首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Nephrin is a key molecule in podocytes to maintain normal slit diaphragm structure. Nephin interacts with many other podocyte and slit diaphragm protein and also mediates important cell signaling pathways in podocytes. Loss of nephrin during the development leads to the congenital nephrotic syndrome in children. Reduction of nephrin expression is often observed in adult kidney diseases including diabetic nephropathy and HIV-associated nephropathy. The critical role of nephrin has been confirmed by different animal models with nephrin knockout and knockdown. Recent studies demonstrate that knockdown of nephrin expression in adult mice aggravates the progression of unilateral nephrectomy and Adriamycin-induced kidney disease. In addition to its critical role in maintaining normal glomerular filtration unit in the kidney, nephrin is also expressed in other organs. However, the exact role of nephrin in kidney and extra-renal organs has not been well characterized. Future studies are required to determine whether nephrin could be developed as a drug target to treat patients with kidney disease.  相似文献   

2.
The kidney filtration barrier consists of the capillary endothelium, the glomerular basement membrane and the slit diaphragm localized between foot processes of neighbouring podocytes. We report that collagen XVII, a transmembrane molecule known to be required for epithelial adhesion, is expressed in podocytes of normal human and mouse kidneys and in endothelial cells of the glomerular filtration barrier. Immunoelectron microscopy has revealed that collagen XVII is localized in foot processes of podocytes and in the glomerular basement membrane. Its role in kidney has been analysed in knockout mice, which survive to birth but have high neonatal mortality and skin blistering and structural abnormalities in their glomeruli. Morphometric analysis has shown increases in glomerular volume fraction and surface densities of knockout kidneys, indicating an increased glomerular amount in the cortex. Collagen XVII deficiency causes effacement of podocyte foot processes; however, major slit diaphragm disruptions have not been detected. The glomerular basement membrane is split in areas in which glomerular and endothelial basement membranes meet. Differences in the expression of collagen IV, integrins α3 or β1, laminin α5 and nephrin have not been observed in mutant mice compared with controls. We propose that collagen XVII has a function in the attachment of podocyte foot processes to the glomerular basement membrane. It probably contributes to podocyte maturation and might have a role in glomerular filtration.  相似文献   

3.
Kidney podocytes are highly specialized terminally differentiated cells that form the final barrier to urinary protein loss. Podocytes are a target for injury by metabolic, autoimmune, hereditary, inflammatory, and other stressors. Persistence of podocyte injury leads to podocyte death and loss, which results in progressive kidney damage and ultimately kidney failure. Dendrin is a dual compartment protein with proapoptotic signaling properties. Nuclear relocation of dendrin in response to glomerular injury promotes podocyte apoptosis. Here we show that Yes-associated protein (YAP), a downstream target of Hippo kinases and an inhibitor of apoptosis, is expressed in the nucleus of podocytes. The WW domains of YAP mediate the interaction with the PPXY motifs of dendrin. This interaction is functionally relevant because YAP binding to dendrin reduces dendrin-dependent, staurosporine-induced apoptosis in co-transfected HEK293 cells. Moreover gene silencing of YAP in podocytes increases adriamycin-induced podocyte apoptosis. It also increases staurosporine-induced caspase-3/7 activity, which is rescued by dendrin depletion in YAP knockdown cells. Our findings elucidate YAP binding to dendrin as a prosurvival mechanism. The antiapoptotic signaling properties of YAP in podocytes could hold significance in the quest for targeted therapeutics aimed at preventing podocyte loss.  相似文献   

