首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We successfully isolated a novel aerobic chemolithotrophic sulfur-oxidizing bacterium, designated strain SO07, from wastewater biofilms growing under microaerophilic conditions. For isolation, the use of elemental sulfur (S(0)), which is the most abundant sulfur pool in the wastewater biofilms, as the electron donor was an effective measure to establish an enrichment culture of strain SO07 and further isolation. 16S rRNA gene sequence analysis revealed that newly isolated strain SO07 was affiliated with members of the genus Halothiobacillus, but it was only distantly related to previously isolated species (89% identity). Strain SO07 oxidized elemental sulfur, thiosulfate, and sulfide to sulfate under oxic conditions. Strain SO07 could not grow on nitrate. Organic carbons, including acetate, propionate, and formate, could not serve as carbon and energy sources. Unlike other aerobic sulfur-oxidizing bacteria, this bacterium was sensitive to NaCl; growth in medium containing more than 150 mM was negligible. In situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells hybridized with a probe specific for strain SO07 were mainly present in the oxic biofilm strata (ca. 0 to 100 micro m) and that they often coexisted with sulfate-reducing bacteria in this zone. These results demonstrated that strain SO07 was one of the important sulfur-oxidizing populations involved in the sulfur cycle occurring in the wastewater biofilm and was primarily responsible for the oxidation of H(2)S and S(0) to SO(4)(2-) under oxic conditions.  相似文献   

2.
The succession of sulfur-oxidizing bacterial (SOB) community structure and the complex internal sulfur cycle occurring in wastewater biofilms growing under microaerophilic conditions was analyzed by using a polyphasic approach that employed 16S rRNA gene-cloning analysis combined with fluorescence in situ hybridization, microelectrode measurements, and standard batch and reactor experiments. A complete sulfur cycle was established via S0 accumulation within 80 days in the biofilms in replicate. This development was generally split into two phases, (i) a sulfur-accumulating phase and (ii) a sulfate-producing phase. In the first phase (until about 40 days), since the sulfide production rate (sulfate-reducing activity) exceeded the maximum sulfide-oxidizing capacity of SOB in the biofilms, H2S was only partially oxidized to S0 by mainly Thiomicrospira denitirificans with NO3 as an electron acceptor, leading to significant accumulation of S0 in the biofilms. In the second phase, the SOB populations developed further and diversified with time. In particular, S0 accumulation promoted the growth of a novel strain, strain SO07, which predominantly carried out the oxidation of S0 to SO42− under oxic conditions, and Thiothrix sp. strain CT3. In situ hybridization analysis revealed that the dense populations of Thiothrix (ca. 109 cells cm−3) and strain SO07 (ca. 108 cells cm−3) were found at the sulfur-rich surface (100 μm), while the population of Thiomicrospira denitirificans was distributed throughout the biofilms with a density of ca. 107 to 108 cells cm−3. Microelectrode measurements revealed that active sulfide-oxidizing zones overlapped the spatial distributions of different phylogenetic SOB groups in the biofilms. As a consequence, the sulfide-oxidizing capacities of the biofilms became high enough to completely oxidize all H2S produced by SRB to SO42− in the second phase, indicating establishment of the complete sulfur cycle in the biofilms.  相似文献   

3.
The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O2, H2S, NO2, NO3, NH4+, and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 109 to 1010 cells per cm3 of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 108 to 109 cells per cm3). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 μm below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S0) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 μm), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.  相似文献   

4.
A sulfur-oxidizing bacterium strain NB1-3 isolated from corroded concrete was a Gram negative, non-spore-forming, and rod-shaped bacterium (0.5–1.0x 1.5–2.0μm) with a polar flagellum. Strain NB1-3 had its optimum temperature and pH for growth at 30°C and 3.0–4.0, respectively. Strain NB1-3 had enzyme activities that oxidized elemental sulfur, thiosulfate, tetrathionate, and sulfide and the activity to incorporate 14CO2 into the cells. The mean G+C content of the DNA was 52.9 mol%. These results indicate that strain NB1-3 is Thiobacillus thiooxidans. Since nickel has been known to protect concrete from corrosion, the effect of Ni on the growth of strain NB1-3 was studied. The cell growth on tiosulfate-, elemental sulfur-, or tetrathionate-medium was completely inhibited by 0.1% metal nickel or 5mM NiSO4. Both cellular activities of elemental sulfur oxidation and CO2 incorporation were strongly inhibited by 5mM NiSO4. The amounts of Ni in cells with or without nickel treatment were 1.7 and 160.0 nmol/mg protein, respectively. These results indicate that nickel binds to strain NB1-3 cells and inhibits enzymes involved in sulfur oxidation of this bacterium, and as a result, inhibits cell growth.  相似文献   

