首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sexual receptivity was evaluated in female and male pigs that had experienced varying periods of exposure to testosterone pre- and postnatally. For prenatal exposure, pregnant sows were treated with testosterone propionate (TP) from Day 29-35 or Day 39-45 of gestation at a dosage that caused virilization of the external genitalia of their female offspring. Eighty-three percent of the females that received TP prenatally had regular estrous cycles, but reached puberty later than control females. Only 26% of the females that received TP both pre- and postnatally (4-6 mo of age) were observed in estrus by 10 mo of age. After ovariectomy and acute treatment with estradiol benzoate (EB), the proportion of females that showed the immobilization response (receptivity) was similar for all groups of females independent of pre- or postnatal TP treatment. Females treated prenatally from Day 39-45 showed the immobilization response for fewer days after treatment with a high dosage of EB than did controls. On the basis of these observations, we conclude that receptivity in female pigs is not affected greatly by testosterone treatment at the stages of development that were investigated. Males castrated at birth and treated with a single injection of EB after 9.5 mo showed the immobilization response. In contrast, few males castrated at 8 mo or castrated at birth and treated with TP from 3 to 6 mo showed the immobilization response after EB treatment. These observations provide direct evidence for a postnatal component of testosterone-dependent defeminization of receptivity in male pigs.  相似文献   

2.
To gain information on possible hormonal correlates, the aggressive behavior of intact female hamsters towards males was observed at various times during the estrous cycle, pseudopregnancy, pregnancy, and lactation. For methodological information, estrous cycle females also were tested after varying periods of social isolation. It was found that pregnant and especially lactating hamsters were more aggressive than pseudopregnant or estrous cycling females. Comparisons of days within each reproductive condition showed that aggression tended to be higher on certain days: the day preceding behavioral estrus of the estrous cycle, Day 10 of pregnancy, and the first 5 days of lactation. Except for pseudopregnancy, sexual behavior unaccompanied by aggression occurred at some time during all reproductive conditions, and both sexual behavior and aggression were found to occur together on Day 10 of pregnancy and Day 1 of lactation. The changes in aggressive behavior associated with reproductive states were attributed to increased male interest, inhibition by ovarian hormones, and facilitation by prolactin. Increasing periods of social isolation also were found to be associated with increased aggression. It was suggested that this effect, too. might have been due to increased prolactin levels.  相似文献   

3.
Hysterectomy during the last half of pregnancy (i.e., Day 10–19) induces a rapid onset of maternal behavior; ovariectomy in addition to hysterectomy, prevents this effect. Estradiol and progesterone were tested for their ability to restore short-latency maternal behavior in hysterectomized-ovariectomized (HO) females operated on the 10th, 13th, 16th and 19th days of pregnancy. A single injection of either 20 μg/kg or 100 μg/kg estradiol benzoate (EB) immediately following HO either alone or followed by 0.5 mg progesterone (P) 44 hr later restored short-latency maternal behavior similar to that observed following hysterectomy only. The lower dose of EB was found to be equally effective at all stages of pregnancy and P was unnecessary to induce maternal behavior. The effectiveness of EB in inducing maternal behavior was discussed in relation to the hormonal changes which follow hysterectomy during pregnancy and to those which are associated with the normal onset of maternal behavior around parturition.  相似文献   

4.
Daily plasma progesterone (P(4)) was determined during one estrous cycle of 19 cows and 18 heifers of four different breeds: Holstein (H), Brahman (B), Carora-type (C) and crossbred (CB) females. Estrus detection was made by visual observation and using a teaser bull with a chin-ball marker. The P(4) profiles showed no differences among groups. In Group 1 (H), P(4) levels ranged from 0.5 ng/ml plasma on the day of estrus (Day 0) to 5.1 ng/ml at the luteal phase peak (Day 13). In Group 2 (B), P(4) levels ranged from 0.5 ng/ml on Day 0 to 9.2 ng/ml on Day 13. In Groups 3 (C) and 4 (CB), P(4) levels ranged from 0.5 ng/ml, on Day 0, to 13.7 ng/ml on Day 12 and 8.8 ng/ml on Day 13. These last two groups were moved to the same location and then compared. It was found that P(4) concentrations were significantly higher (P < 0.025) in Group 3 between Days 7 and 14 of the estrous cycle. In all groups, P(4) levels were lower than 1 ng/ml one day before the next estrus, and levels of 0.4, 0.5, 0.4 and 0.4 ng/ml were obtained the day of estrus in Groups 1 to 4, respectively. Results indicated that the pattern of P(4) for each one of the groups was similar to those reported by other investigators.  相似文献   