4.
In most forms of glomerular diseases, loss of size selectivity by the kidney filtration barrier is associated with changes in the morphology of podocytes. The kidney filtration barrier is comprised of the endothelial lining, the glomerular basement membrane, and the podocyte intercellular junction, or slit diaphragm. The cell adhesion proteins nephrin and neph1 localize to the slit diaphragm and transduce signals in a Src family kinase Fyn-mediated tyrosine phosphorylation-dependent manner. Studies in cell culture suggest nephrin phosphorylation-dependent signaling events are primarily involved in regulation of actin dynamics and lamellipodium formation. Nephrin phosphorylation is a proximal event that occurs both during development and following podocyte injury. We hypothesized that abrogation of nephrin phosphorylation following injury would prevent nephrin-dependent actin remodeling and foot process morphological changes. Utilizing a biased screening approach, we found nonreceptor Src homology 2 (sh2) domain-containing phosphatase Shp2 to be associated with phosphorylated nephrin. We observed an increase in nephrin tyrosine phosphorylation in the presence of Shp2 in cell culture studies. In the human glomerulopathies minimal-change nephrosis and membranous nephropathy, there is an increase in Shp2 phosphorylation, a marker of increased Shp2 activity. Mouse podocytes lacking Shp2 do not develop foot process spreading when subjected to podocyte injury in vivo using protamine sulfate or nephrotoxic serum (NTS). In the NTS model, we observed a lack of foot process spreading in mouse podocytes with Shp2 deleted and smaller amounts of proteinuria. Taken together, these results suggest that Shp2-dependent signaling events are necessary for changes in foot process structure and function following injury.  相似文献   

5.
MAGI-1 is a multidomain cytosolic scaffolding protein that in the kidney is specifically located at the podocyte slit diaphragm, a specialized junction that is universally injured in proteinuric diseases. There it interacts with several essential molecules, including nephrin and neph1, which are required for slit diaphragm formation and as an intracellular signaling hub. Here, we show that diminished MAGI-1 expression in cultured podocytes reduced nephrin and neph1 membrane localization and weakened tight junction integrity. Global magi1 knock-out mice, however, demonstrated normal glomerular histology and function into adulthood. We hypothesized that a second mild but complementary genetic insult might induce glomerular disease susceptibility in these mice. To identify such a gene, we utilized the developing fly eye to test for functional complementation between MAGI and its binding partners. In this way, we identified diminished expression of fly Hibris (nephrin) or Roughest (neph1) as dramatically exacerbating the effects of MAGI depletion. Indeed, when these combinations were studied in mice, the addition of nephrin, but not neph1, heterozygosity to homozygous deletion of MAGI-1 resulted in spontaneous glomerulosclerosis. In cultured podocytes, MAGI-1 depletion reduced intercellular contact-induced Rap1 activation, a pathway critical for proper podocyte function. Similarly, magi1 knock-out mice showed diminished glomerular Rap1 activation, an effect dramatically enhanced by concomitant nephrin haploinsufficiency. Finally, combined overexpression of MAGI-1 and nephrin increased Rap1 activation, but not when substituting a mutant MAGI-1 that cannot bind nephrin. We conclude that the interaction between nephrin and MAGI-1 regulates Rap1 activation in podocytes to maintain long term slit diaphragm structure.  相似文献   

6.
Nephrin--a unique structural and signaling protein of the kidney filter   总被引:4,自引:0,他引:4  
Since the discovery of nephrin, the first integral component of the slit diaphragm to be identified, the podocyte slit pore has become a major focus in research concerning the glomerular filtration barrier. Nephrin is a central component of the glomerular ultrafilter, with both structural and signaling functions. The extracellular domain of nephrin and other components of the slit diaphragm seem to form a porous molecular sieve. The intracellular domain of nephrin is associated with linker proteins, such as CD2-associated protein and Nck proteins that can connect nephrin to the actin cytoskeleton. Alterations in nephrin interactions with other proteins during development or injury can lead to complex signaling reactions aimed at establishing or restoring the filter function.  相似文献   

7.
Podocytes are specialized epithelial cells covering the basement membrane of the glomerulus in the kidney. The molecular mechanisms underlying the role of podocytes in glomerular filtration are still largely unknown. We generated podocin-deficient (Nphs2-/-) mice to investigate the function of podocin, a protein expressed at the insertion of the slit diaphragm in podocytes and defective in a subset of patients with steroid-resistant nephrotic syndrome and focal and segmental glomerulosclerosis. Nphs2-/- mice developed proteinuria during the antenatal period and died a few days after birth from renal failure caused by massive mesangial sclerosis. Electron microscopy revealed the extensive fusion of podocyte foot processes and the lack of a slit diaphragm in the remaining foot process junctions. Using real-time PCR and immunolabeling, we showed that the expression of other slit diaphragm components was modified in Nphs2-/- kidneys: the expression of the nephrin gene was downregulated, whereas that of the ZO1 and CD2AP genes appeared to be upregulated. Interestingly, the progression of the renal disease, as well as the presence or absence of renal vascular lesions, depends on the genetic background. Our data demonstrate the crucial role of podocin in the establishment of the glomerular filtration barrier and provide a suitable model for mapping and identifying modifier genes involved in glomerular diseases caused by podocyte injuries.  相似文献   

