首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lord JM 《Plant physiology》1976,58(2):218-223
Leaves on a bush of Hyptis emoryi Torr. varied in length from less than 1 cm when development occurred in full sunlight (e.g. 40 Mjoules m−2) to over 7 cm when the total daily solar irradiance was less than 3 Mjoules m−2. The 1-cm sun leaves were 3-fold higher than the 7-cm shade leaves in chlorophyll per unit area, mesophyll thickness, and the internal to external leaf area ratio (Ames/A). The higher Ames/A caused a 1.2-cm leaf to have a 3-fold lower CO2 liquid phase resistance than did a 7.1-cm leaf. Large thin shade leaves captured photosynthetically active radiation effectively (less than 7% passed through), but were not adapted to full sunlight. Specifically, when a 6.9-cm leaf was placed at 910 w m−2 for 30 min, its temperature exceeded that of the air by nearly 8 C. For the common daytime air temperatures above 30 C for this desert shrub, large shade leaves would have temperatures far in excess of that optimum for photosynthesis for H. emoryi, 29 to 32 C.  相似文献   

2.
Leaf anatomical and chemical characteristics, water relations and stomatal regulation were studied in the shrub Myrtus communis growing under two contrasting Mediterranean light environments (full light versus 30% of full light) during the spring-summer period. These studies aimed to assess plant response to the combined effects of light and water availability. Foliar morphology, anatomy and chemistry composition acclimated positively to light conditions. Leaves of sun-exposed plants were thicker (38.7%) than those of shaded plants, mainly due to increased palisade parenchyma thickness, had a higher nitrogen concentration and stomatal density than the shade ones, which maximized foliar area (>SLA) and Chl/N molar ratio to improve light interception. Chlorophyll concentration per leaf area (Chl(a)) was always higher in sun leaves while, as expressed on dry mass (Chl(m)), significant differences were only apparent in September, shade leaves presenting higher values. During the summer period Chl(a) and Chl(m) markedly declined in sun leaves and remained unchanged in shade ones. The ratio of chlorophyll a/b was not affected either by the light intensity or by the season. Shade leaves presented generally a higher concentration of soluble carbohydrates per dry mass. No significant differences in starch concentration were apparent between sun and shade leaves and a gradual depletion occurred during the water stress period. Maximum stomatal conductances correlated positively with predawn water potential. Throughout the season, sun plants always presented higher leaf conductance to water vapour and lower minimum leaf water potentials, indicating an interaction of light-environment on these water relation parameters. Stomatal closure constitutes a mechanism to cope with diurnal and seasonal water deficits, sun plants presenting a more efficient control of water losses during water deficiency period. In addition, both sun and shade plants evidenced leaf osmotic adjustment ability in response to water stress, which was greater in sun ones.  相似文献   

3.
ABSTRACT.
  • 1 We measured solar radiation reaching ten Quercus emoryi Torr. trees and recorded densities of four leaf-mining insect species on these trees from June until September 1982.
  • 2 The measurements showed that densities of two leaf miner species were negatively correlated with solar radiation.
  • 3 In a field experiment, polypropylene shade fabric was suspended 1.3 m above four experimental trees to test for effects of reduced sunlight.
  • 4 Leaves of experimentally-shaded trees were heavier and contained lower percentages of proteins and gallotannins than leaves of control, sun trees, while per cent foliar monomeric, polymeric, and total phenols, and water content did not differ between sun and shaded trees.
  • 5 Two of four leaf miner species had greater densities on experimentally-shaded trees than sun trees. One of these two species experienced lower survivorship on sun trees owing to high levels of death from unknown causes on sun trees.
  • 6 Two leaf miner species had greater densities on sun trees. One of these species had higher survivorship on shaded trees owing to high levels of parasitism on sun trees.
  • 7 We conclude that even subtle differences in shading influences leaf miner density and mortality; however, the effects of shading vary from positive to negative among leaf miner species.
  相似文献   