5.
Reproductive behavior and organ weights in intact estrous and diestrous, and in ovariectomized treated and untreated female collared lemmings (Dicrostonyx groenlandicus) were examined. Sexual behavior of intact diestrous and untreated ovariectomized females was similar, and females in both groups behaved differently from intact estrous females in scores for lordosis and mounting the male. Receptivity was observed in some females within 3 days after the first daily dose of as little as 0.1 μg of estradiol benzoate (EB) and in 83% of all females treated with 0.1 μg or more of EB for 5 days. Vaginal perforation and cornification were related to the dose of EB and length of treatment. The doses of EB used were not related to the lordosis quotient. Ovariectomy and subsequent EB treatment influenced uterine but not preputial gland weight. Adrenal weight was not influenced by ovariectomy or EB treatment, but the increased adrenal weights observed may have been related to the daily pairing of females with males.  相似文献   

6.
The activity of mitochondrial superoxide dismutase (MnSOD) and cytosol superoxide dismutase (CuZnSOD) was measured in corresponding subcellular fractions prepared from the thymi of intact and chronically gonadectomized (GX) rats of both sexes, as well as of GX male and female rats injected subcutaneously with a single dose of 5 microg estradiol benzoate (EB) and/or 2 mg progesterone (P). Animals were sacrificed 2 h or 24 h following hormone treatment. In the females, the activity of MnSOD in the thymus was stable during the estrous cycle and did not change after ovariectomy. Treatment of GX females with estradiol benzoate resulted 2 h later in a significant elevation of MnSOD activity, whereas 24 h later the activity returned back to control values. On the other hand, treatment of GX females with progesterone had no effect on the MnSOD activity. However, combined hormone treatment, in which EB injection preceded progesterone injection by one hour, enhanced the effect on MnSOD activity similar to that of estradiol benzoate alone. The activity of CuZnSOD in cycling rats was increased in proestrus, whereas removal of the ovaries kept the values at low diestrus and estrus levels. Contrary to MnSOD, CuZnSOD activity did not change after EB treatment of GX females, while progesterone increased the enzyme activity at 2 h and 24 h after hormone treatment. However, combined EB+P treatment proved to be ineffective. In the males, neither MnSOD nor CuZnSOD activity was affected by the removal of testes or by progesterone treatment of GX animals. Only EB injection to GX rats significantly increased CuZnSOD activity 24 h later.  相似文献   

7.
Porcupines are sexually active throughout the estrous cycle, and sexual behavior is not affected by the reproductive status and hormonal milieu of females. Increased female-male interactions during estrus are the only indications of behavioral changes during estrus. The lack of aggression shown by females to known males as opposed to aggression shown to strange males, the greater interest shown by males toward certain females, and the superior breeding success of these females suggest a pair-bonding mating system. Limited changes in female receptivity throughout the cycle might be of importance in maintaining the pair-bond.  相似文献   

8.
Male and female hamsters differ in the stimulus control of the ultrasounds they produce during courtship and mating. In particular, untreated males show greater increases in ultrasound rate after exposure to stimulus females than after contact with other males. Conversely, estrous females are more responsive to stimulus males than females. This sex difference reflects both organizational and activational effects of gonadal hormones. Thus, responses to early castration or treatment with testosterone propionate (TP), estradiol benzoate (EB), or dihydrotestosterone propionate suggest that the development of male-like patterns of ultrasound production is facilitated by perinatal exposure to aromatizable androgen. However, even neonatally feminized subjects will show male-like calling if tested during adult treatment with TP. In contrast, the same subjects respond like naturally estrous females during adult treatment with EB plus progesterone (P). The contrasting responses of neonatally feminized subjects to later TP and EB + P treatments suggest that female hamsters retain a greater capacity for heterotypical patterns of ultrasound production than do males. This obviously differs from the common observation of greater "bipotentiality" for mating behavior in males. In turn, this suggests that the mechanisms controlling sexual bipotentiality are specific to their target behaviors, yielding distinct patterns of hormonal control for at least ultrasound production and lordosis.  相似文献   

