首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of an effort to inhibit S100B, structures of pentamidine (Pnt) bound to Ca2+-loaded and Zn2+,Ca2+-loaded S100B were determined by X-ray crystallography at 2.15 Å (Rfree = 0.266) and 1.85 Å (Rfree = 0.243) resolution, respectively. These data were compared to X-ray structures solved in the absence of Pnt, including Ca2+-loaded S100B and Zn2+,Ca2+-loaded S100B determined here (1.88 Å; Rfree = 0.267). In the presence and absence of Zn2+, electron density corresponding to two Pnt molecules per S100B subunit was mapped for both drug-bound structures. One Pnt binding site (site 1) was adjacent to a p53 peptide binding site on S100B (± Zn2+), and the second Pnt molecule was mapped to the dimer interface (site 2; ± Zn2+) and in a pocket near residues that define the Zn2+ binding site on S100B. In addition, a conformational change in S100B was observed upon the addition of Zn2+ to Ca2+-S100B, which changed the conformation and orientation of Pnt bound to sites 1 and 2 of Pnt-Zn2+,Ca2+-S100B when compared to Pnt-Ca2+-S100B. That Pnt can adapt to this Zn2+-dependent conformational change was unexpected and provides a new mode for S100B inhibition by this drug. These data will be useful for developing novel inhibitors of both Ca2+- and Ca2+,Zn2+-bound S100B.  相似文献   

2.
The interaction between the calcium-binding protein S100A4 and the C-terminal fragments of nonmuscle myosin heavy chain IIA has been studied by equilibrium and kinetic methods. Using site-directed mutants, we conclude that Ca2+ binds to the EF2 domain of S100A4 with micromolar affinity and that the Kd value for Ca2+ is reduced by several orders of magnitude in the presence of myosin target fragments. The reduction in Kd results from a reduced dissociation rate constant (from 16 s− 1 to 0.3 s− 1 in the presence of coiled-coil fragments) and an increased association rate constant. Using peptide competition assays and NMR spectroscopy, we conclude that the minimal binding site on myosin heavy chain IIA corresponds to A1907-G1938; therefore, the site extends beyond the end of the coiled-coil region of myosin. Electron microscopy and turbidity assays were used to assess myosin fragment filament disassembly by S100A4. The latter assay demonstrated that S100A4 binds to the filaments and actively promotes disassembly rather than just binding to the myosin monomer and displacing the equilibrium. Quantitative modelling of these in vitro data suggests that S100A4 concentrations in the micromolar region could disassemble myosin filaments even at resting levels of cytoplasmic [Ca2+]. However, for Ca2+ transients to be effective in further promoting dissociation, the elevated Ca2+ signal must persist for tens of seconds. Fluorescence recovery after photobleaching of A431/SIP1 cells expressing green fluorescent protein-myosin IIA, immobilised on fibronectin micropatterns to control stress fibre location, yielded a recovery time constant of around 20 s, consistent with in vitro data.  相似文献   

3.
4.
5.
Otacilio C. Moreira 《BBA》2005,1708(3):411-419
The bidentate complex of ATP with Cr3+, CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca2+-ATPase and the Na+,K+-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca2+ and Na+, respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca2+-ATPase. The complex inhibited with similar efficiency the Ca2+-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T1/2 = 30 min at 37 °C) with a Ki = 28 ± 9 μM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg2+ but unaltered when Ca2+ was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca2+ occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La3+ with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca2+ at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca2+ promoted by the plasma membrane Ca2+-ATPase goes through an enzymatic phospho-intermediate that maintains Ca2+ ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.  相似文献   

6.
Calcyphosine is an EF-hand protein involved in both Ca2 +-phosphatidylinositol and cyclic AMP signal cascades, as well as in other cellular functions. The crystal structure of Ca2 +-loaded calcyphosine was determined up to 2.65 Å resolution and reveals a protein containing two pairs of Ca2 +-binding EF-hand motifs. Calcyphosine shares a highly similar overall topology with calmodulin. However, there are striking differences between EF-hand 4, both N-terminal and C-terminal regions, and interdomain linkers. The C-terminal domain of calcyphosine possesses a large hydrophobic pocket in the presence of calcium ions that might be implicated in ligand binding, while its N-terminal hydrophobic pocket is almost shielded by an additional terminal helix. Calcyphosine is largely monomeric, regardless of the presence of Ca2 +. Differences in structure, oligomeric state in the presence and in the absence of Ca2 +, a highly conserved sequence with low similarity to other proteins, and phylogeny define a new EF-hand-containing family of calcyphosine proteins that extends from arthropods to humans.  相似文献   