4.
In order to parametrize a leaf submodel of a canopy level gas-exchange model, a series of photosynthesis and stomatal conductance measurements were made on leaves of white oak (Quercus alba L.) and red maple (Acer rubrum L.) in a mature deciduous forest near Oak Ridge, TN. Gas-exchange characteristics of sun leaves growing at the top of a 30 m canopy and of shade leaves growing at a depth of 3–4 m from the top of the canopy were determined. Measured rates of net photosynthesis at a leaf temperature of 30°C and saturating photosynthetic photon flux density, expressed on a leaf area basis, were significantly lower (P = 0.01; n = 8) in shade leaves (7.9μmol m?2 s?1) than in sun leaves (11–5μmol m?2 s?1). Specific leaf area increased significantly with depth in the canopy, and when photosynthesis rates were expressed on a dry mass basis, they were not significantly different for shade and sun leaves. The percentage leaf nitrogen did not vary significantly with height in the canopy; thus, rates expressed on a per unit nitrogen basis were also not significantly different in shade and sun leaves. A widely used model integrating photosynthesis and stomatal conductance was parametrized independently for sun and shade leaves, enabling us to model successfully diurnal variations in photosynthesis and evapotranspiration of both classes of leaves. Key photosynthesis model parameters were found to scale with leaf nitrogen levels. The leaf model parametrizations were then incorporated into a canopy-scale gas-exchange model that is discussed and tested in a companion paper (Baldocchi & Harley 1995, Plant, Cell and Environment 18, 1157–1173).  相似文献   

5.
We investigated how light and CO2 levels interact to influence growth, phenology, and the physiological processes involved in leaf senescence in red oak (Quercus rubra) seedlings. We grew plants in high and low light and in elevated and ambient CO2. At the end of three years of growth, shade plants showed greater biomass enhancement under elevated CO2 than sun plants. We attribute this difference to an increase in leaf area ratio (LAR) in shade plants relative to sun plants, as well as to an ontogenetic effect: as plants increased in size, the LAR declined concomitant with a decline in biomass enhancement under elevated CO2 Elevated CO2 prolonged the carbon gain capacity of shade‐grown plants during autumnal senescence, thus increasing their functional leaf lifespan. The prolongation of carbon assimilation, however, did not account for the increased growth enhancement in shade plants under elevated CO2. Elevated CO2 did not significantly alter leaf phenology. Nitrogen concentrations in both green and senesced leaves were lower under elevated CO2 and declined more rapidly in sun leaves than in shade leaves. Similar to nitrogen concentration, the initial slope of A/Ci curves indicated that Rubisco activity declined more rapidly in sun plants than in shade plants, particularly under elevated CO2. Absolute levels of chlorophyll were affected by the interaction of CO2 and light, and chlorophyll content declined to a minimal level in sun plants sooner than in shade plants. These declines in N concentration, in the initial slope of A/Ci curves, and in chlorophyll content were consistent with declining photosynthesis, such that elevated CO2 accelerated senescence in sun plants and prolonged leaf function in shade plants. These results have implications for the carbon economy of seedlings and the regeneration of red oak under global change conditions.  相似文献   

6.
The optical properties of the leaves of twelve tropical sun species and thirteen tropical extreme shade species were examined with an integrating sphere attached to a spectroradiometer. Measurements of diffuse reflectance and transmittance allowed calculations of absorptance, 350–1,100 nm. Although some shade species absorbed higher percentages of quantum flux densities for photosynthesis (400–700 nm, PPFD) than the mean for the sun species, the sun and shade species as groups were not significantly different from each other: 90.2, S.D. 3.6% for shade species and 88.6, S.D. 2.4% for the sun species. The groups of species did not differ in total absorptance of energy 350–1,100 nm. Furthermore, the sun and shade species were identical in their shift of absorptance at wavelengths between 650 and 750 nm. The anthocyanic coloration of the leaf undersurfaces of two species polymorphic for this characteristic (Trionela hirsuta and Ischnosciphon pruinosus) is correlated with increased absorptance at the upper end of the action spectrum of photosynthesis. Although sun and shade species have similar optical properties, the energy investment (as documented by dry wt per unit area of leaf surface) is much less for the shade species.  相似文献   