9.
Deer are sensitive to stressful stimuli by handling and their reproductive physiology could be altered by these procedures, making it necessary to develop less invasive protocols for ART. Melengestrol acetate (MGA), a synthetic progestin administered orally, appears as an alternative for estrous synchronization protocols (ESP), such as reported in cattle. Firstly, we compared two MGA doses (0.5 and 1.0 mg/day/animal), which would have suppression effect in estrous behavior (EB). Eight females were randomly and equally distributed in Group 1 (G1) and Group 2 (G2), which received 0.5 and 1.0 mg/day/animal respectively for 15 days (D1 to D15). Two cloprostenol (CP) applications were performed on D0 and D11. Estrus detection (ED) was performed every day. All females from G1 displayed estrus during treatment period, whereas all females from G2 displayed estrus after treatment, suggesting a suppressive effect of 1.0 mg in the EB. Once the suppressive MGA dose (1.0 mg) was defined, we used this dose for assessing ESP. The same eight females received 1.0 mg/animal for eight days (D-8 to D-1), followed by 0.25 mg of estradiol benzoate on D-8 and 265 μg of CP on D0. Feces for fecal progesterone metabolites (FPM) measurement were collected from D0 until seven days after the last day of estrus. Seven females displayed estrus between 12 and 72 h after CP application, which was followed by a significant increase in FPM levels (except female MG6), suggesting the formation of corpus luteum. After ED, females were placed with a fertile male to assess the fertility of the protocol. Pregnancy was confirmed by ultrasound 30 days after mating in 3/6 individuals. Although the low effectiveness of MGA protocol, it should be considered as a promising alternative in deer ESP since this protocol has less stressful effect on the animal during reproductive management when compared to other ESP.  相似文献   

10.
Multiparous lactating beef cows were observed for estrus and randomly assigned to one of four Luprostiol (13, thia-PG-F(2)alpha analog) treatment groups receiving 3.8 (LI), 7.5 (LII), 15 (LIII) or 30 (LIV) mg Luprostiol, respectively, or to an untreated control group (C), or to a positive control group (E) receiving 500 mcg Estrumate. Cows received their respective treatments in a single dosage on Day 7, 8 or 9 of the estrous cycle (estrus = Day 0) and were artificially inseminated 12 h following the subsequent estrus. Blood samples were collected from all groups immediately prior to treatment and at 12-h intervals to 48 h post treatment and analyzed for progesterone (P(4)). Blood samples were collected at 3-h intervals from 24 to 72 h post treatment for animals in Group LIII and for 48 h (or observed estrus) starting on Day 19 of the estrous cycle for animals in Group C. These samples were analyzed for estradiol-17beta(E(2)), follicle stimulating hormone (FSH) and luteinizing hormone (LH). Treatment with Luprostiol at doses >/= 7.5 mg resulted in a synchronous estrous response during the first 5 d post treatment in 75 to 95% of cows treated. Luteal function, as evaluated by systemic P(4) concentration, paralleled results observed for estrous response. Treatment with a 15 or 30 mg dose of Luprostiol resulted in greater overall pregnancy rate at synchronized estrus. No biologically significant differences were found in blood levels of E(2), FSH or LH around the time of estrus between cows in Groups C and LIII. Results from these studies indicate treatment with Luprostiol at doses >/= 7.5 mg resulted in a synchronous estrus during the first 5 d after treatment. Pregnancy rates and endocrine changes were similar to those observed in control and Estrumate-treated cows.  相似文献   

