首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
During ribosomal RNA (rRNA) maturation, cleavages at defined sites separate the mature rRNAs from spacer regions, but the identities of several enzymes required for 18S rRNA release remain unknown. PilT N-terminus (PIN) domain proteins are frequently endonucleases and the PIN domain protein Utp24 is essential for early cleavages at three pre-rRNA sites in yeast (A0, A1 and A2) and humans (A0, 1 and 2a). In yeast, A1 is cleaved prior to A2 and both cleavages require base-pairing by the U3 snoRNA to the central pseudoknot elements of the 18S rRNA. We found that yeast Utp24 UV-crosslinked in vivo to U3 and the pseudoknot, placing Utp24 close to cleavage at site A1. Yeast and human Utp24 proteins exhibited in vitro endonuclease activity on an RNA substrate containing yeast site A2. Moreover, an intact PIN domain in human UTP24 was required for accurate cleavages at sites 1 and 2a in vivo, whereas mutation of another potential site 2a endonuclease, RCL1, did not affect 18S production. We propose that Utp24 cleaves sites A1/1 and A2/2a in yeast and human cells.  相似文献   

2.
In Schizosaccharomyces pombe, interdependency between steps in the processing of the rRNAs is mediated by a large protein complex (RAC) which interacts with the non-conserved transcribed spacers. The RAC complex exhibits no nuclease activity but dramatically alters the efficiency and specificity of Pac1 nuclease cleavage, leading to the removal of the 3′ external transcribed spacers (3′ETS) in the maturation of the 3′ETS region. In this study modification exclusion and S1 nuclease were used to probe the RAC protein binding site and any subsequent structural changes in the maturing region. The results indicate that, as previously observed with the ITS1 and ITS2 regions, the upper helical region in the highly conserved extended terminal hairpin constitutes a protein binding site. In turn, this interaction induces a conformational change which affords access to nuclease at the 3′-end of the maturing 25S rRNA sequence.  相似文献   

3.
4.
Many RNA nucleases and helicases participate in ribosome biogenesis, but how they cooperate with each other is largely unknown. Here we report that in vivo cleavage of the yeast pre-rRNA at site D, the 3′-end of the 18 S rRNA, requires functional interactions between PIN (PilT N terminus) domain protein Nob1 and the DEAH box RNA helicase Prp43. Nob1 showed specific cleavage on a D-site substrate analogue in vitro, which was abolished by mutations in the Nob1 PIN domain or the RNA substrate. Genetic analyses linked Nob1 to the late pre-40 S-associated factor Ltv1, the RNA helicase Prp43, and its cofactor Pfa1. In strains lacking Ltv1, mutation of Prp43 or Pfa1 led to a striking accumulation of 20 S pre-rRNA in the cytoplasm due to inhibition of site D cleavage. This phenotype was suppressed by increased dosage of wild-type Nob1 but not by Nob1 variants mutated in the catalytic site. In ltv1/pfa1 mutants the 20 S pre-rRNA was susceptible to 3′ to 5′ degradation by the cytoplasmic exosome. This degraded into the 3′ region of the 18 S rRNA, strongly indicating that the preribosomes are structurally defective.  相似文献   

5.
Ribosomal protein S4 binds and stabilizes a five-helix junction or five-way junction (5WJ) in the 5′ domain of 16S ribosomal RNA (rRNA) and is one of two proteins responsible for nucleating 30S ribosome assembly. Upon binding, both protein S4 and 5WJ reorganize their structures. We show that labile S4 complexes rearrange into stable complexes within a few minutes at 42 °C, with longer coincubation leading to an increased population of stable complexes. In contrast, prefolding the rRNA has a smaller effect on stable S4 binding. Experiments with minimal rRNA fragments show that this structural change depends only on 16S residues within the S4 binding site. SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) chemical probing experiments showed that S4 strongly stabilizes 5WJ and the helix (H) 18 pseudoknot, which become tightly folded within the first minute of S4 binding. However, a kink in H16 that makes specific contacts with the S4 N-terminal extension, as well as a right-angle motif between H3, H4, and H18, requires a minute or more to become fully structured. Surprisingly, S4 structurally reorganizes the 530-loop and increases the flexibility of H3, which is proposed to undergo a conformational switch during 30S assembly. These elements of the S4 binding site may require other 30S proteins to reach a stable conformation.  相似文献   