8.
IQGAP1 is a scaffold protein that interacts with proteins of the cytoskeleton and the intercellular adhesion complex. In podocytes, IQGAP1 is associated with nephrin in the glomerular slit diaphragm (SD) complex, but its role remains ill-defined. In this work, we investigated the interaction of IQGAP1 with the cytoskeleton and SD proteins in podocytes in culture, and its role in podocyte migration and permeability. Expression, localization, and interactions between IQGAP1 and SD or cytoskeletal proteins were determined in cultured human podocytes by Western blot (WB), immunocytolocalization (IC), immunoprecipitation (IP), and In situ Proximity Ligation assay (IsPL). Involvement of IQGAP1 in migration and permeability was also assessed. IQGAP1 expression in normal kidney biopsies was studied by immunohistochemistry. IQGAP1 expression by podocytes increased during their in vitro differentiation. IC, IP, and IsPL experiments showed colocalizations and/or interactions between IQGAP1 and SD proteins (nephrin, MAGI-1, CD2AP, NCK 1/2, podocin), podocalyxin, and cytoskeletal proteins (α-actinin-4). IQGAP1 silencing decreased podocyte migration and increased the permeability of a podocyte layer. Immunohistochemistry on normal human kidney confirmed IQGAP1 expression in podocytes and distal tubular epithelial cells and also showed an expression in glomerular parietal epithelial cells. In summary, our results suggest that IQGAP1, through its interaction with components of SD and cytoskeletal proteins, is involved in podocyte barrier properties.  相似文献   

9.
Renal podocytes form the main filtration barrier possessing unique phenotype maintained by proteins including podocalyxin and nephrin, which are modulated in pathological conditions. In diabetic nephropathy (DN), podocytes become structurally and functionally compromised. Nephrin, a structural backbone protein of the slit diaphragm, acts as regulator of podocyte intracellular signalling with renoprotective role. Vitamin D3 through its receptor, VDR, provides renal protection in DN but limited data exist about its effect on podocytes. In this study, we used isolated rat glomeruli to assess podocalyxin and nephrin expression after treatment with the 1,25‐dihydroxyvitamin D3 analogue paricalcitol in the presence of normal and diabetic glucose levels. The role of 1,25‐dihydroxyvitamin D3 (calcitriol) and its analogue, paricalcitol, on podocyte morphology and survival was also investigated in the streptozotocin (STZ)‐diabetic animal model. In our ex vivo model, glomeruli exhibited high glucose‐mediated down‐regulation of podocalyxin, and nephrin, while paricalcitol reversed the high glucose‐induced decrease of nephrin and podocalyxin expression. Paricalcitol treatment enhanced VDR expression and promoted VDR and RXR co‐localization in the nucleus. Our data also indicated that hyperglycaemia impaired survival of cultured glomeruli and suggested that the implemented nephrin down‐regulation was reversed by paricalcitol treatment, initiating Akt signal transduction which may be involved in glomerular survival. Our findings were further verified in vivo, as in the STZ‐diabetic animal model, calcitriol and paricalcitol treatment resulted in significant amelioration of hyperglycaemia and restoration of nephrin signalling, suggesting that calcitriol and paricalcitol may provide molecular bases for protection against loss of the permselective renal barrier in DN.  相似文献   

10.
Podocytes are dynamic polarized cells that lie on the surface of glomerular capillaries and comprise an essential component of the glomerular filtration barrier. Podocytes are affected in the earliest stages of diabetic nephropathy and insulin signaling to podocytes is essential for normal glomerular function. Large-conductance Ca(2+)-activated K(+) channels (BK(Ca) channels) encoded by the Slo1 gene are expressed in podocytes in a complex with multiple glomerular slit diaphragm proteins including nephrin, TRPC6 channels, and several different actin-binding proteins. Here we show that insulin increases cell surface expression of podocyte BK(Ca) channels, which is accompanied by a corresponding increase in the density of current flowing through these channels. Insulin stimulation of BK(Ca) channels was detectable in 15 min and required activation of both Erk and Akt signaling cascades. Exposure to high glucose (36.1 mM) for 24 h caused a marked reduction in the steady-state surface expression of BK(Ca) channels as well as of the slit diaphragm signaling molecule nephrin. High glucose treatment also abolished the stimulatory effects of insulin on BK(Ca) current density, although insulin continued to increase phosphorylation of Erk and Akt under those conditions. Therefore, in contrast to most other cell types, high glucose abrogates the effects of insulin in podocytes at relatively distal steps in its signaling pathway. Insulin stimulation of BK(Ca) channels in podocytes may prepare podocytes to adapt to changes in pressure gradients that occur during postprandial hyperfiltration.  相似文献   