11.
The induction of optimal synchrony of estrus in cows requires synchronization of luteolysis and of the waves of follicular growth (follicular waves). The aim of this study was to determine whether hormonal treatments aimed at synchronizing follicular waves improved the synchrony of prostaglandin (PG)-induced estrus. In Experiment 1, cows were treated on Day 5 of the estrous cycle with saline in Group 1 (n = 25; 16 ml, i.v., 12 h apart), with hCG in Group 2 (n = 27; 3000 IU, i.v.), or with hCG and bovine follicular fluid (bFF) in Group 3 (n = 21; 16 ml, i.v., 12 h apart). On Day 12, all cows were treated with prostaglandin (PG; 500 micrograms cloprostenol, i.m.). In Experiment 2, cows were treated on Day 5 of the estrous cycle with saline (3 ml, i.m.) in Group 1 (n = 22) or with hCG (3000 IU, i.v.) in Group 2 (n = 20) and Group 3 (n = 22). On Day 12, the cows were treated with PG (500 micrograms in Groups 1 and 2; 1000 micrograms in Group 3). Blood samples for progesterone (P4) determination were collected on Day 12 (Experiment 1) or on Days 12 and 14 (Experiment 2). Cows were fitted with heat mount detectors and observed twice a day for signs of estrus. Four cows in Experiment 1 (1 cow each from Groups 1 and 2; 2 cows from Group 3) had plasma P4 concentrations below 1 ng/ml on Day 12 and were excluded from the analyses. In Experiment 1, cows treated with hCG or hCG + bFF had a more variable (P = 0.0007, P = 0.0005) day of occurrence of and a longer interval to estrus (5.9 +/- 0.7 d, P = 0.003 and 6.2 +/- 0.8 d, P = 0.005) than saline-treated cows (3.4 +/- 0.4 d). The plasma P4 concentrations on Day 12 were higher (P < 0.0001) in hCG- and in hCG + bFF-treated cows than in saline-treated cows (9.4 +/- 0.75 and 8.5 +/- 0.75 vs 4.1 +/- 0.27 ng/ml), but there was no correlation (P > 0.05) between plasma P4 concentrations and the interval to estrus. In Experiment 2, cows treated with hCG/500PG and hCG/1000PG had a more variable (P = 0.0007, P = 0.002) day of occurrence of and a longer interval to estrus (4.2 +/- 0.4 d, P = 0.04; 4.1 +/- 0.4 d, P = 0.03) than saline/500PG-treated cows (3.2 +/- 0.1 d). The concentrations of plasma P4 on Days 12 and 14 of both hCG/500PG- and hCG/1000PG-treated cows were higher (P < 0.05) than in saline/500PG-treated cows (7.3 +/- 0.64, 0.7 +/- 0.08 and 7.7 +/- 0.49, 0.7 +/- 0.06 vs 5.3 +/- 0.37, 0.5 +/- 0.03 ng/ml). The concentrations of plasma P4 on Days 12 or 14 and the interval to estrus were not correlated (P > 0.05) in any treatment group. The concentrations of plasma P4 on Days 12 and 14 of hCG/500PG- or hCG/1000PG-treated cows were correlated (r = 0.65, P < 0.05; r = 0.50, P < 0.05). This study indicated that treatment of cows with hCG on Day 5 of the estrous cycle reduced the synchrony of PG-induced estrus and that this reduction was not due to the failure of luteal regression.  相似文献   

12.
The objectives of the present study were to investigate the effects of the stage of the estrous cycle at the start of an estradiol benzoate (EB) and progesterone (P) based treatment protocol on new follicular wave emergence, subsequent estrus and ovulation. The experiment was conducted using a crossover design with each cow (five cross-bred cows) being assigned to one of three groups at 3-month intervals within a 1-year period. Estrous cycle stage in individual cows was initially synchronized with prostaglandin F(2)alpha. After detection of estrus, each cow was injected intramuscularly (i.m.) with 2 mg EB and 200 mg P (EB/P) on day 5, 12 or 17 of the estrous cycle (estrus=day 0), followed by 1 mg EB i.m. 12 days after the EB/P treatment. Ovarian ultrasonographic examinations showed that the emergence of a new follicular wave occurred after EB/P treatment in all groups and the mean interval from EB/P treatment to wave emergence did not differ among the groups (3.2-3.8 days). All cows in each group exhibited behavioral estrus and ovulated the newly formed dominant follicle. However, cows in the day-17 group exhibited estrus 1-3 days before the second EB injection. The concentrations of progesterone showed faster reduction, during the treatment period, in the day-12 and -17 groups compared to the day-5 group. These results indicate that the EB/P treatment induces an emergence of a new follicular wave, irrespective of the estrous cycle stage at the start of treatment, but the effect of EB/P protocol on estrous/ovulation synchronization is influenced by the stage of the estrous cycle.  相似文献   

