首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 601 毫秒
1.
Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems and mediates various physiological and biochemical processes in plants. In this study we demonstrated that the exogenous H2O2 was able to promote the formation and development of adventitious roots in mung bean seedlings. Treatments with 1–100 mM H2O2 for 8–18 h significantly induced the formation and development of adventitious roots. Catalase (CAT) and ascorbic acid, which are H2O2 scavengers or inhibitors, eliminated the adventitious root-promoting effects of exogenous H2O2. H2O2 may have a downstream signaling function in the auxin signaling pathway and be involved in auxin-induced adventitious root formation. 2,3,5-Triiodobenzoic acid (TIBA), an inhibitor of auxin polar transport, strongly inhibited adventitious rooting of mung bean seedlings; however, the inhibiting effects of TIBA on adventitious rooting can be partially reversed by the exogenous IBA or H2O2. Diphenylene iodonium (DPI) strongly inhibits the activity of NADPH oxidase, which is one of the main sources of H2O2 formation in plant cells. DPI treatment strongly inhibited the formation of adventitious roots in mung bean, but the inhibitory effects of DPI on rooting can be partially reversed by the exogenous H2O2 or IBA. This indicates that the formation of adventitious roots was blocked once the generation of H2O2 through NADPH oxidase was inhibited, and H2O2 mediated the IBA-induced adventitious root formation. Furthermore, a rapid increase in the endogenous level of H2O2 was detected during incubation with water 12–36 h after the primary root removal in mung bean seedlings. Three hours after the primary root removal, the generation of endogenous H2O2 was markedly induced in IBA-treated seedlings in comparison with water-treated seedlings. This implies that IBA induced overproduction of H2O2 in mung bean seedlings, and that IBA promoted adventitious root formation via a pathway involving H2O2. Results obtained suggest that H2O2 may function as a signaling molecule involved in the formation and development of adventitious roots in mung bean seedlings.  相似文献   

2.
Caffeic acid (CA), which is ubiquitously present in plants, is a potent phytotoxin affecting plant growth and physiology. The aim of our study was to investigate whether CA-induced inhibition of adventitious root formation (ARF) in mung bean {Vigna radiata (L.) Wilczek [Phaseolus aureus Roxb.]} involves the induction of conventional stress responses. The effect of CA (0–1000 μM) on ARF in mung bean was determined by measuring the generation of reactive oxygen species (ROS) in terms of malondialdehyde and hydrogen peroxide (H2O2) content, root oxidizability and changes in levels of antioxidant enzymes. Our results show that CA significantly enhanced MDA content, indicating severe lipid peroxidation, and increased H2O2 accumulation and root oxidizability in the lower rooted hypocotylar region (LRHR) of mung bean, thereby inducing oxidative stress and cellular damage. In response to CA, there was a significant upregulation in the activities of scavenging enzymes, such as superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, catalase and glutathione reductase, in LRHRs of mung bean. Based on these results, we conclude that CA inhibits ARF in mung bean hypocotyls by inducing ROS-generated oxidative stress and upregulating the activities of antioxidant enzymes.  相似文献   

3.
Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems and mediates various physiological and biochemical processes in plants. In the present study, we present a signaling network involving H2O2, nitric oxide (NO), calcium (Ca2+), cyclic guanosine monophosphate (cGMP), and the mitogen-activated protein kinase (MAPK) cascade during adventitious rooting in mung bean seedlings. Both exogenous H2O2 and the NO donor sodium nitroprussiate were capable of promoting the formation and development of adventitious roots. H2O2 and NO signaling pathways were elicited in parallel in auxin-induced adventitious rooting. Cytosolic Ca2+ was required for adventitious rooting, and Ca2+ served as a downstream component of H2O2, as well as cGMP or MAPK, signaling cascades. cGMP and MAPK cascades function downstream of H2O2 signaling and depend on auxin responses in adventitious root signaling processes.  相似文献   

