首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundOsteoporosis is a major health problem in postmenopausal women, and characterized by deteriorated bone mass and micro-architecture. There have been some clinical trials demonstrating the beneficial effects of vitamin-D and some trace elements on calcium absorption and attenuation of osteoporosis development. However, effects of the combination of vitamin-D and zinc on calcium absorption and osteoporosis have not been adequately investigated.MethodsNetwork pharmacology was first performed to explore possible correlations between calcium/vitamin D/zinc and osteoporosis. Forty-nine female Sprague-Dawley rats (6 months old, 250 ± 20 g) were randomized into 7 experimental groups with 7 animals per group for the in vivo study, including one sham surgery control group, one ovariectomizing (OVX) group, and 5 OVX plus treatment groups. At the end of animal experiment, animal tibia and femur leg bones and blood were collected for H&E staining, bone microstructure analysis by a micro-CT, measurement of bone and serum Ca, P and Zn concentrations, and immunohistochemical detection of macrophage-colony stimulating factor receptor (M-CSFR) and receptor activator of nuclear factor-kappa B ligand (RANKL).ResultsThe network pharmacology analysis identified 57 candidate targets that were related to the osteoporosis-Ca/VitD/Zn interconnections. Further pathway analysis suggested that the combined treatment of Ca, VitD and Zn attenuated osteoporosis via modulation of metabolic pathways. We found that a therapy with Ca/VitD-M/Zn-M (73 mg/kg/day Ca, 0.6 g/kg/day VitD3 and 0.6 mg/kg/day zinc citrate) could significantly suppress the progression of osteoporosis in rats. After the Ca/VitD-M/Zn-M treatment, the ratio of bone volume/tissue volume, trabecular number and the trabecular thickness were all significantly elevated while the extent of trabecular separation was significantly reduced. Additionally, both serum calcium and bone calcium levels were significantly upregulated by the Ca/VitD/Zn treatment in a dose-dependent manner. The combination of Ca/VitD-M/Zn-M was superiou to either Ca/VitD-L/Zn-L or Ca/VitD-H/Zn-H treatment for such an effect. Moreover, the osteoporosis-associated M-CSFR and RANKL factors were both significantly downregulated by the Ca/VitD-M/Zn-M treatment in bone tissues of OVX rats.ConclusionsThe combined supplement of VitD and Zn facilitates the Ca(2 +) absorption and attenuates the development of osteoporosis via down-regulation of osteoporosis-associated factors M-CSFR and RANKL, thus potentially constitutes an alternative therapy for the postmenopausal osteoporosis.  相似文献   

2.
145 women showing clinical and radiological signs of involutional osteoporosis of the spine were biopsed at the ilium for histomorphometric analysis of bone mass including trabecular bone volume and parameters reflecting the spatial distribution of bony elements (mean trabecular plate thickness, density and separation). Results were compared with an age-matched population of 22 healthy females. Postmenopausal osteoporotics (i.e. younger than 75 years) were characterized by a significant reduction in trabecular bone volume, plate density and thickness, while senile osteoporotics (i.e. older than 75 years) did not exhibit any difference with controls. 51% of the osteoporotic patients had a trabecular bone volume higher than the spontaneous vertebral crush threshold defined by Meunier. Osteoporotic patients with trabecular bone volume under the vertebral crush threshold had a significant decrease in all trabecular parameters. On the opposite, patients with trabecular bone volume above the vertebral crush threshold had only a significant decrease in the number of trabeculae. A negative correlation was found between age and plate density in both osteoporotic patients and controls. A linear correlation was found between trabecular bone volume and plate density, but thickness and density of trabecular plates were not correlated. This study confirms that involutional osteoporosis is not only a decreased bone mass disorder. A modified spatial distribution of trabeculae or a mechanically less resistant bone matrix could be additional factors.  相似文献   