13.
The present studies were designed to characterize the gonadotropin response to exogenous steroids in neonatally androgenized female rats in various states of reproductive decline. Female rats were androgenized by the administration of a single injection of testosterone propionate (TP) (10 or 100 micrograms) at 5 days of age. Control rats received sesame oil. Treatment with 100 micrograms TP resulted in persistent vaginal estrus (PVE) from the onset of vaginal introitus. Treatment with 10 micrograms TP resulted in a period of regular estrous cyclicity followed by PVE. In the first experiment, all animals were ovariectomized between the ages of 60-85 days and the gonadotropin response to exogenously administered estradiol benzoate (EB) (10 micrograms/100 g BW) and progesterone (P) (2 mg/animal) was determined. When testing began 3 days following ovariectomy, control females exhibited significant (P less than 0.01) afternoon elevations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) following EB, which were further amplified following P. When ovariectomy occurred prior to the onset of PVE (PRE PVE), lightly androgenized females (10 micrograms TP) showed no significant afternoon gonadotropin increase following EB. Following P, phasic LH secretion was present but significantly (P less than 0.01) decreased in amplitude and delayed in onset versus that of control females. When ovariectomy occurred 3 to 4 wk following the onset of PVE, lightly androgenized females (PVE group) as well as fully androgenized females (FAS) (100 micrograms TP) showed no gonadotropin response to steroid priming.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ovarian steroids and oxytocin (OT) have been implicated in the regulation of social behaviors. The purpose of the present study was to examine hormonal substrates of aggression and affiliation in the female Mongolian gerbil (Meriones unguiculatus), a highly social, monogamous rodent. Sexually naive adult females were paired with sexually experienced males for 48 h and their interactions videotaped. Females were gonadally intact and tested during vaginal estrus (INT) or ovariectomized and observed after the following treatments, administered by means of sc injections: EBEB (7 days of estradiol-benzoate); EBP (2 days of EB followed by progesterone), SALEB (saline, days 1-5 then 2 days of EB), OTEB (OT for days 1-5 then 2 days of EB); OTOIL (OT for days 1-5 then 2 days of OIL); or SALOIL (saline days 1-5 then 2 days of OIL). During the first hour of pairing INT females displayed higher levels of affiliation and lower levels of sniffing and agonistic behavior than SALOIL females. All hormonal treatments reduced agonistic behaviors when compared to SALOIL, although none of the hormonal treatments restored affiliation to INT levels. During the 48-h test overt aggression varied by treatment with INT, EBEB, EBP, and OTEB females displaying lower levels than SALOIL, while all groups displayed similar levels of affiliation. The results indicate that OT and E play a significant role in regulating male-directed aggressive behavior in females and that the presence of ovarian hormones as well as OT can increase affiliation during initial contact. Over a sustained period of cohabitation social cues appear to be more important in regulating affiliation than gonadal hormones.  相似文献   

15.
Two studies examined the roles of estrogen with progesterone and of estrogen alone on the proceptive and receptive behavior of female hamsters. Proceptivity was measured in terms of proximity (approaching, leaving, and following by the female) and in time spent sniffing the male partner. During the 4-day natural estrous cycle, these measures change systematically although lordosis is seen only on Day 1 (estrus). With a constant dose of progesterone, both proceptive and receptive behavior were found to be estrogen dose dependent in ovariectomized females. At estrogen levels too low to induce lordosis, changes in proceptive behavior were seen; at the two highest levels of estrogen, lordosis was maximal but proceptive behavior continued to increase. With estrogen alone, levels of proceptive behavior were attained characteristic both of estrus and of the higher estrogen and progesterone dosage but were not accompanied by spontaneous lordosis. Factors indicating that proceptivity and receptivity may be under separate hormonal and neural control are discussed.  相似文献   