11.
Podocytes cover the glomerulus and their adjacent foot processes form a principal barrier called the slit diaphragm. Podocyte dysfunctions, including podocyte loss and slit diaphragm disruptions, induce chronic kidney diseases (CKD). In this study, we analyzed the correlations between podocyte injuries and renal dysfunctions in domestic carnivores. Dogs and cats were divided into normal and CKD groups according to renal histopathology and plasma creatinine values. Immunostaining results showed that linear reactions of slit diaphragm molecules, e.g., nephrin, podocin, and ACTN4, were parallel to glomerular capillaries in all animals. However, in dogs, reactions of nephrin and ACTN4 were changed to a granular pattern in the CKD group, and their intensities significantly decreased with the number of podocytes in the glomerulus. Moreover, the expression of nephrin and ACTN4 negatively correlated with creatinine. Real-time PCR analysis showed that nephrin mRNA expression in the kidneys of CKD dogs was significantly lower than that in normal animals, and negatively correlated with creatinine. Although no significant correlation between renal dysfunction and podocyte injury was detected in cats, histoplanimetric scores of tubulointerstitial lesions in CKD cats were higher than those in both normal cats and diseased dogs. Furthermore, mRNAs of WT1 and SD molecules were detected in urine from CKD animals. In conclusion, podocyte injuries such as podocytopenia and decreased expression of nephrin and ACTN4 in the glomerulus were more strongly correlated with renal dysfunction in dogs than in cats. These findings suggest that the CKD pathogenesis, especially susceptibilities to podocyte injuries, differed between dogs and cats.  相似文献   

12.
Podocytes are specialized cells of the kidney that form the blood filtration barrier in the kidney glomerulus. The barrier function of podocytes depends upon the development of specialized cell-cell adhesion complexes called slit-diaphragms that form between podocyte foot processes surrounding glomerular blood vessels. Failure of the slit-diaphragm to form results in leakage of high molecular weight proteins into the blood filtrate and urine, a condition called proteinuria. In this work, we test whether the zebrafish pronephros can be used as an assay system for the development of glomerular function with the goal of identifying novel components of the slit-diaphragm. We first characterized the function of the zebrafish homolog of Nephrin, the disease gene associated with the congenital nephritic syndrome of the Finnish type, and Podocin, the gene mutated in autosomal recessive steroid-resistant nephrotic syndrome. Zebrafish nephrin and podocin were specifically expressed in pronephric podocytes and required for the development of pronephric podocyte cell structure. Ultrastructurally, disruption of nephrin or podocin expression resulted in a loss of slit-diaphragms at 72 and 96 h post-fertilization and failure to form normal podocyte foot processes. We also find that expression of the band 4.1/FERM domain gene mosaic eyes in podocytes is required for proper formation of slit-diaphragm cell-cell junctions. A functional assay of glomerular filtration barrier revealed that absence of normal nephrin, podocin or mosaic eyes expression results in loss of glomerular filtration discrimination and aberrant passage of high molecular weight substances into the glomerular filtrate.  相似文献   

