首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Osteoporosis most commonly affects postmenopausal women. Although men are also affected, women over 65 are 6 times more likely to develop osteoporosis than men of the same age. This is largely due to accelerated bone remodeling after menopause; however, the peak bone mass attained during young adulthood also plays an important role in osteoporosis risk. Multiple studies have demonstrated sexual dimorphisms in peak bone mass, and additionally, the female skeleton is significantly altered during pregnancy/lactation. Although clinical studies suggest that a reproductive history does not increase the risk of developing postmenopausal osteoporosis, reproduction has been shown to induce long-lasting alterations in maternal bone structure and mechanics, and the effects of pregnancy and lactation on maternal peak bone quality are not well understood. This study compared the structural and mechanical properties of male, virgin female, and post-reproductive female rat bone at multiple skeletal sites and at three different ages. We found that virgin females had a larger quantity of trabecular bone with greater trabecular number and more plate-like morphology, and, relative to their body weight, had a greater cortical bone size and greater bone strength than males. Post-reproductive females had altered trabecular microarchitecture relative to virgins, which was highly similar to that of male rats, and showed similar cortical bone size and bone mechanics to virgin females. This suggests that, to compensate for future reproductive bone losses, females may start off with more trabecular bone than is mechanically necessary, which may explain the paradox that reproduction induces long-lasting changes in maternal bone without increasing postmenopausal fracture risk.  相似文献   

2.
Bisphosphonates suppress bone remodeling activity, increase bone volume, and significantly reduce fracture risk in individuals with osteoporosis and other metabolic bone diseases. The objectives of the current study were to develop a mathematical model that simulates control and 1 year experimental results following bisphosphonate treatment (alendronate or risedronate) in the canine fourth lumbar vertebral body, validate the model by comparing simulation predictions to 3 year experimental results, and then use the model to predict potential long term effects of bisphosphonates on remodeling and microdamage accumulation. To investigate the effects of bisphosphonates on bone volume and microdamage, a mechanistic biological model was modified from previous versions to simulate remodeling in a representative volume of vertebral trabecular bone in dogs treated with various doses of alendronate or risedronate, including doses equivalent to those used for treatment of post-menopausal osteoporosis in humans. Bisphosphonates were assumed to affect remodeling by suppressing basic multicellular unit activation and reducing resorption area. Model simulation results for trabecular bone volume fraction, microdamage, and activation frequency following 1 year of bisphosphonate treatment are consistent with experimental measurements. The model predicts that trabecular bone volume initially increases rapidly with 1 year of bisphosphonate treatment, and continues to slowly rise between 1 and 3 years of treatment. The model also predicts that microdamage initially increases rapidly, 0.5–1.5-fold for alendronate or risedronate during the first year of treatment, and reaches its maximum value by 2.5 years before trending downward for all dosages. The model developed in this study suggests that increasing bone volume fraction with long term bisphosphonate treatment may sufficiently reduce strain and damage formation rate so that microdamage does not accumulate above that which is initiated in the first two years of treatment.  相似文献   

3.
4.
Failure of bone under monotonic and cyclic loading is related to the bone mineral density, the quality of the bone matrix, and the evolution of microcracks. The theory of linear elastic fracture mechanics has commonly been applied to describe fracture in bone. Evidence is presented that bone failure can be described through a non-linear theory of fracture. Thereby, deterministic size effects are introduced. Concepts of a non-linear theory are applied to discern how the interaction among bone matrix constituents (collagen and mineral), microcrack characteristics, and trabecular architecture can create distinctively differences in the fracture resistance at the bone tissue level. The non-linear model is applied to interpret pre-clinical data concerning the effects of anti-osteoporotic agents on bone properties. The results show that bisphosphonate (BP) treatments that suppress bone remodeling will change trabecular bone in ways such that the size of the failure process zone relative to the trabecular thickness is reduced. Selective estrogen receptor modulators (SERMs) that suppress bone remodeling will change trabecular bone in ways such that the size of the failure process zone relative to the trabecular thickness is increased. The consequences of these changes are reflected in bone mechanical response and predictions are consistent with experimental observations in the animal model which show that BP treatment is associated with more brittle fracture and microcracks without altering the average length of the cracks, whereas SERM treatments lead to a more ductile fracture and mainly increase crack length with a smaller increase in microcrack density. The model suggests that BPs may be more effective in cases in which bone mass is very low, whereas SERMS may be more effective when milder osteoporotic symptoms are present.  相似文献   

5.
Natural biological materials usually present a hierarchical arrangement with various structural levels. The biomechanical behavior of the complex hierarchical structure of bone is investigated with models that address the various levels corresponding to different scales. Models that simulate the bone remodeling process concurrently at different scales are in development. We present a multiscale model for bone tissue adaptation that considers the two top levels, whole bone and trabecular architecture. The bone density distribution is calculated at the macroscale (whole bone) level, and the trabecular structure at the microscale level takes into account its mechanical properties as well as surface density and permeability. The bone remodeling process is thus formulated as a material distribution problem at both scales. At the local level, the biologically driven information of surface density and permeability characterizes the trabecular structure. The model is tested by a three-dimensional simulation of bone tissue adaptation for the human femur. The density distribution of the model shows good agreement with the actual bone density distribution. Permeability at the microstructural level assures interconnectivity of pores, which mimics the interconnectivity of trabecular bone essential for vascularization and transport of nutrients. The importance of this multiscale model relays on the flexibility to control the morphometric parameters that characterize the trabecular structure. Therefore, the presented model can be a valuable tool to define bone quality, to assist with diagnosis of osteoporosis, and to support the development of bone substitutes.  相似文献   