7.
Calmodulin (CaM) binding to the intracellular C-terminal tail (CTT) of the cardiac L-type Ca2+ channel (CaV1.2) regulates Ca2+ entry by recognizing sites that contribute to negative feedback mechanisms for channel closing. CaM associates with CaV1.2 under low resting [Ca2+], but is poised to change conformation and position when intracellular [Ca2+] rises. CaM binding Ca2+, and the domains of CaM binding the CTT are linked thermodynamic functions. To better understand regulation, we determined the energetics of CaM domains binding to peptides representing pre-IQ sites A1588, and C1614 and the IQ motif studied as overlapping peptides IQ1644 and IQ1650 as well as their effect on calcium binding. (Ca2+)4-CaM bound to all four peptides very favorably (Kd ≤ 2 nM). Linkage analysis showed that IQ1644-1670 bound with a Kd ~ 1 pM. In the pre-IQ region, (Ca2+)2-N-domain bound preferentially to A1588, while (Ca2+)2-C-domain preferred C1614. When bound to C1614, calcium binding in the N-domain affected the tertiary conformation of the C-domain. Based on the thermodynamics, we propose a structural mechanism for calcium-dependent conformational change in which the linker between CTT sites A and C buckles to form an A-C hairpin that is bridged by calcium-saturated CaM.  相似文献   

8.
The thermal sensitivity of metabolic performance in vertebrates requires a better understanding of the temperature sensitivity of cardiac function. The cardiac sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) is vital for excitation–contraction (E–C) coupling and intracellular Ca2+ homeostasis in heart cells. To better understand the thermal dependency of cardiac output in vertebrates, we present comparative analyses of the thermal kinetics properties of SERCA2 from ectothermic and endothermic vertebrates. We directly compare SR ventricular microsomal preparations using similar experimental conditions from sarcoplasmic reticulum isolated from cardiac tissues of mammals and fish. The experiments were designed to delineate the thermal sensitivity of SERCA2 and its role in thermal sensitivity Ca2+ uptake and E–C coupling. Ca2+ transport in the microsomal SR fractions from rabbit and bigeye tuna (Thunnus obesus) ventricles were temperature dependent. In contrast, ventricular SR preparations from coho salmon (Onchorhychus kisutch) were less temperature dependent and cold tolerant, displaying Ca2+ uptake as low as 5 °C. As a consequence, the Q10 values in coho salmon were low over a range of different temperature intervals. Maximal Ca2+ transport activity for each species occurred in a different temperature range, indicating species-specific thermal preferences for SERCA2 activity. The mammalian enzyme displayed maximal Ca2+ uptake activity at 35 °C, whereas the fish (tuna and salmon) had maximal activity at 30 °C. At 35 °C, the rate of Ca2+ uptake catalyzed by the bigeye tuna SERCA2 decreased, but not the rate of ATP hydrolysis. In contrast, the salmon SERCA2 enzyme lost its activity at 35 °C, and ATP hydrolysis was also impaired. We hypothesize that SERCA2 catalysis is optimized for species-specific temperatures experienced in natural habitats and that cardiac aerobic scope is limited when excitation–contraction coupling is impaired at low or high temperatures due to loss of SERCA2 enzymatic function.  相似文献   

9.
Streptomyces coelicolor A3(2) produces several intra and extracellular enzymes with deoxyribonuclease activities. The examined N-terminal amino acid sequence of one of extracellular DNAases (TVTSVNVNGLL) and database search on S. coelicolor genome showed a significant homology to the putative secreted exodeoxyribonuclease. The corresponding gene (exoSc) was amplified, cloned, expressed in Escherichia coli, purified to homogeneity and characterized. Exonuclease recExoSc degraded chromosomal, linear dsDNA with 3′-overhang ends, linear ssDNA and did not digest linear dsDNA with blunt ends, supercoiled plasmid ds nor ssDNA. The substrate specificity of recExoSc was in the order of dsDNA > ssDNA > 3′-dAMP. The purified recExoSc was not a metalloprotein and exhibited neither phosphodiesterase nor RNase activity. It acted as 3′-phosphomonoesterase only at 3′-dAMP as a substrate. The optimal temperature for its activity was 57 °C in Tris–HCl buffer at optimal pH = 7.5 for either ssDNA or dsDNA substrates. It required a divalent cation (Mg2+, Co2+, Ca2+) and its activity was strongly inhibited in the presence of Zn2+, Hg2+, chelating agents or iodoacetate.  相似文献   