13.
The slit diaphragm connecting the adjacent foot processes of glomerular epithelial cells (podocytes) is the final barrier of the glomerular capillary wall and serves to prevent proteinuria. Podocytes are understood to be terminally differentiated cells and share some common features with neurons. Neurexin is a presynaptic adhesion molecule that plays a role in synaptic differentiation. Although neurexin has been understood to be specifically expressed in neuronal tissues, we found that neurexin was expressed in several organs. Several forms of splice variants of neurexin-1α were detected in the cerebrum, but only one form of neurexin-1α was detected in glomeruli. Immunohistochemical study showed that neurexin restrictedly expressed in the podocytes in kidneys. Dual-labeling analyses showed that neurexin was colocalized with CD2AP, an intracellular component of the slit diaphragm. Immunoprecipitation assay using glomerular lysate showed that neurexin interacted with CD2AP and CASK. These observations indicated that neurexin localized at the slit diaphragm area. The staining intensity of neurexin in podocytes was clearly lowered, and their staining pattern shifted to a more discontinuous patchy pattern in the disease models showing severe proteinuria. The expression and localization of neurexin in these models altered more clearly and rapidly than that of other slit diaphragm components. We propose that neurexin is available as an early diagnostic marker to detect podocyte injury. Neurexin coincided with nephrin, a key molecule of the slit diaphragm detected in a presumptive podocyte of the developing glomeruli and in the glomeruli for which the slit diaphragm is repairing injury. These observations suggest that neurexin is involved in the formation of the slit diaphragm and the maintenance of its function.  相似文献   

14.
Podocytes have a complex cellular architecture with interdigitating processes maintained by a precise organization of actin filaments. The actin-based foot processes of podocytes and the interposed slit diaphragm form the final barrier to proteinuria. The function of podocytes is largely based on the maintenance of the normal foot process structure with actin cytoskeleton. Cytoskeletal dynamics play important roles during normal podocyte development, in maintenance of the healthy glomerular filtration barrier, and in the pathogenesis of glomerular diseases. In this review, we focused on recent findings on the mechanisms of organization and reorganization of these actin-related molecules in the pathogenesis of podocyte injury and potential therapeutics targeting the regulation of actin cytoskeleton in podocytopathies.  相似文献   

15.
Blood filtration in the kidney glomerulus is essential for physiological homeostasis. The filtration apparatus of the kidney glomerulus is composed of three distinct components: the fenestrated endothelial cells, the glomerular basement membrane, and interdigitating foot processes of podocytes that form the slit diaphragm. Recent studies have demonstrated that podocytes play a crucial role in blood filtration and in the pathogenesis of proteinuria and glomerular sclerosis; however, the molecular mechanisms that organize the podocyte filtration barrier are not fully understood. In this study, we suggest that tight junction protein 1 (Tjp1 or ZO-1), which is encoded by Tjp1 gene, plays an essential role in establishing the podocyte filtration barrier. The podocyte-specific deletion of Tjp1 down-regulated the expression of podocyte membrane proteins, impaired the interdigitation of the foot processes and the formation of the slit diaphragm, resulting in glomerular dysfunction. We found the possibility that podocyte filtration barrier requires the integration of two independent units, the pre-existing epithelial junction components and the newly synthesized podocyte-specific components, at the final stage in glomerular morphogenesis, for which Tjp1 is indispensable. Together with previous findings that Tjp1 expression was decreased in glomerular diseases in human and animal models, our results indicate that the suppression of Tjp1 could directly aggravate glomerular disorders, highlights Tjp1 as a potential therapeutic target.  相似文献   

16.
Densin is a member of LAP (leucine-rich repeat and PDZ domain) protein family that localizes in kidney to slit diaphragms, which are essential components of the glomerular filtration barrier. We have previously shown that densin interacts with a crucial slit diaphragm protein, nephrin. Here, we searched for novel binding partners of densin by yeast-two hybrid assay and identified beta-catenin. The interaction was confirmed by reciprocal co-immunoprecipitation assay and the binding site in densin was determined by GST-pull down assays. The GST-tagged densin was also able to pull down P-cadherin together with beta-catenin from human kidney glomerular lysates. Furthermore, densin co-localized with beta-catenin and F-actin in cell–cell contacts in cultured mouse podocytes. During cell–cell contact disruption and reformation densin and beta-catenin were dislocated from and relocated back to plasma membrane in a similar fashion. These and our previous findings suggest that densin may associate with the cadherin-catenin and nephrin complex(es), and may be involved in the formation of the cell–cell contacts including the slit diaphragm.  相似文献   