4.
The present study investigated the effect of ferulic acid (FA; 0–1000 µM) on early growth, and rhizogenesis in mung bean (Vigna radiata) hypocotyls and associated biochemical changes. FA severely affected the radicle elongation and number of secondary roots after 72 h. The root and shoot length, number and length of secondary roots, and seedling dry weight of one-week-old seedlings of mung bean were decreased by 64%. The rooting potential (percent rooting, number and length of adventitious roots) of mung bean hypocotyls under in vitro conditions was significantly inhibited in response to 1–100 µM FA. At 1000 µM there was complete cessation of rooting. FA caused a reduction in the contents of water-soluble proteins and endogenous total phenolics, whereas the activities of proteases, peroxidases, and polyphenol peroxidases increased. The study concludes that FA inhibits root growth and development, and in vitro rooting process in mung bean by interfering with biochemical processes that are crucial for root formation.  相似文献   

5.
Caffeic acid (CA) is one of the most common cinnamic acids ubiquitously present in plants and implicated in a variety of interactions including allelopathy among plants and microbes. This study investigated the possible interference of CA with root growth and the process of rhizogenesis in hypocotyl cuttings of mung bean (Phaseolus aureus=Vigna radiata). Results indicated that CA (0-1000 microM) significantly suppressed root growth of mung bean, and impaired adventitious root formation and root length in the mung bean hypocotyl cuttings. Further investigations into the role of CA in hampering root formation indicated its interference with the biochemical processes involved in rooting process at the three stages - root initiation (third day; RI), root expression (fifth day; RE), and post-expression (seventh day; PE) - of rhizogenesis. CA caused significant changes in the activities of proteases, peroxidases (PODs), and polyphenol oxidases (PPOs) during root development and decreased the content of total endogenous phenolics (TP) in the hypocotyl cuttings. The enhanced activity of PODs and PPOs, though, relates to lignification and/or phenolic metabolism during rhizogenesis; yet their protective role to CA-induced stress, especially during the PE phase, is not ruled out. At 1000 microM CA, where rooting was significantly affected, TP content was very high during the RI phase, thus indicating its non-utilization. The study concludes that CA interferes with the rooting potential of mung bean hypocotyl cuttings by altering the activities of PODs and PPOs and the endogenous TP content that play a key role in rhizogenesis.  相似文献   

6.
本文研究甘蔗废糖蜜对绿豆插条下胚轴生根的影响,结果表明,1000~7000mg/L浓度范围内的甘蔗废糖蜜能明显增加绿豆插条下胚轴不定根的数目、根长、根干重及生根范围,并促进不定根内可溶性糖含量和不定根系活力提高。  相似文献   

7.
The present research investigates the biological profile of eight symmetrical diheteroarylureas and phenylheteroarylureas, testing their hypothetical cytokinin-like activity and rooting activity. Cytokinin-like activity was assayed by the betacyanin (so-called amaranthin) accumulation test and by the tomato regeneration test. The rooting activity was assessed using the mung bean rooting test, the apple stem slice test and the rooting of apple microcuttings. Three compounds, 1,3-di(pyrazin-2-yl)urea (3a), 1,3-di(benzo[d]oxazol-5-yl)urea (3b) and 1,3-di(benzo[d]oxazol-6-yl)urea (3c), enhanced adventitious root formation in apple stem slice test, but only 3b and 3c were active in the mung bean rooting test. Compound 3b, that showed the best rooting activity, was also able to enhance the adventitious root formation in apple microcuttings. None of the compounds showed cytokinin-like activity.  相似文献   