3.
The use of calcium supplements to prevent postmenopausal bone loss and hence osteoporosis is widespread, but the evidence for their efficacy, either alone or in combination with other treatments, is contradictory. Skeletal measurements and dietary intake of calcium were determined in 59 healthy postmenopausal women, most of whom were within five years of the menopause. No correlation was found between current intake of calcium and either total calcium in the body or the density of trabecular or cortical bone in the forearm or vertebral trabecular bone. Dietary intake of calcium did not influence the rate of postmenopausal bone loss in the 54 women who completed 12 months of active or placebo treatment. Even when extremes of calcium intake were examined no difference was found in bone measurements between the women with the highest and lowest intakes. The results of this study suggest that the bone density of women in the early menopause is not influenced by current dietary intake of calcium.  相似文献   

4.
Osteoporosis most commonly affects postmenopausal women. Although men are also affected, women over 65 are 6 times more likely to develop osteoporosis than men of the same age. This is largely due to accelerated bone remodeling after menopause; however, the peak bone mass attained during young adulthood also plays an important role in osteoporosis risk. Multiple studies have demonstrated sexual dimorphisms in peak bone mass, and additionally, the female skeleton is significantly altered during pregnancy/lactation. Although clinical studies suggest that a reproductive history does not increase the risk of developing postmenopausal osteoporosis, reproduction has been shown to induce long-lasting alterations in maternal bone structure and mechanics, and the effects of pregnancy and lactation on maternal peak bone quality are not well understood. This study compared the structural and mechanical properties of male, virgin female, and post-reproductive female rat bone at multiple skeletal sites and at three different ages. We found that virgin females had a larger quantity of trabecular bone with greater trabecular number and more plate-like morphology, and, relative to their body weight, had a greater cortical bone size and greater bone strength than males. Post-reproductive females had altered trabecular microarchitecture relative to virgins, which was highly similar to that of male rats, and showed similar cortical bone size and bone mechanics to virgin females. This suggests that, to compensate for future reproductive bone losses, females may start off with more trabecular bone than is mechanically necessary, which may explain the paradox that reproduction induces long-lasting changes in maternal bone without increasing postmenopausal fracture risk.  相似文献   

5.
OBJECTIVE--To study the dose related response of salmon calcitonin (salcatonin) given intranasally on bone mass and bone turnover and the effect of salcatonin on rates of fracture in elderly women with moderate osteoporosis. DESIGN--Double blind, placebo controlled, randomised group comparison. SETTING--Outpatient clinic for research into osteoporosis. SUBJECTS--208 healthy women aged 68-72 years who had a bone mineral content of the distal forearm on average 30% below the mean value for healthy premenopausal women. INTERVENTIONS--The 208 women were allocated randomly in blocks of four to two years of treatment with either salcatonin 50 IU, 100 IU, or 200 IU given intranasally or placebo. All groups received a calcium supplement of 500 mg. 32 of the women left the study before its end and 164 women complied with the study criteria throughout. MAIN OUTCOME MEASURES--Bone mineral content of the distal forearm and lumbar spine and rates of vertebral and peripheral fractures after two years of treatment. RESULTS--The average changes in bone mineral content of the spine showed positive outcomes of 1% (95% confidence interval -0.1% to 1.5%) in the group treated with calcium (placebo) and 3% (1.8% to 4.2%) in the group treated with salcatonin 200 IU. There was a significant dose related response to salcatonin, manifested by an increase of 1.0%/100 IU (0.2% to 1.7%, p = 0.008). The rate of patients with new fractures was reduced significantly in the women treated with salcatonin to about one third of that in the non-salcatonin treated women (relative risk 0.23 (0.07 to 0.77)). CONCLUSION--The results suggest that, compared with calcium alone, salcatonin given intranasally reduces the rates of fracture by two thirds in elderly women with moderate osteoporosis. Furthermore, it increases spinal bone mass in a dose dependent manner.  相似文献   