6.
Secondary structure mapping in the electron microscope was applied to ribosomal RNA and precusor ribosomal RNA molecules isolated from nucleoli and the cytoplasm of mouse L-cells. Highly reproducible loop patterns were observed in these molecules. The polarity of L-cell rRNA was determined by partial digestion with 3′-exonuclease. The 28 S region is located at the 5′-end of the 45 S rRNA precursor. Together with earlier experiments on labeling kinetics, these observations established a processing pathway for L-cell rRNA. The 45 S rRNA precursor is cleaved at the 3′-end of the 18 S RNA sequence to produce a 41 S molecule and a spacer-containing fragment (24 S RNA). The 41 S rRNA is cleaved forming mature 18 S rRNA and a 36 S molecule. The 36 S molecule is processed through a 32 S intermediate to the mature 28 S rRNA. This pathway is similar to that found in HeLa cells, except that in L-cells a 36 S molecule occurs in the major pathway and no 20 S precusor to 18 S RNA is found. The processing pathway and its intermediates in L-cells are analogous to those in Xenopus laevis, except for a considerable size difference in all rRNAs except 18 S rRNA.The arrangement of gene and transcribed spacer regions and of secondary structure loops, as well as the shape of the major loops were compared in L-cells, HeLa cell and Xenopus rRNA. The over-all arrangement of regions and loop patterns is very similar in the RNA from these three organisms. The shapes of loops in mature 28 S RNA are also highly conserved in evolution, but the shapes of loops in the transcribed spacer regions vary greatly. These observations suggest that the sequence complementarity that gives rise to this highly conserved secondary structure pattern may have some functional importance.  相似文献   

7.
Ramakanth Madhugiri 《FEBS letters》2009,583(14):2339-2342
Sinorhizobium meliloti harbours genes encoding orthologs of ribonuclease (RNase) E and RNase J, the principle endoribonucleases in Escherichia coli and Bacillus subtilis, respectively. To analyse the role of RNase J in S. meliloti, RNA from a mutant with miniTn5-insertion in the RNase J-encoding gene was compared to the wild-type and a difference in the length of the 5.8S-like ribosomal RNA (rRNA) was observed. Complementation of the mutant, Northern blotting and primer extension revealed that RNase J is necessary for the 5′-end maturation of 16S rRNA and of the two 23S rRNA fragments, but not of 5S rRNA.  相似文献   

8.
Pathways for the maturation of ribosomal RNAs are complex with numerous intermediate cleavage sites that are not always conserved closely in the course of evolution. Both in eukaryotes and bacteria genetic analyses and in vitro studies have strongly implicated RNase III-like enzymes in the processing of rRNA precursors. In Schizosacharomyces pombe, for example, the RNase III-like Pac1 nuclease has been shown to cleave the free 3′ETS at two known intermediate sites but, in the presence of RAC protein, the same RNA also is cleaved at the 3′-end of the 25 S rRNA sequence. In this study normal and mutant 3′ETS sequences were digested with the Pac1 enzyme to further evaluate its role in rRNA processing. Accurate cleavage at the known intermediate processing sites was dependent on the integrity of the helical structure at these sites as well as a more distal upper stem region in the conserved extended hairpin structure of the 3′ETS. The cleavage of mutant 3′ETS sequences also generally correlated with the known effects of these mutations on rRNA production, in vivo. One mutant, however, was efficiently processed in vivo but was not a substrate for the Pac1 nuclease, in vitro. In contrast, in the presence of RAC protein, the same RNA remained susceptible to Pac1 nuclease cleavage at the 3′-end of the 25 rRNA sequence, indicating that the removal of the 3′ETS does not require cleavage at the intermediate sites. These results suggest that basic maturation pathways may be less complex than previously reported raising similar questions about other intermediate processing sites, which have been identified by analyses of termini, and/or processing, in vitro.  相似文献   

