首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
硝普钠(SNP)对绿豆下胚轴插条生根的影响   总被引:2,自引:0,他引:2  
黄爱霞  佘小平 《西北植物学报》2003,23(12):2196-2199
研究了SNP对绿豆下胚轴插条生根的影响.结果表明,SNP促进下胚轴插条生根的最适浓度和最佳时间分别为300μmol*L-1和24 h,最适浓度SNP对6 d龄幼苗下胚轴插条生根促进效果最好,对下胚轴插条的生根促进效应显著大于其余插条.同时就SNP、IBA和NAA对不定根发生的影响进行了比较研究.  相似文献   

2.
以10-4 mol/L脱落酸(ABA)处理绿豆种子24 h,在幼苗下胚轴长6 cm时,切除根部作为插条,研究ABA对插条不定根发生及插条基部细胞周期时相的影响。结果表明,ABA可促进下胚轴插条不定根发生,增加生根数和生根范围;ABA提高插条基部细胞色氨酸转氨酶、吲哚丙酮酸脱羧酶和吲哚乙醛脱氢酶的比活性,增加吲哚乙酸含量,同时进入细胞周期S期的基部细胞数目增加,促进DNA合成,有利于不定根的发生。  相似文献   

3.
以绿豆下胚轴插条为实验材料,研究了乙烯利、ACC、AOA和AgNO,对其不定根形成的影响。结果表明:乙烯利和ACC能促进绿豆下胚轴插条的生根,最适浓度分别为50μmol/L和10μmol/L;AOA和AgNO3明显抑制不定根形成,随浓度增加,抑制作用增强。插条离体后24h内对ACC的促进作用和AOA的抑制作用敏感。插条在0-6h和18-24h用ACC处理,在0-2h和22-24h用50μmol/L乙烯利处理的生根效果好。乙烯在不定根形成的诱导期和起始晚期起促进作用。  相似文献   

4.
纳米化的二氧化钛促进绿豆下胚轴不定根形成   总被引:5,自引:0,他引:5  
5~200mg·L-1纳米化的TiO2能明显增加绿豆下胚轴不定根的数目、根干重和生根范围;光照条件下显著促进绿豆下胚轴不定根的形成;不同时间促生根效果不同,以6~18 h的效果最好.  相似文献   

5.
黄化处理促进绿豆下胚轴插条生根的研究(简报)   总被引:5,自引:1,他引:4  
黄化处理后绿豆下胚轴插条的生根数、生根范围、根的鲜重及干重、以及插条基部的可溶性糖含量和多酚氧化酶活性都增加,而酚类物质含量和过氧化物酶活性则减少。  相似文献   

6.
草酸对绿豆上胚轴插条生根和生长的影响(简报)   总被引:5,自引:0,他引:5  
草酸可增加绿豆上胚轴插条及其不定根的长度、鲜重和干重。以 0 .5 0mmol·L-1的草酸处理效果最显著 ,但对不定根的数量影响不大  相似文献   

7.
10-3-10-2mol/β-环糊精能明显促进绿豆插条不定根根原基形成,增加不定根数目和总根长.10-4-10-2mol/Lβ-环糊精能提高不定根的鲜重、干重和可溶性蛋白质含量,降低IAA氧化酶活性,减少不定根的平均根长,但对下胚轴的鲜重和干重影响不明显.10-3mol/Lβ-环糊精能提高插条的不定根活力.  相似文献   

8.
研究了一氧化氮(NO)供体硝普钠(SNP)、一氧化氮清除剂c-PTIO和一氧化氮合酶(NOS)抑制剂L-NAME对绿豆(Vigna radiata L.)下胚轴插条生根的影响,并对不定根发生期间插条基部NO和NADPH-黄递酶的时空变化进行了检测。所试浓度SNP均明显促进下胚轴不定根发生。分别在插条切取后24 h和36 h于其基部维管束之间检测到NADPH-黄递酶(NOS标记酶)阳性反应和NO荧光,根原基也于48 h在相同位置出现,并于60 h进一步伸长。48-60h期间,NADPH-黄递酶的阳性反应及NO荧光有增强趋势,并主要分布在不定根分生组织中。L-NAME既减弱NADPH-黄递酶的阳性反应和NO荧光,也延缓不定根发生;而c-PTIO对NO荧光及不定根发生均有抑制作用。上述结果证明:NO在不定根发生及发育过程中有重要作用,而且此过程中的NO很可能由类似的NOS催化产生。  相似文献   