10.
The effect of Zn2+ on three major peptidase activities of the 20S proteasome purified from Xenopus oocytes was kinetically investigated. An extremely low concentration of Zn2+ (μM range) strongly inhibited the trypsin-like activity of the 20S proteasome which was fully recoverable by the addition of EDTA. The concentration of Zn2+ for half-maximum inhibition (K0.5) was 0.60 μM which was at least 10 times lower than that of any other divalent cation tested and essentially the same as for proteasomes purified from various other organisms indicating that the inhibition is highly Zn2+-specific, reversible, and common to the proteasome regardless of its source. Zn2+ at concentrations below 100 μM instantaneously activated the chymotrypsin-like and PGPH activities, and the Zn2+ concentration for half-maximum activation was found to be 42-48 μM. These activities were time-dependently inactivated by submillimolar concentrations of Zn2+. The inactivation rates were dependent on the concentration of Zn2+ and reached a maximum of 1.60-2.40 min−1 for the three peptidase activities under the conditions used. The Zn2+ concentration for half-maximum inactivation was found to be 0.70-1.23 mM. This time-dependent inactivation was not reversed by the addition of EDTA or DTT and might not be accompanied by the dissociation of subunits of the 20S proteasome indicating that all activities are inactivated by an identical phenomenon. These results reveal the three types of effects of Zn2+ on the 20S proteasome.  相似文献   

11.
The cgt gene encoding α-cyclodextrin glycosyltransferase (α-CGTase) from Paenibacillus macerans strain JFB05-01 was expressed in Escherichia coli as a C-terminal His-tagged protein. After 90 h of induction, the activity of α-CGTase in the culture medium reached 22.5 U/mL, which was approximately 42-fold higher than that from the parent strain. The recombinant α-CGTase was purified to homogeneity through either nickel affinity chromatography or a combination of ion-exchange and hydrophobic interaction chromatography. Then, the purified enzyme was characterized in detail with respect to its cyclization activity. It is a monomer in solution. Its optimum reaction temperature is 45 °C, and half-lives are approximately 8 h at 40 °C, 1.25 h at 45 °C and 0.5 h at 50 °C. The recombinant α-CGTase has an optimum pH of 5.5 with broad pH stability between pH 6 and 9.5. It is activated by Ca2+, Ba2+, and Zn2+ in a concentration-dependent manner, while it is dramatically inhibited by Hg2+. The kinetics of the α-CGTase-catalyzed cyclization reaction could be fairly well described by the Hill equation.  相似文献   

12.
Peptidylarginine deiminase (PAD), which catalyzes the deimination of the guanidino group from peptidylarginine residues, belongs to a superfamily of guanidino group modifying enzymes that have been shown to produce an S-alkylthiouronium ion intermediate during catalysis. Thiol-directed reagents iodoacetamide and iodoacetate inactivate recombinant PAD, and substrate protects the enzyme from inactivation. Activity measurements together with peptide mapping by mass spectrometry of PAD modified in the absence and presence of substrate demonstrated that cysteine-351 is modified by iodoacetamide. The pKa value of the cysteine residue, 7.7 ± 0.2 as determined by iodoacetamide modification, agrees well with a critical pK value identified in pH rate studies. The role of cysteine-351 in catalysis was tested by site-directed mutagenesis in which the cysteine was replaced with serine to eliminate the proposed nucleophilic interaction. Binding studies carried out using fluorescence spectrometry established the structural integrity of the C351S PAD. However, the C351S PAD variant was catalytically inactive, exhibiting <0.01% wild-type activity. These results indicate that Cys 351 is a nucleophile that initiates the enzymatic reaction.  相似文献   

13.
Human arylamine N-acetyltransferase 1 (NAT1) is a xenobiotic-metabolizing enzyme that biotransforms aromatic amine chemicals. We show here that biologically-relevant concentrations of inorganic (Hg2+) and organic (CH3Hg+) mercury inhibit the biotransformation functions of NAT1. Both compounds react irreversibly with the active-site cysteine of NAT1 (half-maximal inhibitory concentration (IC50) = 250 nM and kinact = 1.4 × 104 M−1 s−1 for Hg2+ and IC50 = 1.4 μM and kinact = 2 × 102 M−1 s−1 for CH3Hg+). Exposure of lung epithelial cells led to the inhibition of cellular NAT1 (IC50 = 3 and 20 μM for Hg2+ and CH3Hg+, respectively). Our data suggest that exposure to mercury may affect the biotransformation of aromatic amines by NAT1.  相似文献   

14.