9.
A late-acting quality control process for mature eukaryotic rRNAs   总被引:1,自引:0,他引:1  
Ribosome biogenesis is a multifaceted process involving a host of trans-acting factors mediating numerous chemical reactions, RNA conformational changes, and RNA-protein associations. Given this high degree of complexity, tight quality control is likely crucial to ensure structural and functional integrity of the end products. We demonstrate that ribosomal RNAs (rRNAs) containing individual point mutations, in either the 25S peptidyl transferase center or 18S decoding site, that adversely affect ribosome function are strongly downregulated in Saccharomyces cerevisiae. This downregulation occurs via decreased stability of the mature rRNA contained in fully assembled ribosomes and ribosomal subunits. Thus, eukaryotes possess a quality-control mechanism, nonfunctional rRNA decay (NRD), capable of detecting and eliminating the rRNA component of mature ribosomes.  相似文献   

10.
Precursor and mature ribosomal RNA molecules from Xenopus laevis were examined by electron microscopy. A reproducible arrangement of hairpin loops was observed in these molecules. Maps based on this secondary structure were used to determine the arrangement of sequences in precursor RNA molecules and to identify the position of mature rRNAs within the precursors. A processing scheme was derived in which the 40 S rRNA is cleaved to 38 S RNA, which then yields 34 S plus 18 S RNA. The 34 S RNA is processed to 30 S, and finally to 28 S rRNA. The pathway is analogous to that of L-cell rRNA but differs from HeLa rRNA in that no 20 S rRNA intermediate was found. X. laevis 40 S rRNA (Mr = 2.7 × 106) is much smaller than HeLa or L-cell 45 8 rRNA (Mr = 4.7 × 106), but the arrangement of mature rRNA sequences in all precursors is very similar. Experiments with ascites cell 3′-exonuclease show that the 28 S region is located at or close to the 5′-end of the 40 S rRNA.Secondary structure maps were obtained also for single-stranded molecules of ribosomal DNA. The region in the DNA coding for the 40 S rRNA could be identified by its regular structure, which closely resembles that of the RNA. Regions corresponding to the 40 S RNA gene alternate with non-transcribed spacer regions along strands of rDNA. The latter have a large amount of irregular secondary structure and vary in length between different repeating units. A detailed map of the rDNA repeating unit was derived from these experiments.Optical melting studies are presented, showing that rRNAs with a high (G + C) content exhibit significant hypochromicity in the formamide/urea-containing solution that was used for spreading.  相似文献   

11.
12.
During the last step in 40S ribosome subunit biogenesis, the PIN-domain endonuclease Nob1 cleaves the 20S pre-rRNA at site D, to form the mature 18S rRNAs. Here we report that cleavage occurs in particles that have largely been stripped of previously characterized pre-40S components, but retain the endonuclease Nob1, its binding partner Pno1 (Dim2) and the atypical ATPase Rio1. Within the Rio1-associated pre-40S particles, in vitro pre-rRNA cleavage was strongly stimulated by ATP and required nucleotide binding by Rio1. In vivo binding sites for Rio1, Pno1 and Nob1 were mapped by UV cross-linking in actively growing cells. Nob1 and Pno1 bind overlapping regions within the internal transcribed spacer 1, and both bind directly over cleavage site D. Binding sites for Rio1 were within the core of the 18S rRNA, overlapping tRNA interaction sites and distinct from the related kinase Rio2. Site D cleavage occurs within pre-40S-60S complexes and Rio1-associated particles efficiently assemble into these complexes, whereas Pno1 appeared to be depleted relative to Nob1. We speculate that Rio1-mediated dissociation of Pno1 from cleavage site D is the trigger for final 18S rRNA maturation.  相似文献   