9.
研究了一氧化氮(NO)供体普钠(SNP)、一氧化氮清除剂C-PTIO和一氧化氮合酶(NOS)抑制L-NAME对绿豆(Vigna radiataL.)下胚轴插条生根的影响.并对不定根生期间手条基部NO 和NADPH-黄递酶的时空变化进行了检测.所试浓度SNP均明显促进下胚轴不根发生.分别插条切取后24h和36h于其基部维管束之间检测到NADPH-黄递酶(NOS标记酶)阳性反应和NO荧光,根原基也于48h在相同位置出现,并于60h进一步伸长.48~60h期间,NADPH、黄递的阳性反应及NO荧光有增强趋势,并主要分布在不定根分生组织中.L-NAME既减弱NADPH-黄递酶的阳性反应和NO荧光,也延缓不不定根发生;而c-PTIO对NO荧光及不定根生均有抑制作用.上述结果证明:NO在不定根发生及发育过程中有重要作用,而且此过程中的NO很可能由类似的NOS催化产生.  相似文献   

10.
间苯二酚、水杨酸对绿豆下胚轴不定根形成的作用   总被引:3,自引:0,他引:3  
20—100mgL(-1)间苯二酚能明显地促进绿豆下胚轴不定根的形成,与20mgL(-1)IBA混合处理具加成效应,其作用在于降低生根初期IAA氧化酶和多酚氧化酶活性.10—100mgL(-1)水杨酸抑制下胚轴不定根的形成,随处理浓度的加大,对生根数目、生根范围和根重的抑制作用增加.水杨酸处理后1-3d,能提高IAA氧化酶和多酚氧化酶的活性.  相似文献   

11.
A study was undertaken to explore the effect of l-DOPA (l-3,4-dihydroxyphenylalanine) on the rooting potential of hypocotyl cuttings of mung bean (Phaseolus aureus Roxb. var. SML-32) and related biochemical changes at the post-expression phase. At lower concentrations of (0.0001–0.1 mM) l-DOPA, there was no change in rooting potential, though the average number of roots per cutting and root length were significantly decreased (except at 0.0001 mM). However, at 1.0 mM concentration, a 50% inhibition in rooting potential was noticed and the root number and length were severely reduced. In contrast, at 2.5 mM l-DOPA, none of the hypocotyl cutting rooted. The decrease in rooting potential was associated with a significant effect on the biochemical changes measured in terms of protein and carbohydrate metabolism and activity of peroxidases. In the l-DOPA treated hypocotyl cuttings, there was a significant reduction in the protein and carbohydrate content, whereas activities of associated enzymes proteases and amylases decreased, particularly at higher treatment concentration (>1.0 mM). It indicated negative effect of l-DOPA on these two important metabolic processes. Likewise, activity of peroxidases also decreased in the l-DOPA treated hypocotyl mung bean cuttings thereby indicating its role in suppressing rhizogenesis as the enzyme is involved in lignification process during cell division. l-DOPA suppressed mitotic activity in the root tip cells of onion indicating thereby its interference with the cell division, which is required for the formation of new meristematic tissue during rhizogenesis. Based on the obtained results, it is concluded that l-DOPA interferes with the various biochemical processes in the mung bean hypocotyl cuttings thereby affecting their rooting potential.  相似文献   

12.
Caffeic acid (CA) is one of the most common cinnamic acids ubiquitously present in plants and implicated in a variety of interactions including allelopathy among plants and microbes. This study investigated the possible interference of CA with root growth and the process of rhizogenesis in hypocotyl cuttings of mung bean (Phaseolus aureus=Vigna radiata). Results indicated that CA (0-1000 microM) significantly suppressed root growth of mung bean, and impaired adventitious root formation and root length in the mung bean hypocotyl cuttings. Further investigations into the role of CA in hampering root formation indicated its interference with the biochemical processes involved in rooting process at the three stages - root initiation (third day; RI), root expression (fifth day; RE), and post-expression (seventh day; PE) - of rhizogenesis. CA caused significant changes in the activities of proteases, peroxidases (PODs), and polyphenol oxidases (PPOs) during root development and decreased the content of total endogenous phenolics (TP) in the hypocotyl cuttings. The enhanced activity of PODs and PPOs, though, relates to lignification and/or phenolic metabolism during rhizogenesis; yet their protective role to CA-induced stress, especially during the PE phase, is not ruled out. At 1000 microM CA, where rooting was significantly affected, TP content was very high during the RI phase, thus indicating its non-utilization. The study concludes that CA interferes with the rooting potential of mung bean hypocotyl cuttings by altering the activities of PODs and PPOs and the endogenous TP content that play a key role in rhizogenesis.  相似文献   