8.
Piperazine, a chemical used as buffer component, greatly promotedadventitious root formation in cuttings of sunflower (Helianthusannuus L.), pea (Pisum sativum L.), mung bean (Vigna radiataL.) and to a lesser extent in bean (Phaseolus vulgaris L.) seedlings.Piperazine was more effective in acidic pH. The studies withpiperazine analogues showed that any substantial modificationof the structure caused the chemical to be less effective, oreven inhibitory. Histological studies in sunflower hypocotylsdemonstrated that piperazine did not alter the timing of theinitial cell division. In the presence of piperazine, sunflowerhypocotyls failed to develop primary phloem fibres. Piperazineat the concentrations that promote rooting did not kill or damagethe tissue at the base of the hypocotyl. Compared to controls,piperazine treatment did not alter the proportion of primordiathat eventually developed into actively elongating roots. Sixdays after treatment 45% of the control roots in the basal sectionwere actively growing, compared to 51% in the piperazine. Therewas little evidence suggesting that the piperazine-induced promotionof rooting was caused by the removal of basal dominance in whichpiperazine killed the basal part of hypocotyl.Copyright 1995,1999 Academic Press Helianthus annuus, Phaseolus vulgaris, Pisum sativum, Vigna radiata, adventitious roots, mung bean, pea, piperazine, sunflower  相似文献   

9.
以10-4 mol/L脱落酸(ABA)处理绿豆种子24 h,在幼苗下胚轴长6 cm时,切除根部作为插条,研究ABA对插条不定根发生及插条基部细胞周期时相的影响。结果表明,ABA可促进下胚轴插条不定根发生,增加生根数和生根范围;ABA提高插条基部细胞色氨酸转氨酶、吲哚丙酮酸脱羧酶和吲哚乙醛脱氢酶的比活性,增加吲哚乙酸含量,同时进入细胞周期S期的基部细胞数目增加,促进DNA合成,有利于不定根的发生。  相似文献   

10.
For perennial woody plants, softwood cutting is an efficient technique for larger scale propagation and adventitious rooting of cuttings is one of the most crucial steps. To evaluate the significance of juvenility on adventitious rooting, rooting rates was compared between softwood cuttings collected from apomictic seedlings (juvenile), in vitro cultured plants (rejuvenated), suckers (juvenile like) and canopy shoots (adult) of reproductively mature trees in Malus xiaojinensis. After pre-treatment with indole-3-butytric acid (IBA) (3,000 mg L?1) + H2O2 (50 mM), rooting rates in cutting from juvenile, juvenile like and rejuvenated donor plants were significantly higher (>90 %) than that from adult trees. The effects of IBA on adventitious rooting were enhanced significantly by exogenous H2O2. After 15 passages of in vitro subculture, the micro-shoots from adult phase explants were rejuvenated successfully, marked by the elevated expression of miR156 in the leaflets of the micro-shoots. But the rooting ability of rejuvenated micro-shoots was recovered delayed at the 18th or 21st passage of subculture. During the process of rejuvenation, the leaf indole-3-acetic acid contents and the expressions of rooting related genes CKI1, ARRO-1, ARF7 and ARF19 increased significantly. In contrary, the leaf abscisic acid contents decreased. A lack of juvenility is the most important limiting factor governing adventitious rooting of softwood cuttings in apple rootstocks.  相似文献   

11.
3,5-Dihalo-4-hydroxybenzoic acids enhanced adventitious root formation in mung bean (Vigna radiata L.) cuttings. 3,5-Diiodo-4-hydroxybenzoic acid was more active than 3,5-dichloro-4-hydroxybenzoic acid, increasing the number of roots formed by about 4-fold. 2,4-Dinitrophenol also enhanced significantly adventitious root formation in mung bean cuttings. The phenolic compounds were active with or without indole-3-acetic acid. The possible mechanism by which these phenolic compounds enhance rooting is discussed.Abbreviations CCCP carbonyl cyanide 3-chlorophenylhydrazone - DIHB 3,5-diiodo-4-hydroxybenzoic acid - DNP 2,4-dinitrophenol  相似文献   