13.
Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.  相似文献   

14.
Assembly of bacterial 30S ribosomal subunits requires structural rearrangements to both its 16S rRNA and ribosomal protein components. Ribosomal protein S4 nucleates 30S assembly and associates rapidly with the 5′ domain of the 16S rRNA. In vitro, transformation of initial S4–rRNA complexes to long-lived, mature complexes involves refolding of 16S helix 18, which forms part of the decoding center. Here we use targeted mutagenesis of Geobacillus stearothermophilus S4 to show that remodeling of S4–rRNA complexes is perturbed by ram alleles associated with reduced translational accuracy. Gel mobility shift assays, SHAPE chemical probing, and in vivo complementation show that the S4 N-terminal extension is required for RNA binding and viability. Alanine substitutions in Y47 and L51 that interact with 16S helix 18 decrease S4 affinity and destabilize the helix 18 pseudoknot. These changes to the protein–RNA interface correlate with no growth (L51A) or cold-sensitive growth, 30S assembly defects, and accumulation of 17S pre-rRNA (Y47A). A third mutation, R200A, over-stabilizes the helix 18 pseudoknot yet results in temperature-sensitive growth, indicating that complex stability is finely tuned by natural selection. Our results show that early S4–RNA interactions guide rRNA folding and impact late steps of 30S assembly.  相似文献   

15.
Summary The mobilization of newly synthesized 18S and 28S rRNAs, 4S RNA and poly(A)+ RNA into polysomes was studied in isolated cells ofXenopus laevis embryos between cleavage and neurula stages. Throughout these stages, 4S RNA and poly(A)+ RNA were mobilized immediately following their appearance in the cytoplasm. 18S rRNA however, stayed in the ribosomal subunit fraction for about 30 min until the 28S rRNA appeared, when the two rRNAs were mobilized together at an equimolar ratio. This mobilization, at a 1:1 molar ratio, appeared to be realized at initiation monome formation. Thus, the efficiency of the mobilization of two newly synthesized rRNAs, shortly after their arrival at the cytoplasm, differed considerably but difference disappeared once steady state was reached.The contribution of newly synthesized 18S and 28S rRNAs to polysomes remains small throughout early development. around 3% of newly synthesized 4S RNA is polysomal which is the same distribution observed for unlabeled 4S RNA. Less than 10% of the newly synthesized cytoplasmic poly(A)+ RNA was mobilized into polysomes during cleavage, but in later stages the proportion increased to around 20%–25%. These results show that newly synthesized RNAs are utilized for protein synthesis at characteristic rates soon after they are synthesized during early embryonic development. On the basis of the data presented here and elsewhere we discuss quantitative aspects of the utilization of newly synthesized and maternal RNAs during early embryogenesis.  相似文献   

16.
Ribosomal RNA undergoes various modifications to optimize ribosomal structure and expand the topological potential of RNA. The most common nucleotide modifications in ribosomal RNA (rRNA) are pseudouridylations and 2′-O methylations (Nm), performed by H/ACA box snoRNAs and C/D box snoRNAs, respectively. Furthermore, rRNAs of both ribosomal subunits also contain various base modifications, which are catalysed by specific enzymes. These modifications cluster in highly conserved areas of the ribosome. Although most enzymes catalysing 18S rRNA base modifications have been identified, little is known about the 25S rRNA base modifications. The m1A modification at position 645 in Helix 25.1 is highly conserved in eukaryotes. Helix formation in this region of the 25S rRNA might be a prerequisite for a correct topological framework for 5.8S rRNA to interact with 25S rRNA. Surprisingly, we have identified ribosomal RNA processing protein 8 (Rrp8), a nucleolar Rossman-fold like methyltransferase, to carry out the m1A base modification at position 645, although Rrp8 was previously shown to be involved in A2 cleavage and 40S biogenesis. In addition, we were able to identify specific point mutations in Rrp8, which show that a reduced S-adenosyl-methionine binding influences the quality of the 60S subunit. This highlights the dual functionality of Rrp8 in the biogenesis of both subunits.  相似文献   