5.
A new chemolithoautotrophic, facultatively alkaliphilic, extremely salt-tolerant, sulfur-oxidizing bacterium was isolated from an alkaline hypersaline lake in the Altai Steppe (Siberia, Russia). According to 16S rDNA analysis and DNA–DNA hybridization, strain HL 17T was identified as a new species of the genus Thialkalivibrio belonging to the subdivision of the Proteobacteria for which the name Thialkalivibrio halophilus is proposed. Strain HL 17T is an extremely salt-tolerant bacterium growing at sodium concentrations between 0.2 and 5 M, with an optimum of 2 M Na+. It grew at high concentrations of NaCl and of Na2CO3/NaHCO3 (soda). Strain HL 17T is a facultative alkaliphile growing at pH range 7.5–9.8, with a broad optimum between pH 8.0 and 9.0. It used reduced inorganic sulfur compounds (thiosulfate, sulfide, polysulfide, elemental sulfur, and tetrathionate) as energy sources and electron donors. In continuous culture under energy limitation, thiosulfate was stoichiometrically oxidized to sulfate. In sodium carbonate medium under alkaline conditions, the maximum growth rate was similar, while the biomass yield was lower as compared with the NaCl-grown culture. The maximum sulfur-oxidizing capacity measured in washed cells was higher in the soda buffer independent of the growth conditions. The compatible solute content of the biomass was higher in the sodium chloride-grown culture than in the sodium carbonate/bicarbonate-grown culture. The data suggest that the osmotic pressure differences between soda and NaCl solutions might be responsible for the difference observed in compatible solutes production. This may have important implications in overall energetic metabolism of high salt adaptation.  相似文献   

6.
The succession of sulfur-oxidizing bacterial (SOB) community structure and the complex internal sulfur cycle occurring in wastewater biofilms growing under microaerophilic conditions was analyzed by using a polyphasic approach that employed 16S rRNA gene-cloning analysis combined with fluorescence in situ hybridization, microelectrode measurements, and standard batch and reactor experiments. A complete sulfur cycle was established via S(0) accumulation within 80 days in the biofilms in replicate. This development was generally split into two phases, (i) a sulfur-accumulating phase and (ii) a sulfate-producing phase. In the first phase (until about 40 days), since the sulfide production rate (sulfate-reducing activity) exceeded the maximum sulfide-oxidizing capacity of SOB in the biofilms, H(2)S was only partially oxidized to S(0) by mainly Thiomicrospira denitirificans with NO(3)(-) as an electron acceptor, leading to significant accumulation of S(0) in the biofilms. In the second phase, the SOB populations developed further and diversified with time. In particular, S(0) accumulation promoted the growth of a novel strain, strain SO07, which predominantly carried out the oxidation of S(0) to SO(4)(2-) under oxic conditions, and Thiothrix sp. strain CT3. In situ hybridization analysis revealed that the dense populations of Thiothrix (ca. 10(9) cells cm(-3)) and strain SO07 (ca. 10(8) cells cm(-3)) were found at the sulfur-rich surface (100 microm), while the population of Thiomicrospira denitirificans was distributed throughout the biofilms with a density of ca. 10(7) to 10(8) cells cm(-3). Microelectrode measurements revealed that active sulfide-oxidizing zones overlapped the spatial distributions of different phylogenetic SOB groups in the biofilms. As a consequence, the sulfide-oxidizing capacities of the biofilms became high enough to completely oxidize all H(2)S produced by SRB to SO(4)(2-) in the second phase, indicating establishment of the complete sulfur cycle in the biofilms.  相似文献   