Background

Phospholipid scramblases are a group of four homologous proteins conserved from C. elegans to human. In human, two members of the scramblase family, hPLSCR1 and hPLSCR3 are known to bring about Ca2+ dependent translocation of phosphatidylserine and cardiolipin respectively during apoptotic processes. However, affinities of Ca2+/Mg2+ binding to human scramblases and conformational changes taking place in them remains unknown.

Methods

In the present study, we analyzed the Ca2+ and Mg2+ binding to the calcium binding motifs of hPLSCR1–4 and hPLSCR1 by spectroscopic methods and isothermal titration calorimetry.

Results

The results in this study show that (i) affinities of the peptides are in the order hPLSCR1  > hPLSCR3 > hPLSCR2 > hPLSCR4 for Ca2+ and in the order hPLSCR1 > hPLSCR2 > hPLSCR3 > hPLSCR4 for Mg2+, (ii) binding of ions brings about conformational change in the secondary structure of the peptides. The affinity of Ca2+ and Mg2+ binding to protein hPLSCR1 was similar to that of the peptide I. A sequence comparison shows the existence of scramblase-like motifs among other protein families.

Conclusions

Based on the above results, we hypothesize that the Ca2+ binding motif of hPLSCR1 is a novel type of Ca2+ binding motif.

General significance

Our findings will be relevant in understanding the calcium dependent scrambling activity of hPLSCRs and their biological function.  相似文献   

15.
TRPM3 has been reported to play an important role in Ca2+ homeostasis, but its gating mechanisms and regulation via Ca2+ are unknown. Ca2+ binding proteins such as calmodulin (CaM) could be probable modulators of this ion channel. We have shown that this protein binds to two independent domains, A35-K124 and H291-G382 on the TRPM3 N-terminus, which contain conserved hydrophobic as well as positively charged residues in specific positions, and that these residues have a crucial impact on its binding. We also showed that another Ca2+ binding protein, S100A1, is able to bind to these regions and that CaM and S100A1 compete for these binding sites on the TRPM3 N-terminus. Moreover, our results suggest that another very important TRP channel activity modulator, PtdIns(4,5)P2, interacts with the CaM/S100A1 binding sites on the TRPM3 N-terminus with high affinity.  相似文献   

16.
In the healthy adult brain microglia, the main immune-competent cells of the CNS, have a distinct (so-called resting or surveying) phenotype. Resting microglia can only be studied in vivo since any isolation of brain tissue inevitably triggers microglial activation. Here we used in vivo two-photon imaging to obtain a first insight into Ca2+ signaling in resting cortical microglia. The majority (80%) of microglial cells showed no spontaneous Ca2+ transients at rest and in conditions of strong neuronal activity. However, they reliably responded with large, generalized Ca2+ transients to damage of an individual neuron. These damage-induced responses had a short latency (0.4-4 s) and were localized to the immediate vicinity of the damaged neuron (< 50 μm cell body-to-cell body distance). They were occluded by the application of ATPγS as well as UDP and 2-MeSADP, the agonists of metabotropic P2Y receptors, and they required Ca2+ release from the intracellular Ca2+ stores. Thus, our in vivo data suggest that microglial Ca2+ signals occur mostly under pathological conditions and identify a Ca2+ store-operated signal, which represents a very sensitive, rapid, and highly localized response of microglial cells to brain damage. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

17.
Extracellular Zn2+ activates the epithelial Na+ channel (ENaC) by relieving Na+ self-inhibition. However, a biphasic Zn2+ dose response was observed, suggesting that Zn2+ has dual effects on the channel (i.e. activating and inhibitory). To investigate the structural basis for this biphasic effect of Zn2+, we examined the effects of mutating the 10 extracellular His residues of mouse γENaC. Four mutations within the finger subdomain (γH193A, γH200A, γH202A, and γH239A) significantly reduced the maximal Zn2+ activation of the channel. Whereas γH193A, γH200A, and γH202A reduced the apparent affinity of the Zn2+ activating site, γH239A diminished Na+ self-inhibition and thus concealed the activating effects of Zn2+. Mutation of a His residue within the palm subdomain (γH88A) abolished the low-affinity Zn2+ inhibitory effect. Based on structural homology with acid-sensing ion channel 1, γAsp516 was predicted to be in close proximity to γHis88. Ala substitution of the residue (γD516A) blunted the inhibitory effect of Zn2+. Our results suggest that external Zn2+ regulates ENaC activity by binding to multiple extracellular sites within the γ-subunit, including (i) a high-affinity stimulatory site within the finger subdomain involving His193, His200, and His202 and (ii) a low-affinity Zn2+ inhibitory site within the palm subdomain that includes His88 and Asp516.  相似文献   

