首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligand migration processes inside myoglobin and protein dynamics coupled to the migration were theoretically investigated with molecular dynamics simulations. Based on a linear response theory, we identified protein motions coupled to the transient migration of ligand, carbon monoxide (CO), through channels. The result indicates that the coupled protein motions involve collective motions extended over the entire protein correlated with local gating motions at the channels. Protein motions, coupled to opening of a channel from the distal pocket to a neighboring xenon site, were found to share the collective motion with experimentally observed protein motions coupled to a doming motion of the heme Fe atom upon photodissociation of the ligand. Analysis based on generalized Langevin dynamics elucidated slow and diffusive features of the protein response motions. Remarkably small transmission coefficients for rates of the CO migrations through myoglobin were found, suggesting that the CO migration dynamics are characterized as motions governed by the protein dynamics involving the collective motions, rather than as thermally activated transitions across energy barriers of well-structured channels.  相似文献   

2.
In an earlier study, we showed that two‐domain segment‐swapped proteins can evolve by domain swapping and fusion, resulting in a protein with two linkers connecting its domains. We proposed that a potential evolutionary advantage of this topology may be the restriction of interdomain motions, which may facilitate domain closure by a hinge‐like movement, crucial for the function of many enzymes. Here, we test this hypothesis computationally on uroporphyrinogen III synthase, a two‐domain segment‐swapped enzyme essential in porphyrin metabolism. To compare the interdomain flexibility between the wild‐type, segment‐swapped enzyme (having two interdomain linkers) and circular permutants of the same enzyme having only one interdomain linker, we performed geometric and molecular dynamics simulations for these species in their ligand‐free and ligand‐bound forms. We find that in the ligand‐free form, interdomain motions in the wild‐type enzyme are significantly more restricted than they would be with only one interdomain linker, while the flexibility difference is negligible in the ligand‐bound form. We also estimated the entropy costs of ligand binding associated with the interdomain motions, and find that the change in domain connectivity due to segment swapping results in a reduction of this entropy cost, corresponding to ~20% of the total ligand binding free energy. In addition, the restriction of interdomain motions may also help the functional domain‐closure motion required for catalysis. This suggests that the evolution of the segment‐swapped topology facilitated the evolution of enzyme function for this protein by influencing its dynamic properties. Proteins 2016; 85:46–53. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
Enzymes undergo a range of internal motions from local, active site fluctuations to large‐scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post‐translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus‐responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.  相似文献   

4.
Domain motions are central to the biological functions of many proteins. The energetics of the motions, however, is often difficult to characterize when motions are coupled with the ligand binding. Here, we determined the thermodynamic parameters of individual domain motions and ligand binding of enzyme I (EI) using strategic domain-deletion mutants that selectively removed particular motions. Upon ligand binding, EI employs two large-scale domain motions, the hinge motion and the swivel motion, to switch between conformational states of distinct domain−domain orientations. Calorimetric analysis of the EI mutants separated the free energy changes of the binding and motions, demonstrating that the unfavorable hinge motion (ΔG = 1.5 kcal mol−1) was driven by the favorable swivel motion (ΔG = −5.2 kcal mol−1). The large free energy differences could be explained by the physicochemical nature of the domain interfaces associated with the motions; the hinge motion employed much narrower interface than the swivel motion without any hydrogen bonds or salt bridges. The small heat capacity further suggested that the packing of the domain interfaces associated with the hinge motion was less compact than that commonly observed in proteins. Lastly, thermodynamic analysis of phosphorylated EI suggests that the domain motions are regulated by the ligand binding and the phosphorylation states. Taken together, the thermodynamic dissection approach illustrates how multiple motions and ligand binding are energetically connected during the functional cycle of EI.  相似文献   