6.
The balance of data suggests that calcium intake has a positive influence on bone mass in premenopausal women and has a preventive effect on the rate of bone loss in postmenopausal women. Even small advantages in bone mass provide great reductions in fracture rates. However, the majority of studies have tested the relationship of calcium intake and bone mass using calcium supplements. Few intervention studies have manipulated calcium intake through foods. Calcium is only useful to the skeleton once it is absorbed. Therefore, the bioavailability of dietary calcium becomes important in the prevention and treatment of osteoporosis. Isotopic tracer techniques have only recently been employed in the labeling of foods with calcium isotopes for evaluation of calcium absorption. Milk calcium is usually the referent food which is typically absorbed at 20-40% depending on the calcium status of the subject. The absorptive efficiency of most vegetable sources is as good or better than for dairy foods, unless they have high concentrations of oxalic acid (spinach, for example) or phytic acid (wheat bran cereal, for example). Few vegetable sources are concentrated sources of calcium. Therefore, it would be difficult to obtain adequate intakes of calcium to protect against osteoporosis without liberal use of dairy products in the diet. Alternately, calcium supplements provide concentrated amounts of absorbable calcium, but they do not provide other nutrients necessary for skeletal growth and maintenance.  相似文献   

7.
OBJECTIVE--To evaluate the need for a randomised study of treatment of spinal osteoporosis with human parathyroid peptide in the secondary prevention of crush fractures; to study the effect of human parathyroid hormone peptide 1-34 plus sex hormones on vertebral body cancellous bone; and, separately, to determine the effect of relatively low doses of sodium fluoride plus calcium on spinal bone mineral density. DESIGN--Open study of patients with primary or postmenopausal osteoporosis. All patients had serial bone densitometry of the spine by quantitative computed tomography and dual photon absorptiometry as well as serial densitometry of the radial midshaft (cortical) and radial distal (trabecular) bone by quantitative computed tomography. Changes in the spinal bone not forming the spongiosa of the vertebral bodies ("cortical" bone) were determined from the difference between the two axial measurements, after correction to the same units of measurement. SETTING--Northwick Park Hospital and Medical Research Council Clinical Research Centre. PATIENTS--24 Patients who fulfilled the conventional criteria for type 1 (vertebral) osteoporosis not secondary to recognised causes other than sex hormone deficiency and with at least one crush or wedge vertebral fracture and a spinal bone density (quantitative computed tomography) less than 80 mg/cm3 or two or more fractures. Twelve patients received human parathyroid peptide and 12 sodium fluoride; they were not randomised. MAIN OUTCOME MEASURES--Trends in axial and peripheral bone mass values determined by linear, time dependent regression analyses. RESULTS--The patients receiving the peptide showed a substantial increase in vertebral spongiosa (mean 25.6 mg/cm2 two years after the start of treatment). No significant changes were seen in spinal cortical or radial bone density. The patients receiving sodium fluoride showed roughly equal increases in cancellous and cortical bone over the same period (mean increase in vertebral spongiosa 16.1 mg/cm3). No significant changes were seen in radial bone. CONCLUSIONS--Treatment of postmenopausal women with human parathyroid peptide selectively increases spinal cancellous bone density by amounts that may prove useful in secondary prevention. Peptide treatment should now be tested in a randomised study in which the important end point is prevention of fractures as the usefulness of sodium fluoride in this context is doubtful.  相似文献   

8.
Environmental cadmium exposure and forearm bone density   总被引:3,自引:0,他引:3  
Environmental exposure to cadmium may give rise to osteomalacia combined with renal dysfunction, so called 'Itai-Itai disease', which was endemic in the heavily polluted area in Japan. The main focus of this study was to investigate whether environmental exposure to cadmium is associated with low bone mass in a population living near a smelter. A total of 790 persons (302 males and 488 females), who were all over 35 years old and resided in areas near a lead, zinc and cadmium smelter and in a control area in southeast China, completed a questionnaire, and bone mineral density was measured by SPA-4 single photon absorptiometry at the radius and ulna. Cadmium content of urine was determined by graphite-furnace atomic absorption spectrophotometry as a measure of dose. The present study shows that forearm bone densities were negatively correlated with urinary cadmium excretion (p < 0.001) and forearm bone density decreased linearly with age (p < 0.001) and urinary cadmium (p < 0.01), suggesting a dose-effect relationship between cadmium dose and bone mineral density. Based on the World Health Organization criteria, (bone mineral density < -2.5 SDs below the normal young adult), the prevalence of osteoporosis in women increased from 34.0% in the control area to 51.9% in the heavily polluted area (p < 0.01) among subjects over 50 years old, and the odds ratio value was 2.09 (95% CI: 1.08-4.03) for the highly polluted area compared with the control area. A striking observation in the study was a marked increase of the prevalence of fracture in the cadmium-polluted area in both sexes. It was concluded that environmental exposure to cadmium is associated with an increased loss of bone mineral density in both gender, leading to osteoporosis and increased risk of fractures, especially in the elderly and in females.  相似文献   