7.
A moderately thermophilic and acidophilic sulfur-oxidizing bacterium named S2, was isolated from coal heap drainage. The bacterium was motile, Gram-negative, rod-shaped, measured 0.4 to 0.6 by 1 to 2 μm, and grew optimally at 42–45°C and an initial pH of 2.5. The strain S2 grew autotrophically by using elemental sulfur, sodium thiosulfate and potassium tetrathionate as energy sources. The strain did not use organic matter and inorganic minerals including ferrous sulfate, pyrite and chalcopyrite as energy sources. The morphological, biochemical, physiological characterization and analysis based on 16S rRNA gene sequence indicated that the strain S2 is most closely related to Acidithiobacillus caldus (>99% similarity in gene sequence). The combination of the strain S2 with Leptospirillum ferriphilum or Acidithiobacillus ferrooxidans in chalcopyrite bioleaching improved the copper-leaching efficiency. Scanning electron microscope (SEM) analysis revealed that the chalcopyrite surface in a mixed culture of Leptospirillum ferriphilum and Acidithiobacillus caldus was heavily etched. The energy dispersive X-ray (EDX) analysis indicated that Acidithiobacillus caldus has the potential role to enhance the recovery of copper from chalcopyrite by oxidizing the sulfur formed during the bioleaching progress.  相似文献   

8.
The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O(2), H(2)S, NO(2)(-), NO(3)(-), NH(4)(+), and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 10(9) to 10(10) cells per cm(3) of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 10(8) to 10(9) cells per cm(3)). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 microm below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S(0)) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 microm), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.  相似文献   

9.
A new thermophilic sulfate-reducing bacterium, strain TSB, that was spore-forming, rod-shaped, slightly motile and gram-positive, was isolated from a butyrate-containing enrichment culture inoculated with sludge of a thermophilic methane fermentation reactor. This isolate could oxidize benzoate completely. Strain TSB also oxidized some fatty acids and alcohols. SO inf4 sup2- , SO inf3 sup2- , S2O inf3 sup2- and NO inf3 sup- were utilized as electron acceptors. With pyruvate or lactate the isolate grew without an external electron acceptor and produced acetate. The optimum temperature for growth was 62°C. The G+C content of DNA was 52.8 mol%. This isolate is described as a new species, Desulfotomaculum thermobenzoicum.  相似文献   

10.
《Anaerobe》2000,6(5):305-312
A mesophilic sulfate-reducing bacterium, designated strain Lup1T(T=type strain) was isolated from a Mexican UASB digester treating cheese factory wastewater. The non-motile, Gram-negative, curved and non-spore-forming cells (1.7–2.5×0.5 μm) existed singly or in chains. Optimum growth occurred at 37°C and pH 7.2 in a medium containing lactate and thiosulfate. Strain Lup1Tused pyruvate, formate, Casamino acids, serine, cysteine, H2and ethanol as electron donors in the presence of thiosulfate as an electron acceptor and fermented pyruvate, Casamino acids, cysteine, and serine. Sulfate, elemental sulfur, and sulfite also served as electron acceptors but not nitrate or fumarate. Thiosulfate was disproportionated to sulfate and sulfide. The G+C content of the DNA was 66 mol%. Phylogenetic analysis based on 16S rDNA revealed that strain Strain Lup1Twas a member of the genus Desulfovibrio withDesulfovibrio aminophilus being the closest relative (similarity value of 91%). As strain Lup1Tis physiologically and phylogenetically different from other Desulfovibrio species, it is designated Desulfovibrio mexicanus sp. nov. (=DSM 13116).  相似文献   

11.
An acidophilic sulfur-oxidizing bacterium was isolated from seawater, and designated as strain SH. Strain SH was a Gram-negative, rod-shaped and motile bacterium, which had an optimum temperature and pH value for growth of 30 degrees C and 4.0, respectively. The mol% guanine plus cytosine of the DNA was 46.0. Chemolithotrophic growth was observed with elemental sulfur and tetrathionate at pH 4.0, and was not observed with ferrous ion. The isolate was able to utilize carbon dioxide as a carbon source, and was unable to grow heterotrophically with yeast extract or glucose. The growth of strain SH was activated in medium supplemented with NaCl. However, LiCl and KCl did not sustain the growth of strain SH. The results indicate that strain SH was an acidophilic, halophilic, and obligately chemolithotrophic sulfur-oxidizing bacterium. Phylogenetic analysis based on 16S rDNA sequences indicated that strain SH had a close relationship to Acidithiobacillus thiooxidans. The oxidizing activities of sulfur and sulfite with resting cells were stimulated not only by the addition of NaCl, but also by KCl and LiCl. The oxidation of sulfite was inhibited by ionophores, carbonyl cyanide- m-chlorophenylhydrazone (CCCP), and monensin, and respiratory inhibitors, KCN and 2-heptyl-4-hydroxy-quinoline-N-oxode (HQNO).  相似文献   