5.
Date hub proteins are a type of proteins that show multispecificity in a time‐dependent manner. To understand dynamic aspects of such multispecificity we studied Ubiquitin as a typical example of a date hub protein. Here we analyzed 9 biologically relevant Ubiquitin‐protein (ligand) heterodimer structures by using normal mode analysis based on an elastic network model. Our result showed that the self‐coupled motion of Ubiquitin in the complex, rather than its ligand‐coupled motion, is similar to the motion of Ubiquitin in the unbound condition. The ligand‐coupled motions are correlated to the conformational change between the unbound and bound conditions of Ubiquitin. Moreover, ligand‐coupled motions favor the formation of the bound states, due to its in‐phase movements of the contacting atoms at the interface. The self‐coupled motions at the interface indicated loss of conformational entropy due to binding. Therefore, such motions disfavor the formation of the bound state. We observed that the ligand‐coupled motions are embedded in the motions of unbound Ubiquitin. In conclusion, multispecificity of Ubiquitin can be characterized by an intricate balance of the ligand‐ and self‐coupled motions, both of which are embedded in the motions of the unbound form.  相似文献   

6.
Large conformational changes in the LID and NMP domains of adenylate kinase (AKE) are known to be key to ligand binding and catalysis, yet the order of binding events and domain motion is not well understood. Combining the multiple available structures for AKE with the energy landscape theory for protein folding, a theoretical model was developed for allostery, order of binding events, and efficient catalysis. Coarse-grained models and nonlinear normal mode analysis were used to infer that intrinsic structural fluctuations dominate LID motion, whereas ligand-protein interactions and cracking (local unfolding) are more important during NMP motion. In addition, LID-NMP domain interactions are indispensable for efficient catalysis. LID domain motion precedes NMP domain motion, during both opening and closing. These findings provide a mechanistic explanation for the observed 1:1:1 correspondence between LID domain closure, NMP domain closure, and substrate turnover. This catalytic cycle has likely evolved to reduce misligation, and thus inhibition, of AKE. The separation of allosteric motion into intrinsic structural fluctuations and ligand-induced contributions can be generalized to further our understanding of allosteric transitions in other proteins.  相似文献   

7.
Large-scale conformational change is a common feature in the catalytic cycles of enzymes. Many enzymes function as homodimers with active sites that contain elements from both chains. Symmetric and anti-symmetric cooperative motions in homodimers can potentially lead to correlated active site opening and/or closure, likely to be important for ligand binding and release. Here, we examine such motions in two different domain-swapped homodimeric enzymes: the DcpS scavenger decapping enzyme and citrate synthase. We use and compare two types of all-atom simulations: conventional molecular dynamics simulations to identify physically meaningful conformational ensembles, and rapid geometric simulations of flexible motion, biased along normal mode directions, to identify relevant motions encoded in the protein structure. The results indicate that the opening/closure motions are intrinsic features of both unliganded enzymes. In DcpS, conformational change is dominated by an anti-symmetric cooperative motion, causing one active site to close as the other opens; however a symmetric motion is also significant. In CS, we identify that both symmetric (suggested by crystallography) and asymmetric motions are features of the protein structure, and as a result the behaviour in solution is largely non-cooperative. The agreement between two modelling approaches using very different levels of theory indicates that the behaviours are indeed intrinsic to the protein structures. Geometric simulations correctly identify and explore large amplitudes of motion, while molecular dynamics simulations indicate the ranges of motion that are energetically feasible. Together, the simulation approaches are able to reveal unexpected functionally relevant motions, and highlight differences between enzymes.  相似文献   

8.
The uptake of nutrients is essential for the survival of bacterial cells. Many specialized systems have evolved, such as the maltose-dependent ABC transport system that transfers oligosaccharides through the cytoplasmic membrane. The maltose/maltodextrin-binding protein (MBP) serves as an initial high-affinity binding component in the periplasm that delivers the bound sugar into the cognate ABC transporter MalFGK(2). We have investigated the domain motions induced by the binding of the ligand maltotriose into the binding cleft using molecular dynamics simulations. We find that MBP is predominantly in the open state without ligand and in the closed state with ligand bound. Oligosaccharide binding induces a closure motion (30.0 degrees rotation), whereas ligand removal leads to domain opening (32.6 degrees rotation) around a well-defined hinge affecting key areas relevant for chemotaxis and transport. Our simulations suggest that a "hook-and-eye" motif is involved in the binding. A salt bridge between Glu-111 and Lys-15 forms that effectively locks the protein-ligand complex in a semiclosed conformation inhibiting any further opening and promoting complete closure. This previously unrecognized feature seems to secure the ligand in the binding site and keeps MBP in the closed conformation and suggests a role in the initial steps of substrate transport.  相似文献   

