in situ fluorescence assays. The identification of this origin of low fidelity synthesis on glass plates should help to achieve improved synthesis for high quality oligonucleotide microarrays.  相似文献   

19.
The active part or receptor-binding sequence of peptide hormones can usually be defined by a span of 4–8 amino acids. Cyclic penta- and hexapeptides are excellent model systems for performing conformational and structure-function studies on this class of bioactive molecules. A synthetic scheme has been devised comprising solid-phase Fmoc chemistry followed by resin cleavage, cyclization in solution, and, finally, side-chain deprotection. A new resin, DAS, cleaved under weak acid conditions, is an excellent solid-phase synthesis support, and HBTU or PyBOP are the activation reagents of choice, not only during synthesis, but also for the cyclization reaction. Three cyclic peptides were synthesized using this method, one requiring extensive side-chain protection, and this method has general applicability for any cyclic pentapeptide or hexapeptide, giving good yields and high purity.  相似文献   

20.
We present a new approach to site-specifically biotinylate protein in a cell-free protein synthesis system with puromycin-containing small molecules. With this new method, biotinylated proteins were generated from the DNA templates in a matter of hours, making it useful for protein microarray generation. We also validated that the method is compatible with other high-throughput cloning/proteomics methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号