12.
Several samples of microbial mat obtained from soda lakes of the Kunkurskaya steppe (Chita region) abundantly populated by purple bacteria were screened for the presence of heterotrophic alkaliphiles capable of oxidizing sulfur compounds to sulfate. This capacity was found in only one pigmented strain, ALG 1, isolated on medium with acetate and thiosulfate at pH 10. The strain was found to be a strictly aerobic and obligately heterotrophic alkaliphile. Growth on medium with acetate was possible within a narrow pH range from 8.5 to 10.4. The strain formed a reddish orange carotenoid and bacteriochlorophylla. Pigments were synthesized only at high concentrations of nitrogen-containing organic compounds (peptone or yeast extract). The production of bacteriochlorophylla was maximal under microaerobic conditions in darkness. Strain ALG 1 could oxidize sulfide, thiosulfate, sulfite, and elemental sulfur to sulfate. In heterotrophically growing culture (pH 10), thiosulfate was not oxidized until the late logarithmic phase. The sulfur-oxidizing activity was maximal at the most alkaline pH values. The notable increase in the efficiency of organic carbon utilization observed in the presence of thiosulfate suggested that the bacterium was a sulfur-oxidizing lithoheterotroph. The phylogenetic analysis of the 16S rRNA gene showed strain ALG 1 to be a member of the α-3 subgroup of Proteobacteria and to constitute a distinct branch located between nonsulfur purple bacteriaRhodobacter andRhodovulum. Based on the unique phenotypic properties and the results of phylogenetic analysis, the alkaliphilic isolate ALG 1 was assigned to a new genus and speciesRoseinatronobacter thiooxidans with the type strain DSM-13087  相似文献   

13.
Strain Hiromi 1, a sulfur-oxidizing gammaproteobacterium was isolated from a hydrothermal vent chimney in the Okinawa Trough and represents a novel genus that may include a phylogenetic group found as endosymbionts of deep-sea gastropods. The SSU rRNA gene sequence similarity between strain Hiromi 1 and the gastropod endosymbionts was approximately 97%. The strain was shown to grow both chemolithoautotrophically and chemolithoheterotrophically with an energy metabolism of sulfur oxidation and O2 or nitrate reduction. Under chemolithoheterotrophic growth conditions, the strain utilized organic acids and proteinaceous compounds as the carbon and/or nitrogen sources but not the energy source. Various sugars did not support growth as a sole carbon source. The observation of chemolithoheterotrophy in this strain is in line with metagenomic analyses of endosymbionts suggesting the occurrence of chemolithoheterotrophy in gammaproteobacterial symbionts. Chemolithoheterotrophy and the presence of homologous genes for virulence- and quorum sensing-related functions suggest that the sulfur-oxidizing chomolithotrophic microbes seek animal bodies and microbial biofilm formation to obtain supplemental organic carbons in hydrothermal ecosystems.  相似文献   

14.
Strain SR 1T was isolated under anaerobic conditions using elemental sulfur as electron acceptor and acetate as carbon and energy source from the Thiopaq bioreactor in Eerbeek (The Netherlands), which is removing H2S from biogas by oxidation to elemental sulfur under oxygen-limiting and moderately haloalkaline conditions. The bacterium is obligately anaerobic, using elemental sulfur, nitrate and fumarate as electron acceptors. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while nitrate is dissimilatory reduced to ammonium. Furthermore, in the presence of nitrate, strain SR 1T was able to oxidize limited amounts of sulfide to elemental sulfur during anaerobic growth with acetate. The new isolate is mesophilic and belongs to moderate haloalkaliphiles, with a pH range for growth (on acetate and nitrate) from 7.5 to 10.25 (optimum 9.0), and a salt range from 0.1 to 2.5 M Na+ (optimum 0.4 M). According to phylogenetic analysis, SR 1T is a member of a deep bacterial lineage, distantly related to Chrysiogenes arsenatis (Macy et al. 1996). On the basis of the phenotypic and genetic data, the novel isolate is placed into a new genus and species, Desulfurispirillum alkaliphilum (type strain SRT = DSM 18275 = UNIQEM U250). Nucleotide sequence accession number: the GenBank/EMBL accession number of the 16S rRNA gene sequence of strain SR 1T is DQ666683.  相似文献   