16.
The objective of this experiment was to determine whether seasonal differences existed in estrous and LH responses to estradiol benzoate (EB) in ovariectomized sows. Sows were ovariectomized after weaning their first litter, and treatment was begun 120 d after ovariectomy. Sows were given 400 mug EB intramuscularly (i.m.) on July 24, 1982 (summer), October 24, 1984 (fall), January 29, 1985 (winter), and March 27, 1985 (spring). Beginning 24 h after EB, sows were checked for estrus four times daily. Proportion in estrus was affected by season, with all sows exhibiting estrus within 5 d after EB in summer, winter, and spring. Only three of five sows exhibited estrus within 5 d after EB in fall. Interval (h) to estrus was delayed in fall (80 h) compared to other seasons (62.6 h; SEM = 4.5). Concentrations of LH were suppressed within 6 h after EB in all seasons but rebounded to pre-injection levels more slowly in fall and spring than in winter and summer. Frequency of LH peaks (3.2 +/- .4 4 h ) was not affected by season, but amplitude (1.9 vs 0.9 ng/ml) and baseline (2.7 vs 1.6 ng/ml) were greater (P < 0.05) for summer than for the other seasons combined. At 6 h after injection, concentrations of estradiol-17beta (pg/ml) were greater in summer (58.3) than in fall (19.0), winter (32.4), or spring (16.6; SEM = 10.4). We conclude that environmental factors associated with season alter responsiveness of the brain to estradiol, thereby controlling sexual behavior and LH secretion.  相似文献   

17.
The injection before Day 12 of incubation of estradiol benzoate (EB) into Japanese quail eggs produces a complete behavioral demasculinization of adult males that will hatch from these eggs. These males never show copulatory behavior even after administration of high levels of exogenous testosterone (T). It is usually assumed that such a demasculinization normally takes place in female embryos under the influence of endogenous estrogens but few experimental data are available to confirm the validity of this model. A series of four experiments was performed during which R76713, a triazole derivative that specifically inhibits aromatase (estrogen synthetase) activity, was injected into quail eggs at different stages of incubation to prevent the production of endogenous estrogens. The consequences of these embryonic treatments on the T-activated sexual behavior in adults were then quantified. When injected before Day 12 of incubation, R76713 completely blocked the behavioral demasculinization of females without affecting the behavior of the males. After a treatment with T, almost all R76713-treated females showed as adults a masculine copulatory behavior that was undistinguishable from the behavior of intact males. This effect was fully reversed by the injection in egg of EB demonstrating that the effects of R76713 were specifically due to the suppression of endogenous estrogens. Injection of R76713 during the late phase of the incubation (Day 12 or Day 15) only maintained weak copulatory behavior in females which confirmed that the behavioral demasculinization in quail takes place mainly though not exclusively during the early stages of ontogeny. In a last experiment, we combined an early R76713 treatment with an injection of EB either on Day 9 or on Day 14 of incubation. This showed that the sensitivity to differentiating effects of estrogens varies with age in a sexually differentiated manner. The EB injection on Day 9 demasculinized both male and female embryos. If this injection was delayed until Day 14, it was no longer effective in males but still caused a partial demasculinization of females. This demonstrates that even if females are not yet behaviorally demasculinized on Day 9 of incubation (suppression of aromatase activity at that age will maintain the behavior), their sensitivity to estrogens is already different from that of males.  相似文献   

18.
Mares at Day 42 of pregnancy received daily intramuscular (i.m.) injection of 5 mg of prostaglandin F2alpha (PGF(2alpha)) until the beginning of the first (Group I, n = 3) or second estrous cycle (Group II, n = 2). All mares aborted 3 to 4 d after the first injection; they displayed estrus 2 to 6 d after this injection. As determined by palpation per rectum and serum progesterone levels, each estrus was accompanied by an ovulation. Endometrial cups did not regress after PGF(2alpha) treatment since serum samples from the mares contained pregnant mare serum gonadotropin (PMSG) for at least 30 d after first injection, as determined by mare immunopregnancy test. After the first estrus, two of three mares in Group I displayed a prolonged diestrus (> 25 d). In contrast, the first estrous cycle was short (8 to 12 d) for mares in Group II. Serum progesterone levels in the first 6 d postovulation were lower (P < 0.05) for Group II than for Group I, indicating that formation of the corpus luteum was impaired by daily injections of PGF(2). Results indicate that 1) daily injections of PGF(2alpha) can induce abortion in mares at Day 42 of pregnancy, 2) abortion is followed by estrus and ovulation, 3) the endometrial cups do not regress as a result of this treatment, and 4) daily injections of PGF(2) can impair early corpus luteum development.  相似文献   