17.
The chloroplast ribosomal unit of Chlamydomonas reinhardii displays two features which are not shared by other chloroplast ribosomal units. These include the presence of an intron in the 23 S ribosomal RNA gene and of two small genes coding for 3 S and 7 S rRNA in the spacer between the 16 S and 23 S rRNA genes (Rochaix & Malnoë, 1978). Sequencing of the 7 S and 3 S rRNAs as well as their genes and neighbouring regions has shown that: (1) the 7 S and 3 S rRNA genes are 282 and 47 base-pairs long, respectively, and are separated by a 23 base-pair A + T-rich spacer. (2) A sequence microheterogeneity exists within the 3 S RNA genes. (3) The sequences of the 7 S and 3 S rRNAs are homologous to the 5′ termini of prokaryotic and other chloroplast 23 S rRNAs, indicating that the C. reinhardii counterparts of 23 S rRNA have a composite structure. (4) The sequences of the 7 S and 3 S rRNAs are related to that of cytoplasmic 5.8 S rRNA, suggesting that these RNAs may perform similar functions in the ribosome. (5) Partial nucleotide sequence complementarity is observed between the 5′ ends of the 7 S and 3 S RNAs on one hand and the 23 S rRNA sequences which flank the ribosomal intron on the other. These data are compatible with the idea that these small rRNAs may play a role in the processing of the 23 S rRNA precursor.  相似文献   

18.
RNA helicases of the DEAD box family are involved in almost all cellular processes involving RNA molecules. Here we describe functional characterization of the yeast RNA helicase Dbp8p (YHR169w). Our results show that Dbp8p is an essential nucleolar protein required for biogenesis of the small ribosomal subunit. In vivo depletion of Dbp8p resulted in a ribosomal subunit imbalance due to a deficit in 40S ribosomal subunits. Subsequent analyses of pre-rRNA processing by pulse–chase labeling, northern hybridization and primer extension revealed that the early steps of cleavage of the 35S precursor at sites A1 and A2 are inhibited and delayed at site A0. Synthesis of 18S rRNA, the RNA moiety of the 40S subunit, is thereby blocked in the absence of Dbp8p. The involvement of Dbp8p as a bona fide RNA helicase in ribosome biogenesis is strongly supported by the loss of Dbp8p in vivo function obtained by site-directed mutagenesis of some conserved motifs carrying the enzymatic properties of the protein family.  相似文献   

19.
Maiväli  Ü.  Saarma  U.  Remme  J. 《Molecular Biology》2001,35(4):569-574
We have studied in vivothe phenotypes of 23S rRNA mutations G2582A, G2582U, G2583C, and U2584C, which are located at the A site of Escherichia coli50S ribosomal subunit. All mutant rRNAs incorporated into 50S ribosomal subunits. Upon sucrose gradient fractionation of cell lysates, 23S rRNAs mutated at G2582 to A and G2583 to C accumulated in the 50S and 70S fractions and were underrepresented in the polysome fraction. Induction of 23S rRNAs mutated at G2582 and G2583 lead to a drastic reduction in cell growth. In addition, mutations G2582A and G2583C reduced to one-third the total protein synthesis but not the RNA synthesis. Finally, we show that 23S rRNA mutations G2582A, G2582U, and G2583C cause a significant increase in peptidyl-tRNA drop-off from ribosomes, thereby reducing translational processivity. The results clearly show that tRNA–23S rRNA interaction has an essential role in maintaining the processivity of translation.  相似文献   

20.
In eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3. An active site mutant of Dhr1 blocked release of U3 from the pre-ribosome, thereby trapping a pre-40S particle. This particle had not yet achieved its mature structure because it contained U3, pre-rRNA, and a number of early-acting ribosome synthesis factors but noticeably lacked ribosomal proteins (r-proteins) that surround the CPK. Dhr1 was cross-linked in vivo to the pre-rRNA and to U3 sequences flanking regions that base-pair to the pre-rRNA including those that form the CPK. Point mutations in the box A region of U3 suppressed a cold-sensitive mutation of Dhr1, strongly indicating that U3 is an in vivo substrate of Dhr1. To support the conclusions derived from in vivo analysis we showed that Dhr1 unwinds U3-18S duplexes in vitro by using a mechanism reminiscent of DEAD box proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号