9.
OBJECTIVE--To examine the role of peak bone mass and subsequent postmenopausal bone loss in the development of osteoporosis and the reliability of identifying women at risk from one bone mass measurement and one biochemical assessment of the future bone loss. DESIGN--Population based study. SETTING--Outpatient clinic for research into osteoporosis. SUBJECTS--178 healthy early postmenopausal women who had participated in a two year study in 1977. 154 of the women underwent follow up examination in 1989, of whom 33 were excluded because of diseases or taking drugs known to affect calcium metabolism. MAIN OUTCOME MEASURES--Bone mineral content of the forearm and values of biochemical markers of bone turnover. RESULTS--The average reduction in bone mineral content during 1977-89 was 20%, but the fast losers had lost 10.0% more than had the slow loser group (mean loss 26.6% in fast losers and 16.6% in slow losers; p less than 0.001). Prediction of future bone mineral content using baseline bone mineral content and estimated rate of loss gave results almost identical with the actual bone mineral content measured in 1989. Seven women had had a Colles'' fracture and 20 a spinal compression fracture. The group with Colles'' fracture had low baseline bone mineral content (34.7 (95% confidence interval 31.3 to 38.1) units v 39.4 (38.1 to 40.8) units in women with no fracture) whereas the group with spinal fracture had a normal baseline bone mineral content (38.1 (35.0 to 41.1) units) but an increased rate of loss (-2.4 (-3.5 to -1.3)%/year v -1.8 (-2.1 to -1.5)%/year in women with no fracture). CONCLUSIONS--One baseline measurement of bone mass combined with a single estimation of the rate of bone loss can reliably identify the women at menopause who are at highest risk of developing osteoporosis later in life. The rate of loss may have an independent role in likelihood of vertebral fracture.  相似文献   

10.
After baseline studies, 21 patients with osteoporosis were treated with human parathyroid hormone fragment (PTH 1-34) given as once-daily subcutaneous injections for 6-24 months. The dose used did not cause hypercalcaemia even in the first few hours after injection. Calcium and phosphate balances improved in some patients, but there was no significant improvement in the group values. There were, however, substantial increases in iliac trabecular bone volume: the mean increase, confirmed by repeat blind measurements, was 70% above mean baseline volume. The new bone was histologically normal. Those patients who had the largest increases in 47Ca-kinetic and histomorphometric indices of new bone formation showed the greatest increases in trabecular bone volume, suggesting that treatment with human parathyroid hormone fragment caused a dissociation between formation and resorption rates that was confined to trabecular bone. Since vertebrae are four-fifths composed of trabecular bone, this hormone fragment may prove useful in treating patients with the crush fracture syndrome.  相似文献   

11.
The concept of bone quality describes the sets of the characteristics of the osseous tissue that influence bone strength. The aim was to explore the influence of anthropometric parameters and age on the parameters of the bone architecture and bone mineral properties in the lumbar vertebral bone of men and women. Vertebral bone samples underwent bone histomorphometry, bone densitometry and atomic absorption spectrometry. Men have greater values of the bone volume and thicker bone trabeculae in relation to women, which indicates that vertebral bone architecture is better preserved in men than in women. Age is the best predictor of changes that affect bone architecture and bone mineral properties. Bone mineral density value and calcium concentration are both negatively predicted by age, but positively predicted by body mass index. Such result supports the opinion that low body mass index is associated with conditions of bone deficit such are osteopenia and osteoporosis.  相似文献   