15.
The chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15, isolated from a soda lake in Kenya, was grown in a continuous culture, with thiosulfate or polysulfide as growth-limiting energy source and oxygen as electron acceptor, at pH 10 and at pH 0.6, 2 M and 4 M total sodium. The end product of the sulfur-compound oxidation was sulfate. Elemental sulfur and a cell-bound, polysulfide-like compound appeared as intermediates during substrate oxidation. In the thiosulfate-limited culture, the biomass yields and maximum specific growth rates decreased two and three times, respectively, with increasing sodium concentration. The apparent affinity constant measured for thiosulfate and polysulfide was in the micromolar range (Ks=6±3 M). The maintenance requirement (ms=8±5 mmol S2O32/g dry weight h–1) was in the range of values found for other autotrophic sulfur-oxidizing bacteria. The organism had a comparable maximum specific rate of oxygen uptake with thiosulfate, polysulfide, and sulfide, while elemental sulfur was oxidized at a lower rate. Glycine betaine was the main organic compatible solute. The respiration rates with different species of polysulfides (Sn2–) were tested. All polysulfide species were completely oxidized at high rates to sulfate. Overall data demonstrated efficient growth and sulfur compounds oxidation of haloalkaliphilic chemolithoautotrophic bacteria from soda lakes.Communicated by W.D. Grant  相似文献   

16.
Massive pyrite (FeS2) electrodes were potentiostatically modified by means of variable oxidation pulse to induce formation of diverse surface sulfur species (S n 2?, S0). The evolution of reactivity of the resulting surfaces considers transition from passive (e.g., Fe1?x S2) to active sulfur species (e.g., Fe1?x S2?y , S0). Selected modified pyrite surfaces were incubated with cells of sulfur-oxidizing Acidithiobacillus thiooxidans for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the attached cells density and their exopolysaccharides were analyzed by confocal laser scanning microscopy (CLMS) and atomic force microscopy (AFM) on bio-oxidized surfaces; additionally, S n 2?/S0 speciation was carried out on bio-oxidized and abiotic pyrite surfaces using Raman spectroscopy. Our results indicate an important correlation between the evolution of S n 2?/S0 surface species ratio and biofilm formation. Hence, pyrite surfaces with mainly passive-sulfur species were less colonized by A. thiooxidans as compared to surfaces with active sulfur species. These results provide knowledge that may contribute to establishing interfacial conditions that enhance or delay metal sulfide (MS) dissolution, as a function of the biofilm formed by sulfur-oxidizing bacteria.  相似文献   

17.
A new moderately halophilic sulfate-reducing bacterium (strain H1T) was enriched and isolated from a wastewater digestor in Tunisia. Cells were curved, motile rods (2–3 x 0.5 μm). Strain H1T grew at temperatures between 22 and 43°C (optimum 35°C), and at pH between 5.0 and 9.2 (optimum 7.3–7.5). Strain H1T required salt for growth (1–45 g of NaCl/l), with an optimum at 20–30 g/l. Sulfate, sulfite, thiosulfate, and elemental sulfur were used as terminal electron acceptors but not nitrate and nitrite. Strain H1T utilized lactate, pyruvate, succinate, fumarate, ethanol, and hydrogen (in the presence of acetate and CO2) as electron donors in the presence of sulfate as electron acceptor. The main end-products from lactate oxidation were acetate with H2 and CO2. The G + C content of the genomic DNA was 55%. The predominant fatty acids of strain H1T were C15:0 iso (38.8%), C16:0 (19%), and C14:0 iso 3OH (12.2%), and menaquinone MK-6 was the major respiratory quinone. Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain H1T was affiliated to the genus Desulfovibrio. On the basis of SSU rRNA gene sequence comparisons and physiological characteristics, strain H1T is proposed to be assigned to a novel species of sulfate reducers of the genus Desulfovibrio, Desulfovibrio legallis sp. nov. (= DSM 19129T = CCUG 54389T).  相似文献   