7.
1. One-year-old seedlings of shade tolerant Acer rubrum and intolerant Betula papyrifera were grown in ambient and twice ambient (elevated) CO2, and in full sun and 80% shade for 90 days. The shaded seedlings received 30-min sun patches twice during the course of the day. Gas exchange and tissue–water relations were measured at midday in the sun plants and following 20 min of exposure to full sun in the shade plants to determine the effect of elevated CO2 on constraints to sun-patch utilization in these species.
2. Elevated CO2 had the largest stimulation of photosynthesis in B. papyrifera sun plants and A. rubrum shade plants.
3. Higher photosynthesis per unit leaf area in sun plants than in shade plants of B. papyrifera was largely owing to differences in leaf morphology. Acer rubrum exhibited sun/shade differences in photosynthesis per unit leaf mass consistent with biochemical acclimation to shade.
4. Betula papyrifera exhibited CO2 responses that would facilitate tolerance to leaf water deficits in large sun patches, including osmotic adjustment and higher transpiration and stomatal conductance at a given leaf-water potential, whereas A. rubrum exhibited large increases in photosynthetic nitrogen-use efficiency.
5. Results suggest that species of contrasting successional ranks respond differently to elevated CO2, in ways that are consistent with the habitats in which they typically occur.  相似文献   

8.
In three experiments measurements of photosynthesis were madeon single leaves of white clover (Trifolium repens L.) on threecultivars grown in a controlled environment. Plants which had grown under an irradiance of 30 J m–2s–1, or in shade within a simulated mixed sward, producedleaves with photosynthetic capacities some 30 per cent lowerthan did plants grown at 120 J m–2 s–1 without shade.There were no differences between treatments either in photosynthesismeasured at 30 J m–2 s–1, or in respiration ratesper unit leaf dry weight. Respiration per unit leaf area washigher in the plants grown at 120 J m–2 s–1, reflectingthe lower specific leaf area of these leaves. There were nodifferences between the three cultivars examined. Leaves which were removed from the shade of a simulated swardshortly after becoming half expanded achieved photosyntheticcapacities as high as those which were in full light throughouttheir development. It is suggested that it is this characteristicwhich enables clover plants growing in an increasingly densemixed sward to produce a succession of leaves of high photosyntheticcapacity, even though each lamina only reaches the top of thesward at a relatively late stage in its development. Trifolium repens L., white clover, photosynthesis, leaf expansion, shade, specific leaf area, stomatal conductance  相似文献   

9.
The acclimation responses of walnut leaf photosynthesis to the irradiance microclimate were investigated by characterizing the photosynthetic properties of the leaves sampled on young trees (Juglans nigraxregia) grown in simulated sun and shade environments, and within a mature walnut tree crown (Juglans regia) in the field. In the young trees, the CO(2) compensation point in the absence of mitochondrial respiration (Gamma*), which probes the CO(2) versus O(2) specificity of Rubisco, was not significantly different in sun and shade leaves. The maximal net assimilation rates and stomatal and mesophyll conductances to CO(2) transfer were markedly lower in shade than in sun leaves. Dark respiration rates were also lower in shade leaves. However, the percentage inhibition of respiration by light during photosynthesis was similar in both sun and shade leaves. The extent of the changes in photosynthetic capacity and mesophyll conductance between sun and shade leaves under simulated conditions was similar to that observed between sun and shade leaves collected within the mature tree crown. Moreover, mesophyll conductance was strongly correlated with maximal net assimilation and the relationships were not significantly different between the two experiments, despite marked differences in leaf anatomy. These results suggest that photosynthetic capacity is a valuable parameter for modelling within-canopies variations of mesophyll conductance due to leaf acclimation to light.  相似文献   

10.
Bunce, J. A. 1987. In-phase cycling of photosynthesis and conductanceat saturating carbon dioxide pressure induced by increases inwater vapour pressure deficit.—J. exp. Bot. 38: 1413–1420. The leaf to air water vapour deficit was increased suddenlyfrom about 1·0 to 2·5 IcPa for single leaves ofsoybean (Glycine max L. Merr.) plants held at 30 °C, 2·0mmol m –2 s–1 photosynthetic photon flux density(PPFD) and carbon dioxide pressures saturating to photosynthesis.After a lag of about 10 min, photosynthetic rate and stomatalconductance to water vapour began to decrease, and then cycledin phase with each other. The period of the cydes was about20 min. During these cycles the substomatal carbon dioxide pressurewas constant in the majority of leaves examined, and was alwaysabove saturation for photosynthesis. Epidermal impressions showedthat most stomata changed in aperture during the cycles, andthat very few were ever fully closed. Water potential measuredon excised discs changed by at most 0·1 MPa from theminima to the maxima in transpiration rate. In contrast, forleaves of sunflower (Helianthus animus L.) grown at low PPFD,the increase in VPD led to leaf wilting and decreased photosynthesis,followed by recovery of turgor and photosynthesis as stomatalconductance began to decrease. In these leaves photosynthesisand conductance then cycled approximately 180° out of phase.It is suggested that in soybeans decreased leaf conductanceinduced by high VPD provided a signal which decreased the rateof photosynthesis at carbon dioxide saturation by a mechanismthat was not related to a water deficit in the mesophyll. Key words: Photosynthesis, stomatal conductance, cycling, vapour pressure deficit  相似文献   