12.
《Bone and mineral》1988,5(1):35-58
The use of bone mineral content (BMC) measurements to assist in the management of osteoporosis has received increasing emphasis in recent years. Although the calcaneus, an essentially trabecular bone (90–95%), has been used extensively in the NASA experiments, few data relating to primary osteoporosis have appeared in the literature until recently. This paper is a review of the methods of measurement, their precision and methods of calibration, and the relationship of calcaneal mineral content to age, height, weight, other bone sites, degree of spinal osteoporosis, metabolic bone disease and the effects of therapeutic drugs. Prospectively, calcaneal BMC relates as well as spinal BMC to osteoporotic fracture risk. It is this use of BMC measurements which has the most promise for the future. The data indicate that osteoporosis is a systemic disease and trabecular bone losses are reflected in the calcaneus as well as in the spine itself.  相似文献   

13.
Because changes in the mechanical properties of bone are closely related to trabecular bone remodeling, methods that consider the temporal morphological changes induced by adaptive remodeling of trabecular bone are needed to estimate long-term fracture risk and bone quality in osteoporosis. We simulated bone remodeling using simplified and pig trabecular bone models and estimated the morphology of healthy and osteoporotic cases. We then displayed the fracture risk of the remodeled models based on a cumulative histogram from high stress. The histogram showed more elements had higher stresses in the osteoporosis model, indicating that the osteoporosis model had a greater risk.  相似文献   

14.
Osteoporosis is a common age-related disorder manifested clinically by skeletal fractures, especially fractures of the vertebrae, hip, and distal forearm. The major cause of these fractures is low bone mass, although an increase in trauma due to falls in the elderly also contributes. There are multiple causes for the low bone mass which, in any given individual, may contribute differently to the development of the osteopenia. The most important groups of causes are failure to achieve adequate peak bone mass, slow bone loss due to processes relating to aging, the menopause in women, and a variety of sporadic behavioral, nutritional, and environmental factors that affect bone mass in some but not in other individuals. The most important approach is prevention. Drugs and behavioral factors known to cause bone loss should be eliminated and perimenopausal women should be evaluated for possible preventive administration of estrogen. For patients with fractures due to established osteoporosis, the only drugs approved by the Food and Drug Administration are the antiresorptive agents calcium, estrogen, and calcitonin. Formation-stimulating regimens, however, are being developed and may be available for clinical use in the foreseeable future. These regimens may be capable of increasing bone mass to above the fracture threshold, thereby resulting in a clinical cure of the osteoporosis.  相似文献   

15.
The microarchitecture of bone is regulated by complex interactions between the bone-forming and resorbing cells, and several compounds regulate both actions. For example, vitamin D, which is required for bone mineralization, also stimulates bone resorption. Transgenic mice overexpressing the vitamin D receptor solely in mature cells of the osteoblastic bone-forming lineage were generated to test the potential therapeutic value of shifting the balance of vitamin D activity in favor of bone formation. Cortical bone was 5% wider and 15% stronger in these mice due to a doubling of periosteal mineral apposition rate without altered body weight or calcium homeostatic hormone levels. A 20% increase in trabecular bone volume in transgenic vertebrae was also observed, unexpectedly associated with a 30% reduction in resorption surface rather than greater bone formation. These findings indicate anabolic vitamin D activity in bone and identify a previously unknown pathway from mature osteoblastic cells to inhibit osteoclastic bone resorption, counterbalancing the known stimulatory action through immature osteoblastic cells. A therapeutic approach that both stimulates cortical anabolic and inhibits trabecular resorptive pathways would be ideal for treatment of osteoporosis and other osteopenic disorders.  相似文献   