17.
Podocyte and its slit diaphragm play an important role in maintaining normal glomerular filtration barrier function and structure. Podocyte apoptosis and slit diaphragm injury leads to proteinuria and glomerulosclerosis. However, the molecular mechanism of podocyte injury remains poorly understood. The family of mitogen-activated protein kinases including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase, and p38 signal pathways, are implicated in the progression of various glomerulopathies. However, the role of the activated signal pathway(s) in podocyte injury is elusive. This study examined phosphorylation of ERK in rat puromycin aminonucleoside (PAN) nephropathy as well as conditionally immortalized mouse podocyte treated with PAN in vitro. The effect of treatment with U0126, an inhibitor of ERK, was also investigated. In PAN nephropathy, the phosphorylation of ERK was marked. In podocyte injury, the marked and sustained activation of ERK pathway was also observed before the appearance of significant podocyte apoptosis. Pretreatment with U0126 to podocyte completely inhibited ERK activation, with complete suppression podocyte apoptosis and ameliorated nephrin protein expression along with the phosphorylation of nephrin in podocyte injury. In cultured podocyte, PAN induced actin recorganition, and U0126 inhibited such change. However, U0126 did not recovery the phosphorylation change of neph1 in podocyte injury. We concluded that the sustained activation of ERK along with the phosphorylation of neph1 might be necessary for podocyte injury. The study here suggested that ERK might become a potential target for therapeutic intervention to prevent podocytes from injury which will result in proteinuria.  相似文献   

18.
The kidney filter represents a unique assembly of podocyte epithelial cells that tightly enwrap the glomerular capillaries with their foot processes and the interposed slit diaphragm. So far, very little is known about the guidance cues and polarity signals required to regulate proper development and maintenance of the glomerular filtration barrier. We now identify Par3, Par6, and atypical protein kinase C (aPKC) polarity proteins as novel Neph1-Nephrin-associated proteins. The interaction was mediated through the PDZ domain of Par3 and conserved carboxyl terminal residues in Neph1 and Nephrin. Par3, Par6, and aPKC localized to the slit diaphragm as shown in immunofluorescence and immunoelectron microscopy. Consistent with a critical role for aPKC activity in podocytes, inhibition of glomerular aPKC activity with a pseudosubstrate inhibitor resulted in a loss of regular podocyte foot process architecture. These data provide an important link between cell recognition mediated through the Neph1-Nephrin complex and Par-dependent polarity signaling and suggest that this molecular interaction is essential for establishing the three-dimensional architecture of podocytes at the kidney filtration barrier.  相似文献   

19.
The glomerular filtration barrier consists of endothelial cells, the glomerular basement membrane, and podocytes. The membrane is a highly crosslinked macromolecular meshwork composed of specific extracellular matrix proteins. The adjacent foot processes of podocytes are bridged along their basolateral surfaces by a slit diaphragm (a porous filter structure of nephrin molecules). Recent discoveries of mutations in the range of genes encoding proteins involved in the structure or function of the glomerular filtration barrier have provided new insights into mechanisms of glomerular diseases. In this review, we summarize recent progress in the elucidation of the genetic basis of some glomerulopathies in humans.  相似文献   

20.
The podocyte proteins Neph1 and nephrin organize a signaling complex at the podocyte cell membrane that forms the structural framework for a functional glomerular filtration barrier. Mechanisms regulating the movement of these proteins to and from the membrane are currently unknown. This study identifies a novel interaction between Neph1 and the motor protein Myo1c, where Myo1c plays an active role in targeting Neph1 to the podocyte cell membrane. Using in vivo and in vitro experiments, we provide data supporting a direct interaction between Neph1 and Myo1c which is dynamic and actin dependent. Unlike wild-type Myo1c, the membrane localization of Neph1 was significantly reduced in podocytes expressing dominant negative Myo1c. In addition, Neph1 failed to localize at the podocyte cell membrane and cell junctions in Myo1c-depleted podocytes. We further demonstrate that similarly to Neph1, Myo1c also binds nephrin and reduces its localization at the podocyte cell membrane. A functional analysis of Myo1c knockdown cells showed defects in cell migration, as determined by a wound assay. In addition, the ability to form tight junctions was impaired in Myo1c knockdown cells, as determined by transepithelial electric resistance (TER) and bovine serum albumin (BSA) permeability assays. These results identify a novel Myo1c-dependent molecular mechanism that mediates the dynamic organization of Neph1 and nephrin at the slit diaphragm and is critical for podocyte function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号