12.
The changes in antioxidant enzyme activity during the induction of adventitious roots in mung bean seedlings treated with Indole-3-butyric acid (IBA), hydrogen peroxide (H2O2), ascorbic acid (ASA) and diphenylene iodonium (DPI) were investigated. As compared with the controls, treatments of seedlings with 10 μM IBA significantly decreased POD activity by 55% and 49.6% at 3 h and 12 h of incubation, respectively, and significantly increased by 49.8% at 36 h of incubation; treatments of seedlings with 10 mM H2O2 significantly decreased POD activity by 42%, 60%, 39% and 38% at 3 h, 12 h, 24 h and 48 h of incubation, respectively, the changes in POD activity were coincident with those in IBA-treated seedlings during the 0–12 h incubation period; treatments of seedlings with 2 mM ASA significantly decreased APX activities by 27% only at 3 h of incubation, the varying trend of POD activity was similar to incubation with water; 10 μM DPI treatments significantly decreased POD activity by 42%, 40%, 54% and 28% at 3 h, 6 h, 12 h and 48 h of treatment, respectively. CAT activities remained at relatively stable levels and no major changes occurred from 0 h to 48 h during the incubation phase of adventitious rooting. The results may imply that CAT, an H2O2-metabolizing enzyme, is inactivated by H2O2 during the formation of adventitious roots. As compared with the controls, IBA treatments significantly decreased APX activities by 48%, 53% and 66% at 3 h, 9 h and 12 h of treatment, respectively; H2O2 treatments significantly decreased APX activities by 59%, 51% and 57% at 3 h, 12 h and 36 h of incubation, respectively; ASA treatments significantly decreased APX activities by 37% only at 3 h of incubation; DPI treatments significantly decreased APX activities by 54%, 53% and 63% at 3 h, 6 h and 12 h of incubation, respectively, and significantly increased APX activity by 106% at 24 h. These results indicated that the influence of IBA, H2O2, ASA and DPI on the changes in APX activity were the same as on the changes in POD activity. Furthermore, similar trends in the changes of APX activity and POD activity were observed during the induction and initiation rooting phase. This finding implies that APX and POD serve the same functions, possibly related to the level of H2O2, during the formation of adventitious roots. The early decrease of POD and APX activities in the initiation phase of IBA- and H2O2-treated seedlings may be one mechanism underlying the IBA- and H2O2-mediated facilitation of adventitious rooting.  相似文献   

13.
Adventitious rooting is a quantitative genetic trait regulated by both environmental and endogenous factors. To better understand the physiological and molecular basis of adventitious rooting, we took advantage of two classes of Arabidopsis thaliana mutants altered in adventitious root formation: the superroot mutants, which spontaneously make adventitious roots, and the argonaute1 (ago1) mutants, which unlike superroot are barely able to form adventitious roots. The defect in adventitious rooting observed in ago1 correlated with light hypersensitivity and the deregulation of auxin homeostasis specifically in the apical part of the seedlings. In particular, a clear reduction in endogenous levels of free indoleacetic acid (IAA) and IAA conjugates was shown. This was correlated with a downregulation of the expression of several auxin-inducible GH3 genes in the hypocotyl of the ago1-3 mutant. We also found that the Auxin Response Factor17 (ARF17) gene, a potential repressor of auxin-inducible genes, was overexpressed in ago1-3 hypocotyls. The characterization of an ARF17-overexpressing line showed that it produced fewer adventitious roots than the wild type and retained a lower expression of GH3 genes. Thus, we suggest that ARF17 negatively regulates adventitious root formation in ago1 mutants by repressing GH3 genes and therefore perturbing auxin homeostasis in a light-dependent manner. These results suggest that ARF17 could be a major regulator of adventitious rooting in Arabidopsis.  相似文献   