16.
A postal survey of 2000 women and 2000 men sampled from the electoral roll in Oxford was undertaken to ascertain whether changes with age in the risk of falling might explain the stepwise increases in age specific incidence rates of distal forearm fracture which occur in women at around the age of 50. Corrected response rates were 83% for women and 72% for men. In women, but not in men, there was a rise in the risk of falling from 45 years, peaking in the 55-59 year age group, and sinking to a nadir at ages 70-74. In both sexes rates rose in extreme old age. These variations were not attributable to preferential response from people who had suffered a fracture. It is concluded that changes in the risk of falling interact with osteoporosis to produce a perimenopausal rise in the incidence of forearm fractures and contribute to the fluctuations in incidence of these fractures in old age.  相似文献   

17.
[Purpose] Dehydroepiandrosterone (DHEA) administration reportedly recovers osteoporosis, a bone disorder associated with bone deficiency in postmenopausal women. However, the physiological mechanism of DHEA in osteoporosis remains elusive, especially in terms of intestinal calcium absorption. Therefore, we investigated the effect of DHEA administration on calcium absorption in ovariectomized (OVX) female rats using an estrogen receptor antagonist.[Methods] Female Sprague-Dawley rats (n=23, 6 weeks old) were randomized into three groups: OVX control group (OC, n=7), OVX with DHEA treatment group (OD, n=8), and OVX with DHEA inhibitor group (ODI, n=8) for 8 weeks.[Results] Intestinal calcium accumulation, as well as the rate of absorption, demonstrated no significant differences during the experimental period among investigated groups. The bone mineral density (BMD) of the tibia at the proximal metaphysis was higher in the OD group than that in the OC group (p<0.05); however, BMD of the ODI group showed no significant difference from investigated groups. Furthermore, the BMD of the tibia at the diaphysis did not significantly differ among these groups.[Conclusion] We revealed that DHEA administration does not involve intestinal Ca absorption, although this treatment improves BMD levels in OVX rats. These observations indicate that the effect of DHEA on the bone in postmenopausal women is solely due to its influence on bone metabolism and not intestinal calcium absorption.  相似文献   

18.
The mechanisms behind the influence of PHPT on the skeleton are closely connected with bone turnover. Throughout life, the skeleton is continuously renewed by bone remodeling, a process which serves the purpose of repairing damaged bone and adapting the skeleton to changes in physical load. In this process, old bone is removed by osteoclastic resorption and new bone is laid down by osteoblastic formation. Bone mass increases with growth in the first decades of life, and around the age of 30 years the peak bone mass is reached. Thereafter, as a result of mechanisms involving bone remodeling, a net bone loss is seen: 1) A reversible bone loss because of increase in the remodeling space, i.e., the amount of bone resorped but not yet reformed during the remodeling cycle. This mechanism leads to decrease in average trabecular thickness and cortical width, and to increase in cortical porosity. 2) An irreversible bone loss caused by negative bone balance, where the amount of bone formed by the osteoblasts is exceeded by the amount of bone resorbed by the osteoclasts at the same remodeling site. Consequently, progressive thinning of trabecular elements, reduced cortical width and increased cortical porosity is seen. 3) Finally, perforation of trabecular plates by deep resorption lacunae leads to complete irreversible removal of structural bone components. Parathyroid hormone, together with vitamin D, are the principal modulators in calcium homeostasis. The main actions of PTH are executed in bone and kidneys. In the kidneys, PTH increases the tubular re-absorption of calcium, thereby tending to increase serum calcium. PTH also induces increased conversion of 25(OH)-D to 1,25(OH)2-D. This last action, enhances intestinal calcium absorption and increased skeletal calcium mobilization, which further adds to the circulating calcium pool. In bone, the "acute" regulatory actions of PTH on serum calcium are probably accompliced via activation of osteocytes and lining cells. A second mechanism of PTH in bone is the regulation of bone remodeling. The action seems to be an increased recruitment from osteoblastic precursor cells and activation of mature osteoclasts. It is supposed that these responses are predominantly mediated indirectly through actions on osteoblast-like or nonosteoblast-like stromal cells, as osteoclasts themselves to not have PTH receptors. Bone metabolism and bone mass are studied by biochemical bone markers, bone histomorphometry, and densitometry. As bone markers and bone histomorphometry give information on bone metabolism from different points of view, these methods are preferably combined. Histomorphometry gives detailed information about bone turnover on cellular level, the whole remodeling sequence is described, and the bone balance can be calculated. However, they focus on a small volume, and may, therefore, not be representative for the whole skeleton. On the other hand, studies of bone markers supply general information about turnover in the whole skeleton, but they do not give facts on the bone turnover on the cellular or tissue level and bone balance. Bone densitometry is the principal method in studying bone mass, but valuable information concerning bone structure also comes from histomorphometry. Bone remodeling is considerably increased in PHPT. Studies of bone markers show increase in both resorptive and formative markers, and the increases seem to be of equivalent size. This is in agreement with histomorphometric findings and shows that the coupling between resorption and formation is preserved. By histomorphometry on iliac crest biopsies, trabecular bone remodeling is found increased by 50%, judged by the increase in activation frequency; a measure of how often new remodeling is initiated on the trabecular bone surface. In PHPT, such remodeling activity is repeated about once every year. Reconstruction of the whole remodeling sequence does not show major deviations in lengths of the resorptive and formative periods compared to normal. Furthermore, the amount of bone removed by the osteoclasts during the resorptive phase is matched by the amount of new bone formed by the osteoblasts leading to a bone balance very close to zero. Compared with trabecular bone, the turnover rate in cortical bone is considerably lower, around 10%. Remodeling of the cortical bone takes place at the endocortical, the pericortical, and the Haversian surfaces. Endocortical bone remodeling activities are very similar to trabecular remodeling activities with good correlation between individual parameters. Periosteal remodeling activity is negligible in PHPT, as it is in the normal state. Cortical porosity, which reflects the remodeling activity on the Haversian surface, is increased by 30-65% in PHPT. (ABSTRACT TRUNCATED)  相似文献   