19.
Ovulatory responses following FSH treatment were examined in beef heifers fed dietary fat supplements expected to produce differential effects on serum insulin concentrations and follicular recruitment patterns. Twenty-one heifers (n = 7/group) exhibiting regular estrous cycles were assigned randomly to either a control diet or to 1 of 2 fat-supplemented diets consisting of soybean oil (polyunsaturated fatty acids) or animal tallow (saturated fatty acids). The diets were formulated to be isoenergetic and isonitrogenous, and were fed until ovariectomy between experimental Days 35 and 45. Experimental Day 1 was defined for each heifer as the first day all of the treatment diet was consumed. After 20 d of diet consumption, estrous cycles were synchronized with prostaglandin F(2alpha) (PGF(2alpha)), and ovarian follicle populations were monitored via transrectal ultrasound for 4 d. Four days after estrus, the dominant follicle was aspirated and heifers were treated with FSH-P to induce superovulation. Ovulation rate was determined at ovariectomy 5 d after the superovulatory estrus (experimental Days 35 to 45). Both soybean oil and animal tallow diets increased (P < 0.05) the number of medium-sized follicles and increased (P < 0.02) serum concentrations of GH relative to the control diet. The soybean oil diet also increased (P < 0.001) serum concentrations of insulin on Days 14, 28, and 5 d after the superovulatory estrus. However, the number of ovulations following FSH treatment did not differ due to diet. Procedures employed in the current study were ineffective in recruiting the increased number of medium-sized follicles into the superovulatory pool.  相似文献   

20.
Xu ZZ  Burton LJ 《Theriogenology》1998,50(6):905-915
In a previous study we showed that estrus synchronization with 2 treatments of PGF2 alpha 13 d apart reduced conception rate at the synchronized estrus and that this reduction occurred mainly in cows in the early luteal phase at the second PGF2 alpha treatment. The objective of the present study was to determine the efficacy of a synchronization regimen in which PGF2 alpha was administered during the mid- to late-luteal phase to cows that had previously been synchronized with progesterone. Spring-calving cows from 6 dairy herds were used in this study. On Day -32 (Day 1 = the start of the breeding season), cows that had calved 2 or more weeks ago were randomly assigned to a synchronization (S, n = 732) or control (C, n = 731) group. Cows in Group S were treated with an intravaginal progesterone device (CIDR) for 12 d from Day -32 to Day -20, while those in Group C were left untreated. Similar percentages of cows in Group S (80.6%) and C (82.9%) had cycled by Day -7. The CIDR treatment synchronized the onset of estrus, resulting in 92.9% of cows in estrus being detected within 7 d after CIDR removal. Cows in Group S that had cycled by Day -7 were treated with PGF2 alpha (25 mg, i.m., Lutalyse) on Day -2. Cows in both groups that were anestrous on Day -7 were treated with a combination of progesterone and estradiol benzoate (EB) to induce estrus and ovulation (CIDR and a 10 mg EB capsule on Day -7, CIDR removal on Day -2, and injection of 1 mg EB 48 h after CIDR removal). The PGF2 alpha treatment synchronized the onset of estrus in 87.5% of the cows. Group S and C cows had similar conception rates to first (61.0 vs 58.3%) and second (58.4 vs 60.9%) AI; similar pregnancy rates over the AI period (82.8 vs 79.2%) and over the whole breeding season (91.9 vs 90.6%); and required a similar number of services per pregnancy to AI (1.7 vs 1.8). The interval from the start of the breeding season to conception for cows conceiving to AI or to combined AI and natural mating was shorter (P < 0.001) by 5.7 and 6.2 d, respectively, for the Group S cows. It is concluded that the treatment regimen tested in the present study achieved satisfactory estrus synchronization, had no detrimental effect on fertility at the synchronized estrus, and shortened the interval from start of the breeding season to conception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号