14.
Abscisic acid (ABA) and hydrogen peroxide (H2O2) are important regulatory factors involved in plant development under adversity stress. Here, the involvement of H2O2 in ABA-induced adventitious root formation in cucumber (Cucumis sativus L.) under drought stress was determined. The results indicated that exogenous ABA or H2O2 promoted adventitious rooting under drought stress, with a maximal biological response at 0.5 μM ABA or 800 μM H2O2. The promotive effects of ABA-induced adventitious rooting under drought stress were suppressed by CAT or DPI, suggesting that endogenous H2O2 might be involved in ABA-induced adventitious rooting. ABA increased relative water content (RWC), leaf chlorophyll content, chlorophyll fluorescence parameters (Fv/Fm, ΦPS II and qP), water soluble carbohydrate (WSC) and soluble protein content, and peroxidase (POD), polyphenol oxidase (PPO) and indoleacetate oxidase (IAAO) activities, while decreasing transpiration rate. However, the effects of ABA were inhibited by H2O2 scavenger CAT. Therefore, H2O2 may be involved in ABA-induced adventitious root development under drought stress by stimulating water and chlorophyll content, chlorophyll fluorescence, carbohydrate and nitrogen content, as well as some enzyme activities.  相似文献   

15.
Our previous results have demonstrated that both nitric oxide (NO) and hydrogen peroxide (H2O2) are involved in the promotion of adventitious root development in marigold (Tagetes erecta L.). However, not much is known about the intricate molecular network of adventitious root development triggered by NO and H2O2. In this study, the involvement of calcium (Ca2+) and calmodulin (CaM) in NO- and H2O2-induced adventitious rooting in marigold was investigated. Exogenous Ca2+ was capable of promoting adventitious rooting, with a maximal biological response at 50 μM CaCl2. Ca2+ chelators and CaM antagonists prevented NO- and H2O2-induced adventitious rooting, indicating that both endogenous Ca2+ and CaM may play crucial roles in the adventitious rooting induced by NO and H2O2. NO and H2O2 treatments increased the endogenous content of Ca2+ and CaM, suggesting that NO and H2O2 enhanced adventitious rooting by stimulating the endogenous Ca2+ and CaM levels. Moreover, treatment with Ca2+ enhanced the endogenous levels of NO and H2O2. Additionally, Ca2+ might be involved as an upstream signaling molecule for CaM during NO- and H2O2-induced rooting. Altogether, the results suggest that both Ca2+ and CaM are two downstream signaling molecules in adventitious rooting induced by NO and H2O2.  相似文献   

16.
间苯二酚、水杨酸对绿豆下胚轴不定根形成的作用   总被引:3,自引:0,他引:3  
20—100mgL(-1)间苯二酚能明显地促进绿豆下胚轴不定根的形成,与20mgL(-1)IBA混合处理具加成效应,其作用在于降低生根初期IAA氧化酶和多酚氧化酶活性.10—100mgL(-1)水杨酸抑制下胚轴不定根的形成,随处理浓度的加大,对生根数目、生根范围和根重的抑制作用增加.水杨酸处理后1-3d,能提高IAA氧化酶和多酚氧化酶的活性.  相似文献   

17.
A study was undertaken to explore the effect of l-DOPA (l-3,4-dihydroxyphenylalanine) on the rooting potential of hypocotyl cuttings of mung bean (Phaseolus aureus Roxb. var. SML-32) and related biochemical changes at the post-expression phase. At lower concentrations of (0.0001–0.1 mM) l-DOPA, there was no change in rooting potential, though the average number of roots per cutting and root length were significantly decreased (except at 0.0001 mM). However, at 1.0 mM concentration, a 50% inhibition in rooting potential was noticed and the root number and length were severely reduced. In contrast, at 2.5 mM l-DOPA, none of the hypocotyl cutting rooted. The decrease in rooting potential was associated with a significant effect on the biochemical changes measured in terms of protein and carbohydrate metabolism and activity of peroxidases. In the l-DOPA treated hypocotyl cuttings, there was a significant reduction in the protein and carbohydrate content, whereas activities of associated enzymes proteases and amylases decreased, particularly at higher treatment concentration (>1.0 mM). It indicated negative effect of l-DOPA on these two important metabolic processes. Likewise, activity of peroxidases also decreased in the l-DOPA treated hypocotyl mung bean cuttings thereby indicating its role in suppressing rhizogenesis as the enzyme is involved in lignification process during cell division. l-DOPA suppressed mitotic activity in the root tip cells of onion indicating thereby its interference with the cell division, which is required for the formation of new meristematic tissue during rhizogenesis. Based on the obtained results, it is concluded that l-DOPA interferes with the various biochemical processes in the mung bean hypocotyl cuttings thereby affecting their rooting potential.  相似文献   