9.
Protein flexibility is an essential aspect of protein function, and proteic activity involves a wide range of structural changes, varying from small side-chain movements to large-scale domain motion. In order to understand how these large-scale rearrangements impact on proteins internal dynamics and mechanics, we carried out coarse-grain simulations on a set of proteins presenting conformational changes due to domain–domain motions, and investigated the resulting variations of their mechanical properties. These changes are highly heterogeneous along the protein sequence, and our results show that the residues undergoing important variations of their force constant occupy key positions for protein function, as they are mostly located in the ligand-binding site or on the domain–domain interface.  相似文献   

10.
The sorting nexins (SNXs) constitute a large group of PX domain-containing proteins that play critical roles in protein trafficking. We report here the solution structure of human sorting nexin 22 (SNX22). Although SNX22 has <30% sequence identity with any PX domain protein of known structure, it was found to contain the alpha/beta fold and compact structural core characteristic of PX domains. Analysis of the backbone dynamics of SNX22 by NMR relaxation measurements revealed that the two walls of the ligand binding cleft undergo internal motions: on the picosecond timescale for the beta1/beta2 loop and on the micro- to millisecond timescale for the loop between the polyproline motif and helix alpha2. Regions of the SNX22 structure that differ from those of other PX domains include the loop connecting strands beta1 and beta2 and the loop connecting helices alpha1 and alpha2, which appear to be more mobile than corresponding loops in other known structures. The interaction of dibutanoyl-phosphatidylinositol-3-phosphate (dibutanoyl-PtdIns(3)P) with SNX22 was investigated by an NMR titration experiment, which identified the binding site in a basic cleft and indicated that ligand binding leads only to a local structural rearrangement as has been found with other PX domains. Because motions in the loops are damped out when dibutanoyl-PtdIns(3)P binds, entropic effects could contribute to the lower affinity of SNX22 for this ligand compared to other PX domains.  相似文献   

11.
The large protein motions of the bacterial enzyme glucosamine-6-phosphate synthase have been addressed using full atom normal modes analysis for the empty, the glucose-6-phosphate and the glucose-6-phosphate + glutamate bound proteins. The approach that was used involving energy minimizations along the normal modes coordinates identified functional motions of the protein, some of which were characterized earlier by X-ray diffraction studies. This method made it possible for the first time to highlight significant energy differences according to whether none, only one or both of the active sites of the protein were occupied. Our data favoured a specific motion of the glutamine binding domain following the fixation of fructose-6-phosphate and suggested a rigidified structure with both sites occupied. Here, we show that most of the collective large amplitude motions of glucosamine-6-phosphate synthase that are modulated by ligand binding are crucial for the enzyme catalytic cycle, as they strongly modify the geometry of both the ammonia channel and the C-tail, demonstrating their role in ammonia transfer and ligand binding.  相似文献   

12.
Periplasmic binding proteins from Gram-negative bacteria possess a common architecture, comprised of two domains linked by a hinge region, a fold which they share with the neurotransmitter-binding domains of ionotropic glutamate receptors (GluRs). Glutamine-binding protein (GlnBP) is one such protein, whose crystal structure has been solved in both open and closed forms. Multi-nanosecond molecular dynamics simulations have been used to explore motions about the hinge region and how they are altered by ligand binding. Glutamine binding is seen to significantly reduce inter-domain motions about the hinge region. Essential dynamics analysis of inter-domain motion revealed the presence of both hinge-bending and twisting motions, as has been reported for a related sugar-binding protein. Significantly, the influence of the ligand on GlnBP dynamics is similar to that previously observed in simulations of rat glutamate receptor (GluR2) ligand-binding domain. The essential dynamics analysis of GlnBP also revealed a third class of motion which suggests a mechanism for signal transmission in GluRs.  相似文献   