11.
The carotenoid composition of sun leaves of nine species of annual crop plants (some with several varieties) was compared with sun and shade leaves of several other groups of plants, among those sun and shade leaves of several species of perennial shrubs and vines and deep-shade leaves of seven rainforest species. All sun leaves contained considerably greater amounts of the components of the xanthophyll cycle violaxanthin, antheraxanthin and zeaxanthin as well as of β-carotene than the shade leaves, as had previously been reported for a variety of other species by Thayer & Björkman (Photosynthesis Research, 1990, 23, 331–343). Therefore, high light specifically stimulated β,β-carotenoid synthesis. The sun leaves of these crop species did not contain α-carotene which was, however, present in large amounts in all shade leaves and in smaller amounts in sun leaves of three of the four species of perennial shrubs and vines. There was no difference in neoxanthin content on a chlorophyll basis between sun and shade leaves, and there was no consistent general difference in the lutein content between all sun and all shade leaves. The zeaxanthin (and antheraxanthin) content at peak irradiance and the xanthophyll cycle pool size were compared for sun leaves from the different groups of plants with different life forms and different metabolic activities. When growing in full sunlight the annual crop species and a perennial mesophyte had high rates of photosynthesis whereas the perennial shrubs and vines had relatively low photosynthesis rates. More zeaxanthin (and antheraxanthin) were accumulated at noon in full sunlight in those species with the lower photosynthesis rates. However, it was not such that those species also possessed the larger pools of violaxanthin + antheraxanthin + zeaxanthin. Instead, the xanthophyll cycle pools of sun leaves of the annual crop species and the perennial mesophyte were not smaller, and were even possibly larger, than those of sun leaves of the perennial shrubs and vines with low photosynthesis rates. This was so in spite of the fact that the crop species experienced much lesser degrees of excessive light at full sun than the shrubs and vines. Thus, many of the crop species converted only about 30–50% of their xanthophyll cycle pool to zeaxanthin at noon, whereas the shrubs and vines typically converted more than 80% of their pool into zeaxanthin. The crop species also had larger pools of β-carotene than the shrubs and vines but smaller pools of lutein than the majority of the latter species.  相似文献   

12.
The functional roles of the contrasting morphologies of sun and shade shoots of the evergreen shrub Heteromeles arbutifolia were investigated in chaparral and understory habitats by applying a three-dimensional plant architecture simulation model, YPLANT. The simulations were shown to accurately predict the measured frequency distribution of photosynthetic photon flux density (PFD) on both the leaves and a horizontal surface in the open, and gave reasonably good agreement for the more complex light environment in the shade. The sun shoot architecture was orthotropic and characterized by steeply inclined (mean = 71o) leaves in a spiral phyllotaxy with short internodes. This architecture resulted in relatively low light absorption efficiencies (E A) for both diffuse and direct PFD, especially during the summer when solar elevation angles were high. Shade shoots were more plagiotropic with longer internodes and a pseudo-distichous phyllotaxis caused by bending of the petioles that positioned the leaves in a nearly horizontal plane (mean = 5o). This shade-shoot architecture resulted in higher E A values for both direct and diffuse PFD as compared to those of the sun shoots. Differences in E A between sun and shade shoots and between summer and winter were related to differences in projection efficiencies as determined by leaf and solar angles, and by differences in self shading resulting from leaf overlap. The leaves exhibited photosynthetic acclimation to the sun and the shade, with the sun leaves having higher photosynthetic capacities per unit area, higher leaf mass per unit area and lower respiration rates per unit area than shade leaves. Despite having 7 times greater available PFD, sun shoots absorbed only 3 times more and had daily carbon gains only double of those of shade shoots. Simulations showed that sun and shade plants performed similarly in the open light environment, but that shade shoots substantially outperformed sun shoots in the shade light environment. The shoot architecture observed in sun plants appears to achieve an efficient compromise between maximizing carbon gain while minimizing the time that the leaf surfaces are exposed to PFDs in excess of those required for light saturation of photosynthesis and therefore potentially photoinhibitory. Received: 8 June 1997 / Accepted: 2 November 1997  相似文献   