19.
OBJECTIVE--To examine the effects of taking drugs affecting bone metabolism on the risk of hip fracture in women aged over 50 years. DESIGN--Retrospective, population based, case-control study by questionnaire. SETTING--14 centres in six countries in southern Europe. SUBJECTS--2086 women with hip fracture and 3532 control women matched for age. MAIN OUTCOME MEASURES--Number of drugs affecting bone metabolism taken and length taken for. RESULTS--Women taking drugs affecting bone metabolism had a significantly decreased risk of hip fracture. After adjustment for differences in other risk factors, the relative risk of hip fractures was 0.55 (95% confidence interval 0.31 to 0.85) in women taking oestrogens, 0.75 (0.60 to 0.94) in those taking calcium, and 0.69 (0.51 to 0.92) in those taking calcitonin. The fall in risk was not significant for anabolic steroids (0.6 (0.29 to 1.22)). Neither vitamin D nor fluorides were associated with a significant decrease in the risk of hip fracture. The effect on hip fracture risk increased significantly with increasing duration of exposure (risk ratio 0.8 (0.61 to 1.05) for less than median exposure v 0.66 (0.5 to 0.88) for greater than median exposure). Drugs were equally effective in older and younger women, with the exception of oestrogen. CONCLUSIONS--Oestrogen, calcium, and calcitonins significantly decrease the risk of hip fracture. Short term intervention late in the natural course of osteoporosis may have significant effects on the incidence of hip fracture.  相似文献   

20.
Declining adrenal androgens: an association with bone loss in aging women   总被引:2,自引:0,他引:2  
Bone loss in aging women is a major contributing factor to the onset of osteoporosis. To determine whether a decline in adrenal androgen output might be important in the loss of bone with age, we studied a highly selected group of 14 women, average age 70, and measured adrenal androgens in relationship to trabecular bone density. Dehydroepiandrosterone sulfate (DHEAS) levels were used as a marker of adrenal sex steroid output while quantitative, computerized tomography was used to determine trabecular bone density. Our results showed that both bone density (r = -0.69, P less than 0.01) and DHEAS levels (r = -0.68, P less than 0.01) declined with age, and that DHEAS was positively correlated with bone density (r = 0.66, P = 0.01). These data emphasize the association of declining adrenal sex steroid production with declining bone density during the process of aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号