13.
The cold-active phosphoglycerate kinase from the Antarctic bacterium Pseudomonas sp. TACII18 exhibits two distinct stability domains in the free, open conformation. It is shown that these stability domains do not match the structural N- and C-domains as the heat-stable domain corresponds to about 80 residues of the C-domain, including the nucleotide binding site, whereas the remaining of the protein contributes to the main heat-labile domain. This was demonstrated by spectroscopic and microcalorimetric analyses of the native enzyme, of its mutants, and of the isolated recombinant structural domains. It is proposed that the heat-stable domain provides a compact structure improving the binding affinity of the nucleotide, therefore increasing the catalytic efficiency at low temperatures. Upon substrate binding, the enzyme adopts a uniformly more stable closed conformation. Substrate-induced stability changes suggest that the free energy of ligand binding is converted into an increased conformational stability used to drive the hinge-bending motions and domain closure.  相似文献   

14.
McFeeters RL  Oswald RE 《Biochemistry》2002,41(33):10472-10481
Ionotropic glutamate receptors play important roles in a variety of neuronal processes and have been implicated in multiple neurodegenerative diseases. The extracellular ligand-binding (S1S2) core of the GluR2 subtype can be expressed in bacteria as a soluble, monomeric protein with binding properties essentially identical to those of the intact receptor. The crystal structure of this protein has been determined in the presence and absence of various agonists and antagonists [Armstrong, N., Sun, Y., Chen, G. Q., and Gouaux, E. (1998) Nature 395, 913-917; Armstrong, N., and Gouaux, E. (2000) Neuron 28, 165-181]. The protein consists of two lobes, with the S1 segment composing the majority of lobe 1 and the S2 segment composing most of lobe 2. A domain closure upon ligand binding has been postulated, but details of intradomain motions have not been investigated. In this paper, the backbone motions of the ligand-binding core of GluR2 bound to glutamate were studied using (15)N longitudinal (T1) and transverse (T2) relaxation measurements as well as [1H]-15N nuclear Overhauser effects at 500 and 600 MHz. Residues in the agonist-binding pocket exhibited two main classes of motion. Those contacting the alpha-substituents of the ligand glutamate exhibited minimal internal motion, while those contacting the gamma-constituents exhibited exchange dynamics, indicating two dynamically distinct portions of the binding pocket. Also, two residues in transdomain linkers between lobes 1 and 2 show exchange, lending new insight into the previously proposed domain closure hypothesis. Finally, concerted motion of helix F suggests a pathway for ligand dissociation without the necessity of domain reopening.  相似文献   

15.
In order to better understand ligand-induced closure in domain enzymes, open unliganded X-ray structures and closed liganded X-ray structures have been studied in five enzymes: adenylate kinase, aspartate aminotransferase, citrate synthase, liver alcohol dehydrogenase, and the catalytic subunit of cAMP-dependent protein kinase. A sequential model of ligand binding and domain closure was used to test the hypothesis that the ligand actively drives closure from an open conformation. The analysis supports the assumption that each enzyme has a dedicated binding domain to which the ligand binds first and a closing domain. In every case, a small number of residues are identified to interact with the ligand to initiate and drive domain closure. In all cases except adenylate kinase, the backbone of residues located in an interdomain-bending region (hinge site) is identified to interact with the ligand to aid in driving closure. In adenylate kinase, the side-chain of a residue located directly adjacent to a bending region drives closure. It is thought that by binding near a hinge site the ligand is able to get within interaction range of residues when the enzyme is in the open conformation. Interdomain bending regions not involved in inducing closure are involved in control, helping to determine the location of the hinge axis. Similarities have been discovered between aspartate aminotransferase and citrate synthase that only come to light in the context of their dynamical behaviour in response to binding their substrate. Similarity also exists between liver alcohol dehydrogenase and cAMP-dependent protein kinase whereby groups on NAD and ATP, respectively, mimic the backbone of a single amino acid residue in a process where a three residue segment located at the terminus of a beta-sheet, moves to form hydrogen bonds with the mimic that resemble those found in a parallel beta-sheet. This interaction helps to drive domain closure in a process that has analogy to protein folding.  相似文献   