13.
Barber NA  Marquis RJ 《Oecologia》2011,166(2):401-409
Theory predicts that variation in plant traits will modify both the direct interactions between plants and herbivores and the indirect impacts of predators of those herbivores. Light has strong effects on leaf quality, so the impacts of herbivores and predators may differ between plants grown in sun and shade. However, past experiments have often been unable to separate the effects of light environment on plant traits and herbivory from direct effects on herbivores and predators. We first manipulated light availability in an open habitat using a shade cloth pre-treatment to produce oak saplings with different leaf qualities. Leaves on plants exposed to high light were thicker and tougher and had lower nitrogen and water contents, and higher carbon and phenolic contents than leaves on plants under a shade cloth. Then, in the main experiment, we moved all plants to a common shade environment where bird predators were excluded in a factorial design. We measured insect herbivore abundance and leaf damage. Herbivores were significantly more abundant and caused greater leaf damage on sun trees, although these leaf characteristics are usually associated with low-quality food. Bird exclusion did not change herbivore abundance but did increase leaf damage. Contrary to our predictions, the effects of birds did not differ between trees grown in sun and shade conditions. Thus, differences in effects of predators on herbivores and plants between light habitats, when observed, might be due to variation in predator abundance and not bottom-up effects of host plant quality.  相似文献   

14.
We investigated the anatomical and physiological characteristics of stenophyllous leaves of a rheophyte, Farfugium japonicum var. luchuence, and sun and shade leaves of a non-rheophyte, F. japonicum, comparing three different populations from coastal, forest floor, and riparian habitats. Light adaptation resulted in smaller leaves, and riparian adaptation resulted in narrower leaves (stenophylly). The light-saturated rate of photosynthesis (P max) per unit leaf area corresponded to the light availability of the habitat. Irrespective of leaf size, the P max per unit leaf mass was similar for sun and shade leaves. However, the P max per mass of stenophyllous leaves was significantly lower than that of sun and shade leaves. This was because the number and size of mesophyll cells were greater than that required for intercellular CO2 diffusion, which resulted in a larger leaf mass per unit leaf area. Higher cell density increases contact between mesophyll cells and enhances leaf toughness. Stenophyllous leaves of the rheophyte are frequently exposed to a strong water flow when the water level rises, suggesting a mechanical constraint caused by physical stress.  相似文献   

15.
《植物生态学报》1958,44(8):854
由于经济的快速发展, 中国大部分地区正面临着严峻的复合型大气污染, 其中臭氧和气溶胶是两种主要污染物。已有的研究表明臭氧对叶片的氧化性伤害能够抑制光合作用, 而气溶胶可通过增加散射辐射比例或缓解高温抑制促进光合作用。但复合污染下, 臭氧和气溶胶如何共同调控叶片光合作用, 仍缺乏研究。该研究利用北京及周边地区之间的污染梯度, 选择加杨(Populus × canadensis)作为实验对象, 于2012-2013年生长季期间对叶片光合速率进行连续观测, 并同时监测臭氧浓度(AOT40)、气溶胶光学厚度(AOD)、空气温度和冠层内外光合有效辐射(PAR)等环境因子, 以期探讨大气复合污染下臭氧和气溶胶变化对植物叶片光合作用的影响及相关机制。结果表明: (1)臭氧浓度与空气温度、气溶胶浓度之间均呈显著正相关关系, 但气溶胶浓度与空气温度没有显著相关关系; (2)臭氧浓度增加显著抑制了阳生叶片的光合作用, 但气溶胶浓度上升促进了阳生叶片的光合作用; 臭氧浓度升高对阴生叶片光合作用的影响较小, 但气溶胶浓度上升促进了阴生叶片的光合作用; (3)标准化后的结果显示, 臭氧对阳生叶片光合作用的影响最大, 此时气溶胶的促进作用一定程度上补偿了臭氧浓度上升所带来的抑制效应。对于阴生叶片光合作用而言, 气溶胶则是最重要的影响因素。该研究发现复合污染下阴生叶和阳生叶光合响应不同, 这表明冠层结构可能通过影响阴生叶和阳生叶的比例, 从而对植物生长产生不同影响。该研究对理解大气复合污染如何影响光合作用提供了的机理支持, 同时也表明, 为了维持生态系统生产力及功能, 需要同时控制气溶胶和臭氧污染。  相似文献   