18.
Nineteen fungal strains having an ability to oxidize elemental sulfur in mineral salts medium were isolated from deteriorated sandstones of Angkor monuments. These fungi formed clearing zone on agar medium supplemented with powder sulfur due to the dissolution of sulfur. Representative of the isolates, strain THIF01, was identified as Fusarium solani on the basis of morphological characteristics and phylogenetic analyses. PCR amplification targeting 16S rRNA gene and analyses of full 16S rRNA gene sequence indicated strain THIF01 harbors an endobacterium Bradyrhizobium sp.; however, involvement of the bacterium in the sulfur oxidation is still unclear. Strain THIF01 oxidized elemental sulfur to thiosulfate and then sulfate. Germination of the spores of strain THIF01 was observed in a liquid medium containing mineral salts supplemented with elemental sulfur (rate of germinated spores against total spores was 60.2%), and the culture pH decreased from pH 4.8 to 4.0. On the contrary, neither germination (rate of germinated spores against total spores was 1.0%) nor pH decrease was observed without the supplement of elemental sulfur. Strain THIF01 could also degrade 30 ppmv and ambient level (approximate 500 pptv) of carbonyl sulfide.  相似文献   

19.
Several samples of microbial mat obtained from soda lakes of the Kunkurskaya steppe (Chita oblast) abundantly populated by purple bacteria were screened for the presence of heterotrophic alkaliphiles capable of oxidizing sulfur compounds to sulfate. This capacity was found in only one pigmented strain, ALG 1, isolated on medium with acetate and thiosulfate at pH 10. The strain was found to be a strictly aerobic and obligately heterotrophic alkaliphile. Growth on medium with acetate was possible within a narrow pH range from 8.5 to 10.4. The strain formed a reddish orange carotenoid and bacteriochlorophyll a. Pigments were synthesized only at high concentrations of nitrogen-containing organic compounds (peptone or yeast extract). The production of bacteriochlorophyll a was maximal under microaerobic conditions in darkness. Strain ALG 1 could oxidize sulfide, thiosulfate, sulfite, and elemental sulfur to sulfate. In heterotrophically growing culture (pH 10), thiosulfate was not oxidized until the late logarithmic phase. The sulfur-oxidizing activity was maximal at the most alkaline pH values. The notable increase in the efficiency of organic carbon utilization observed in the presence of thiosulfate suggested that the bacterium was a sulfur-oxidizing lithoheterotroph. The phylogenetic analysis of the 16S rRNA gene showed strain ALG 1 to be a member of the alpha-3 subgroup of proteobacteria and to constitute a distinct branch located between nonsulfur purple bacteria Rhodobacter and Rhodovulum. Based on the unique phenotypic properties and the results of phylogenetic analysis, the alkaliphilic isolate ALG 1 was assigned to a new genus and species Roseinatronobacter thiooxidans with the type strain DSZM-13087.  相似文献   

20.
The properties of a ferric ion-reducing system which catalyzes the reduction of ferric ion with elemental sulfur was investigated with a pure strain of Thiobacillus ferrooxidans. In anaerobic conditions, washed intact cells of the strain reduced 6 mol of Fe3+ with 1 mol of elemental sulfur to give 6 mol of Fe2+, 1 mol of sulfate, and a small amount of sulfite. In aerobic conditions, the 6 mol of Fe2+ produced was immediately reoxidized by the iron oxidase of the cell, with a consumption of 1.5 mol of oxygen. As a result, Fe2+ production was never observed under aerobic conditions. However, in the presence of 5 mM cyanide, which completely inhibits the iron oxidase of the cell, an amount of Fe2+ production comparable to that formed under anaerobic conditions was observed under aerobic conditions. The ferric ion-reducing system had a pH optimum between 2.0 and 3.8, and the activity was completely destroyed by 10 min of incubation at 60°C. A short treatment of the strain with 0.5% phenol completely destroyed the ferric ion-reducing system of the cell. However, this treatment did not affect the iron oxidase of the cell. Since a concomitant complete loss of the activity of sulfur oxidation by molecular oxygen was observed in 0.5% phenol-treated cells, it was concluded that the ferric ion-reducing system plays an important role in the sulfur oxidation activity of this strain, and a new sulfur-oxidizing route is proposed for T. ferrooxidans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号