13.
In plants, salicylic acid (SA) is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR) and hypertensive response (HR). SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF) in mung bean (Phaseolus radiatus L) hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2) were also elucidated. Pretreatment of mung bean explants with N, N’-dimethylthiourea (DMTU), a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI), a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings.  相似文献   

14.
Concentrations of 24-epibrassinolide as low as 0.1 μ M consistently inhibited adventitious root formation and elongation in both hypocotyl and epicotyl cuttings from mung bean ( Phaseolus aureus L.). Similar, but less pronounced, inhibitory effects on root elongation were also observed with estrone sulphate and estradiol sulphate. With regards to root number, estrone sulphate enhanced this in both types of cutting, whereas estradiol sulphate was stimulatory in hypocotyl cuttings but inhibitory in epicotyl cuttings. Brassinolide caused a marked stimulation of epicotyl (but not hypocotyl) elongation and a swelling and splitting of the epicotyl in both types of cutting, whereas estrogens varied in their effect from inhibition of epicotyl growth to no effect. Root-applied brassinolide and estrogen sulphates brought about similar morphological abnormalities in shoots viz. epinasty and inrolling of primary leaves and delayed expansion of the first trifoliate leaf.  相似文献   

15.
Adventitious root formation in stem cuttings of mung bean was enhanced by ethrel, which had an additive effect when employed simultaneously with indolebutyric acid (IBA). Abscisic acid (ABA) did not influence the number of roots per cutting whereas gibberellic acid (GA3) and kinetin were without effect on rooting at lower concentrations but were inhibitory at higher concentrations. Nevertheless, all three of these chemicals showed synergistic interactions with IBA and/or indol-3-ylacetic acid (IAA) and thereby significantly promoted root formation. A localised application of morphactin to the epicotyl of cuttings totally inhibited root production irrespective of which of the foregoing growth regulators were suppliedvia the hypocotyl. Morphactin application also prevented root formation in cuttings treated with vitamin D2. The various growth regulators employed had differing effects on growth of roots but there was no simple relationship between their effects on root formation and subsequent root growth.  相似文献   

16.
The present study investigated the effect of ferulic acid (FA; 0–1000 µM) on early growth, and rhizogenesis in mung bean (Vigna radiata) hypocotyls and associated biochemical changes. FA severely affected the radicle elongation and number of secondary roots after 72 h. The root and shoot length, number and length of secondary roots, and seedling dry weight of one-week-old seedlings of mung bean were decreased by 64%. The rooting potential (percent rooting, number and length of adventitious roots) of mung bean hypocotyls under in vitro conditions was significantly inhibited in response to 1–100 µM FA. At 1000 µM there was complete cessation of rooting. FA caused a reduction in the contents of water-soluble proteins and endogenous total phenolics, whereas the activities of proteases, peroxidases, and polyphenol peroxidases increased. The study concludes that FA inhibits root growth and development, and in vitro rooting process in mung bean by interfering with biochemical processes that are crucial for root formation.  相似文献   

17.
Caffeine (1,3,7-trimethylxanthine), a purine alkaloid found naturally in over 100 plant species, has recently been viewed as a safe chemical for management of pests including molluscs, slugs, snails, bacteria, and as a bird deterrent. It possesses phytotoxicity against plant species, yet the mechanism of action is lacking. A study was conducted to determine the effect of caffeine on the rooting of hypocotyl cuttings of mung bean (Phaseolus aureus) and the associated biochemical changes. At lower concentrations (<1,000 μM) of caffeine, though rooting potential was not affected, yet there was a significant decrease in the number of roots and root length. At 1,000 μM caffeine, there was a 68% decrease in the number of roots/primordia per cutting, whereas root length decreased by over 80%. However, no root formation occurred at 2,000 μM caffeine. Further investigations into the biochemical processes linked to root formation revealed that caffeine significantly affects protein content, activities of proteases, polyphenol oxidases (PPO) and total endogenous phenolic (EP) content, in the mung bean hypocotyls. A decrease in rooting potential was associated with a drastic reduction in protein content in the lower rooted portion, whereas the specific activity of proteases increased indicating that caffeine affects the protein metabolism. Activity of PPO decreased in response to caffeine, whereas EP content increased significantly indicating its non-utilization and thus less or no root formation. Respiratory ability of rooted tissue, as determined through TTC (2,3,5-triphenyl tetrazolium chloride) reduction, was impaired in response to caffeine indicating an adverse effect on the energy metabolism. The study concludes that caffeine interferes with the root development by impairing protein metabolism, affecting activity of PPO (and thus lignification), and EP content, which are the crucial steps for root formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号