16.
由于经济的快速发展, 中国大部分地区正面临着严峻的复合型大气污染, 其中臭氧和气溶胶是两种主要污染物。已有的研究表明臭氧对叶片的氧化性伤害能够抑制光合作用, 而气溶胶可通过增加散射辐射比例或缓解高温抑制促进光合作用。但复合污染下, 臭氧和气溶胶如何共同调控叶片光合作用, 仍缺乏研究。该研究利用北京及周边地区之间的污染梯度, 选择加杨(Populus × canadensis)作为实验对象, 于2012-2013年生长季期间对叶片光合速率进行连续观测, 并同时监测臭氧浓度(AOT40)、气溶胶光学厚度(AOD)、空气温度和冠层内外光合有效辐射(PAR)等环境因子, 以期探讨大气复合污染下臭氧和气溶胶变化对植物叶片光合作用的影响及相关机制。结果表明: (1)臭氧浓度与空气温度、气溶胶浓度之间均呈显著正相关关系, 但气溶胶浓度与空气温度没有显著相关关系; (2)臭氧浓度增加显著抑制了阳生叶片的光合作用, 但气溶胶浓度上升促进了阳生叶片的光合作用; 臭氧浓度升高对阴生叶片光合作用的影响较小, 但气溶胶浓度上升促进了阴生叶片的光合作用; (3)标准化后的结果显示, 臭氧对阳生叶片光合作用的影响最大, 此时气溶胶的促进作用一定程度上补偿了臭氧浓度上升所带来的抑制效应。对于阴生叶片光合作用而言, 气溶胶则是最重要的影响因素。该研究发现复合污染下阴生叶和阳生叶光合响应不同, 这表明冠层结构可能通过影响阴生叶和阳生叶的比例, 从而对植物生长产生不同影响。该研究对理解大气复合污染如何影响光合作用提供了的机理支持, 同时也表明, 为了维持生态系统生产力及功能, 需要同时控制气溶胶和臭氧污染。  相似文献   

17.
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.  相似文献   

18.
The photosynthetic CO2-fixation rates, chlorophyll content, chloroplast ultrastructure and other leaf characteristics (e.g. variable fluorescence, stomata density, soluble carbohydrate content) were studied in a comparative way in sun and shade leaves of beech (Fagus sylvatica) and in high-light and low-light seedlings.
  1. Sun leaves of the beech possess a smaller leaf area, higher dry weight, lower water content, higher stomata density, higher chlorophyll a/b ratios and are thicker than the shade leaves. Sun leaves on the average contain more chlorophyll in a leaf area unit; the shade leaf exhibits more chlorophyll on a dry weight basis. Sun leaves show higher rates for dark respiration and a higher light saturation of photosynthetic CO2-fixation. Above 2000 lux they are more efficient in photosynthetic quantum conversion than the shade leaves.
  2. The development of HL-radish plants proceeds much faster than that of LL-plants. The cotyledons of HL-plants show a higher dry weight, lower water content, a higher ratio of chlorophyll a/b and a higher gross photosynthesis rate than the cotyledons of the LL-plants, which possess a higher chlorophyll content per dry weight basis. The large area of the HL-cotyledon on the one hand, as well as the higher stomata density and the higher respiration rate in the LL-cotyledon on the other hand, are not in agreement with the characteristics of sun and shade leaves respectively.
  3. The development, growth and wilting of wheat leaves and the appearance of the following leaves (leaf succession) is much faster at high quanta fluence rates than in weak light. The chlorophyll content is higher in the HL-leaf per unit leaf area and in the LL-leaf per g dry weight. There are no differences in the stomata density and leaf area between the HL- and LL-leaf. There are fewer differences between HL- and LL-leaves than in beech or radish leaves.
  4. The chloroplast ultrastructure of shade-type chloroplasts (shade leaves, LL-leaves) is not only characterized by a much higher number of thylakoids per granum and a higher stacking degree of thylakoids, but also by broader grana than in sun-type chloroplasts (sun leaves, HL-leaves). The chloroplasts of sun leaves and of HL-leaves exhibit large starch grains.
  5. Shade leaves and LL-leaves exhibit a higher maximum chlorophyll fluorescence and it takes more time for the fluorescence to decline to the steady state than in sun and HL-leaves. The variable fluorescence VF (ratio of fluorescence decrease to steady state fluorescence) is always higher in the sun and HL-leaf of the same physiological stage (maximum chlorophyll content of the leaf) than in the shade and LL-leaf. The fluorescence emission spectra of sun and HL-leaves show a higher proportion of chlorophyli fluorescence in the second emission maximum F2 than shade and LL-leaves.
  6. The level of soluble carbohydrates (reducing sugars) is significantly higher in sun and HL-leaves than in shade and LL-leaves and even reflects changes in the amounts of the daily incident light.
  7. Some but not all characteristics of mature sun and shade leaves are found in HL- and LL-leaves of seedlings. Leaf thickness, dry weight, chlorophyll content, soluble carbohydrate level, photosynthetic CO2-fixation, height and width of grana stacks and starch content, are good parameters to describe the differences between LL- and HL-leaves; with some reservations concerning age and physiological stage of leaf, a/b ratios, chlorophyll content per leaf area unit and the variable fluorescence are also suitable.
  相似文献   