18.
S100B is a homodimeric zinc-, copper-, and calcium-binding protein of the family of EF-hand S100 proteins. Zn2+ binding to S100B increases its affinity towards Ca2+ as well as towards target peptides and proteins. Cu2+ and Zn2+ bind presumably to the same site in S100B. We determined the structures of human Zn2+- and Ca2+-loaded S100B at pH 6.5, pH 9, and pH 10 by X-ray crystallography at 1.5, 1.4, and 1.65 Å resolution, respectively. Two Zn2+ ions are coordinated tetrahedrally at the dimer interface by His and Glu residues from both subunits. The crystal structures revealed that ligand swapping occurs for one of the four ligands in the Zn2+-binding sites. Whereas at pH 9, the Zn2+ ions are coordinated by His15, His25, His 85′, and His 90′, at pH 6.5 and pH 10, His90′ is replaced by Glu89′. The results document that the Zn2+-binding sites are flexible to accommodate other metal ions such as Cu2+. Moreover, we characterized the structural changes upon Zn2+ binding, which might lead to increased affinity towards Ca2+ as well as towards target proteins. We observed that in Zn2+-Ca2+-loaded S100B the C-termini of helix IV adopt a distinct conformation. Zn2+ binding induces a repositioning of residues Phe87 and Phe88, which are involved in target protein binding. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

19.
N-(p-amylcinnamoyl)anthranilic acid (ACA), a phospholipase A2 (PLA2) inhibitor, is structurally-related to non-steroidal anti-inflammatory drugs (NSAIDs) of the fenamate group and may also modulate various ion channels. We used the whole-cell, patch-clamp technique at room temperature to investigate the effects of ACA on the Ca2+-activated chloride current (ICl(Ca)) and other chloride currents in isolated pig cardiac ventricular myocytes. ACA reversibly inhibited ICl(Ca) in a concentration-dependent manner (IC50 = 4.2 μM, nHill = 1.1), without affecting the L-type Ca2+ current. Unlike ACA, the non-selective PLA2 inhibitor bromophenacyl bromide (BPB; 50 μM) had no effect on ICl(Ca). In addition, the analgesic NSAID structurally-related to ACA, diclofenac (50 μM) also had no effect on ICl(Ca), whereas the current in the same cells could be suppressed by chloride channel blockers flufenamic acid (FFA; 100 μM) or 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS;100 μM). Besides ICl(Ca), ACA (50 μM) also suppressed the cAMP-activated chloride current, but to a lesser extent. It is proposed that the inhibitory effects of ACA on ICl(Ca) are PLA2-independent and that the drug may serve as a useful tool in understanding the nature and function of cardiac anion channels.  相似文献   

20.
Annexin A2 (AnxA2) is a Ca2+- and phospholipid-binding protein involved in many cellular regulatory processes. Like other annexins, it is constituted by two domains: a conserved core, containing the Ca2+ binding sites, and a variable N-terminal segment, containing sites for interactions with other protein partners like S100A10 (p11). A wealth of data exists on the structure and dynamics of the core, but little is known about the N-terminal domain especially in the Ca2+-induced membrane-bridging process. To investigate this protein region in the monomeric AnxA2 and in the heterotetramer (AnxA2-p11)2, the reactive Cys8 residue was specifically labelled with the fluorescent probe acrylodan and the interactions with membranes were studied by steady-state and time-resolved fluorescence. In membrane junctions formed by the (AnxA2-p11)2 heterotetramer, the flexibility of the N-terminal domain increased as compared to the protein in solution. In “homotypic” membrane junctions formed by monomeric AnxA2, acrylodan moved to a more hydrophobic environment than in the protein in solution and the flexibility of the N-terminal domain also increased. In these junctions, this domain is probably not in close contact with the membrane surface, as suggested by the weak quenching of acrylodan observed with doxyl-PCs, but pairs of N-termini likely interact, as revealed by the excimer-forming probe pyrene-maleimide bound to Cys8. We present a model of monomeric AnxA2 N-terminal domain organization in “homotypic” bridged membranes in the presence of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号