16.
Brylinski M  Skolnick J 《Proteins》2008,70(2):363-377
It is well known that ligand binding and release may induce a wide range of structural changes in a receptor protein, varying from small movements of loops or side chains in the binding pocket to large‐scale domain hinge‐bending and shear motions or even partial unfolding that facilitates the capture and release of a ligand. An interesting question is what in general are the conformational changes triggered by ligand binding? The aim of this work is analyze the magnitude of structural changes in a protein resulting from ligand binding to assess if the state of ligand binding needs to be included in template‐based protein structure prediction algorithms. To address this issue, a nonredundant dataset of 521 paired protein structures in the ligand‐free and ligand‐bound form was created and used to estimate the degree of both local and global structure similarity between the apo and holo forms. In most cases, the proteins undergo relatively small conformational rearrangements of their tertiary structure upon ligand binding/release (most root‐mean‐square‐deviations from native, RMSD, are <1 Å). However, a clear difference was observed between single‐ and multiple‐domain proteins. For the latter, RMSD changes greater than 1 Å and sometimes larger were found for almost 1/3 of the cases; these are mainly associated with large‐scale hinge‐bending movements of entire domains. The changes in the mutual orientation of individual domains in multiple‐domain proteins upon ligand binding were investigated using a mechanistic model based on mass‐weighted principal axes as well as interface buried surface calculations. Some preferences toward the anticipated mechanism of protein domain movements are predictable based on the examination of just the ligand‐free structural form. These results have applications to protein structure prediction, particularly in the context of protein domain assembly, if additional information concerning ligand binding is exploited. Proteins 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

17.
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein’s dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.  相似文献   

18.
Protein engineering was used previously to convert maltose-binding protein (MBP) into a zinc biosensor. Zn(2+) binding by the engineered MBP was thought to require a large conformational change from "open" to "closed", similar to that observed when maltose is bound by the wild-type protein. We show that although this re-designed MBP molecule binds Zn(2+) with high affinity as previously reported, it does not adopt a closed conformation in solution as assessed by small-angle X-ray scattering. High-resolution crystallographic studies of the engineered Zn(2+)-binding MBP molecule demonstrate that Zn(2+) is coordinated by residues on the N-terminal lobe only, and therefore Zn(2+) binding does not require the protein to adopt a fully closed conformation. Additional crystallographic studies indicate that this unexpected Zn(2+) binding site can also coordinate Cu(2+) and Ni(2+) with only subtle changes in the overall conformation of the protein. This work illustrates that the energetic barrier to domain closure, which normally functions to maintain MBP in an open concentration in the absence of ligand, is not easily overcome by protein design. A comparison to the mechanism of maltose-induced domain rearrangement is discussed.  相似文献   

19.
NHERF1 is a multidomain scaffolding protein that assembles signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by the membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 Ångstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length-scales and on submicrosecond timescales upon forming a complex with ezrin. We show that a much-simplified coarse-grained model suffices to describe interdomain motion of a multidomain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. Our results demonstrate that the dynamic propagation of allosteric signals to distal sites involves changes in long-range coupled domain motions on submicrosecond timescales, and that these coupled motions can be distinguished and characterized by NSE.  相似文献   

20.
Ligand binding to proteins often causes large conformational changes. A typical example is maltose-binding protein (MBP), a member of the family of periplasmic binding proteins of Gram-negative bacteria. Upon binding of maltose, MBP undergoes a large structural change that closes the binding cleft, i.e. the distance between its two domains decreases. In contrast, binding of the larger, nonphysiological ligand beta-cyclodextrin does not result in closure of the binding cleft. We have investigated the dynamic properties of MBP in its different states using time-resolved tryptophan fluorescence anisotropy. We found that the 'empty' protein exhibits strong internal fluctuations that almost vanish upon ligand binding. The measured relaxation times corresponding to internal fluctuations can be interpreted as originating from two types of motion: wobbling of tryptophan side-chains relative to the protein backbone, and orientational fluctuations of entire domains. After binding of a ligand, domain motions are no longer detectable and the fluctuations of some of the tryptophan side-chains become rather restricted. This transformation into a more rigid state is observed upon binding of both ligands, maltose and the larger beta-cyclodextrin. The fluctuations of tryptophan side-chains in direct contact with the ligand, however, are affected in a slightly different way by the two ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号