19.
Kaoru Kitajima 《Oecologia》1994,98(3-4):419-428
Among 13 tropical tree species on Barro Colorado Island, species with high seedling mortality rates during the first year in shade had higher reltive growth rates (RGR) from germination to 2 months in both sun (23% full sun) and shade [2%, with and without lowered red: far red (R:FR) ratio] than shade tolerant species. Species with higher RGR in sun also had higher RGR in shade. These interspecific trends could be explained by differences in morphological traits and allocation paterns among species. Within each light regime, seedlings of shade-intolerant species had lower root: shoot ratios, higher leaf mass per unit area, and higher leaf area ratios (LAR) than shade tolerant species. In contrast, leaf gas exchange characteristics, or acclimation potential in these traits, had no relationship with seedling mortality rates in shade. In both shade tolerant and intolerant species, light saturated photosynthesis rates, dark respiration, and light compensation points were higher for sungrown seedlings than for shade-grown seedlings. Differences in R:FR ratio in shade did not affect gas exchange, allocation patterns, or growth rates of any species. Survival of young tree seedlings in shade did not depend on higher net photosynthesis or biomass accumulation rates in shade. Rather, species with higher RGR died faster in shade than species with lower RGR. This trend could be explained if survival depends on morphological characteristics likely to enhance defense against herbivores and pathogens, such as dense and tough leaves, a well-established root system, and high wood density. High construction costs for these traits, and low LAR as a consequence of these traits, should result in lower rates of whole-plant carbon gain and RGR for shade tolerant species than shade-intolerant species in shade as well as in sun.  相似文献   

20.
Morphology, anatomy and physiology of sun and shade leaves of Abies alba were investigated and major differences were identified, such as sun leaves being larger, containing a hypodermis and palisade parenchyma as well as possessing more stomata, while shade leaves exhibit a distinct leaf dimorphism. The large size of sun leaves and their arrangement crowded on the upper side of a plagiotropic shoot leads to self‐shading which is explainable as protection from high solar radiation and to reduce the transpiration via the lamina. Sun leaves furthermore contain a higher xanthophyll cycle pigment amount and Non‐Photochemical Quenching (NPQ) capacity, a lower amount of chlorophyll b and a total lower chlorophyll amount per leaf, as well as an increased electron transport rate and an increased photosynthesis light saturation intensity. However, sun leaves switch on their NPQ capacity at rather low light intensities, as exemplified by several parameters newly measured for conifers. Our holistic approach extends previous findings about sun and shade leaves in conifers and demonstrates that both leaf types of A. alba show structural and physiological remarkable similarities to their respective counterparts in angiosperms, but also possess unique characteristics allowing them to cope efficiently with their environmental constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号