18.
In the present study we tried to evaluate the effect of salicylic acid (SA) in alleviating the negative effects of salinity stress. NaCl stress (50 and 100 mM) declines the shoot and root length and maximum decrease was observed at 100 mM concentration of NaCl. Similarly shoot dry weight decreased by 57.14% and root dry weight by 67.24% with 100 mM NaCl stress. The pigments and leaf relative water content (LRWC) were also observed to decline with increase in NaCl concentration. However, supplementation of SA to NaCl stressed seedlings showed enhanced length and dry weight of shoot and root. The pigment and LRWC also increased by the application of SA in the present study. NaCl stress also enhanced proline and glycine betaine (GB) by 3.01 and 2.04 folds, respectively; further enhancement was recorded by the application of SA. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) content also showed rise in accumulation, however, seedlings treated with SA and NaCl (100 mM + SA) declines the H2O2 accumulation to 1.90 from 2.45 folds and MDA to 1.69 from 2.34 folds over the control. Antioxidants were observed to increase with NaCl concentration and further increase was recorded by the application of SA. Indoleacetic acid (IAA) and indole butyric acid (IBA) decreased by 36.60 and 44.16%, respectively, and ABA increased by 750% with 100 mM NaCl. Addition of SA to NaCl stressed seedlings enhanced the IAA and IBA and decreased the ABA concentration to appreciable level. NaCl is also responsible for the higher accumulation of Na+ and Na+/K+ ratio and decreased uptake of Ca2+ and K+. Supplementation of SA decreased the Na+ accumulation and enhanced the uptake of Ca2+ and K+ in NaCl stressed seedlings. In conclusion, SA supplementation mitigates the negative effects of NaCl toxicity in faba bean seedlings through the modulation of different osmoprotectants, antioxidants and nutrients uptake.  相似文献   

19.
Several lines of evidence suggest that nitric oxide (NO) and hydrogen peroxide (H2O2) are important signal molecules involved in plant development and other physiological processes. Marigold (Tagetes erecta L. ‘Marvel’) was used to understand the role and relationship of NO and H2O2 in adventitious root development of plants. The results showed that the effects of H2O2 or NO on adventitious root organogenesis of explants were dose dependent, with maximal biological responses at 200 μM H2O2 or 50 μM NO donor sodium nitroprusside (SNP). The results also indicated the importance of both putative NO synthase (NOS)-like and nitrate reductase (NR) enzymes, which might be responsible for the production of NO in explants during rooting. Additionally, guanosine 3′, 5′ -cyclic monophosphate (cGMP) was involved in NO- induced root formation of marigold, but it was not involved in H2O2- mediated rooting process. The root number and length of explants treated with NO and H2O2 simultaneously were significantly higher than those of explants treated with H2O2 or NO alone. Moreover, NO treatments enhanced endogenous H2O2 levels in hypocotyls. Together, these results indicate that NO and H2O2 play crucial roles in the adventitious root development of marigold explants both synergistically and independently.  相似文献   

20.
Abstract

The excision of the root accelerates greatly the formation of adventitious roots in the hypocotyl of etiolated radish seedlings, but if the seedlings develop in CAP 1×10?4M, no adventitious root are induced after cutting. IAA either alone or associated with CAP, significantly increases the number of primordia in normal hypocotyls if given at the moment of cutting, while it has not stimulatory effect on the hypocotyls of seedlings grown in CAP. IAA has significant effect on both elongation and tickening of hypocotyl segments prepared from seedlings grown in CAP, and this could indicate a specific action of the inhibitor either on a particular process or on particular cells.

The endodermis and the pericycle, which are the two cell layers implicated in the formation of the adventitious roots, could be the mediators of this particular effect of CAP in rooting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号