6.
Two-dimensional simulation of trabecular surface remodeling was conducted for a human proximal femur to investigate the structural change of cancellous bone toward a uniform stress state. Considering that a local mechanical stimulus plays an important role in cellular activities in bone remodeling, local stress nonuniformity was assumed to drive trabecular structural change to seek a uniform stress state. A large-scale pixel-based finite element model was used to simulate structural changes of individual trabeculae over the entire bone. As a result, the initial structure of trabeculae changed from isotropic to anisotropic due to trabecular microstructural changes caused by surface remodeling according to the mechanical environment in the proximal femur. Under a single-loading condition, it was shown that the apparent structural property evaluated by fabric ellipses corresponded to the apparent stress state in cancellous bone. As is observed in the actual bone, a distributed trabecular structure was obtained under a multiple-loading condition. Through these studies, it was concluded that trabecular surface remodeling toward a local uniform stress state at the trabecular level could naturally bring about functional adaptation phenomenon at the apparent tissue level. The proposed simulation model would be capable of providing insight into the hierarchical mechanism of trabecular surface remodeling at the microstructural level up to the apparent tissue level.  相似文献   

7.
Osteoporosis, now defined as a disease characterized by low bone mass and a microarchitectural deterioration of bone tissue leading to enhanced bone fragility and fracture risk, is a major public health problem. Classic hormonal therapies to prevent and treat osteoporosis associated with menopause have recently been questioned due to the risk/benefit ratio of prolonged treatment. There is a critical need for safe and effective alternative therapeutics for this disease. Nonhuman primates have been used as models to assess bone changes associated with estrogen deficiency because their trabecular and cortical bone remodeling processes, monthly menstrual cycles, and reproductive-hormone patterns are similar to those of humans. The ovariectomized nonhuman primate has become the preferred model in which to study effects on bone remodeling, particularly with regard to bone mass, architecture, and strength, in fulfillment of studies required by international guidelines for the development of antiosteoporotic drugs. The nonhuman primate is amenable to several methodologies that assess bone quantity and quality, including dual energy x-ray absorptiometry (DXA), quantitative computed tomography (QCT), histology, static and dynamic histomorphometry, and biomechanical testing, as well as assays developed for clinical use, which serve as biomarkers of bone metabolic processes. The use of the nonhuman primate model in the assessment of osteoporosis therapeutics, both hormonal (sex steroids and their analogues, parathyroid hormone) and nonhormonal (bisphosphonates), has provided valuable information on the safety and efficacy as well as the mechanisms of bone loss associated with estrogen deficiency that is directly applicable to the human situation.  相似文献   

8.
Aging induces several types of architectural changes in trabecular bone including thinning, increased levels of anisotropy, and perforation. It has been determined, on the basis of analysis of mathematical models, that reduction in fracture load caused by perforation is significantly higher than those due to equivalent levels of thinning or anisotropy. The analysis has also provided an expression which relates the fractional reduction of strength tau to the fraction of elements nu that have been removed from a network. Further, it was proposed that the ratio Gamma of the elastic constant of a sample and its linear response at resonance can be used as a surrogate for tau. Experimental validation of these predictions requires following architectural changes in a given sample of trabecular bone; techniques to study such changes using microcomputed tomography are only beginning to be available. In the present study, we use anatomically accurate computer models constructed from digitized images of bone samples for the purpose. Images of healthy bone are subjected to successive levels of synthetic degradation via surface erosion. Computer models constructed from these images are used to calculate their fracture load and other mechanical properties. Results from these computations are shown to be consistent with predictions derived from the analysis of mathematical models. Although the form of tau(nu) is known, parameters in the expression are expected to be sample-specific, and hence nu is not a reliable predictor of strength. We provide an example to demonstrate this. In contrast, analysis of model networks shows that the linear part of tau(Gamma) depends only on the structure of trabecular bone. Computations on models constructed from samples of iliac crest trabecular bone are shown to be in agreement with this assertion. Since Gamma can be computed from a vibrational assessment of bone, we argue that the latter can be used to introduce new surrogates for bone strength and hence diagnostic tools for osteoporosis.  相似文献   

9.
Bone aging was studied in an experimental model (rabbit femur) in three populations aged 0.5, 1.5, and 7.5 years. Cortical bone histology was compared with a data set from a 1.5‐month‐old population of an earlier published paper. From 0.5‐year‐old onward, the mean femur length did not increase further. Thereafter, the mean marrow area increased and the cortical area decreased significantly with aging. This was associated with a structural pattern transformation from plexiform to laminar and then Haversian‐like type. The distal meta‐epiphysis bone trabecular density of the oldest populations also was significantly lower in specific regions of interest (ROI). Percentage sealed primary vascular canals in laminar bone significantly increased with aging without variation of percentage sealed secondary osteons. Remodeling rate reflected by the density of cutting cones did not significantly change among the age populations. These data suggest that laminar bone vascular pattern is more functional in the fast diaphyseal expansion but not much streamlined with the renewal of blood flow during secondary remodeling. Bone aging was characterized by: 1) secondary remodeling subendosteally; 2) increment of sealed primary vascular canals number; 3) increased calcium content of the cortex; 4) cortical and trabecular bone mass loss in specific ROIs. Taken together, the present data may give a morphological and morphometric basis to perform comparative studies on experimental models of osteoporosis in the rabbit. J. Morphol. 276:733–747, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Fabric and compliance tensors of a cube of cancellous bone with a complicated three-dimensional trabecular structure were obtained for trabecular surface remodeling by using a digital image-based model combined with a large-scale finite element method. Using mean intercept length and a homogenization method, the fabric and compliance tensors were determined for the trabecular structure obtained in the computer remodeling simulation. The tensorial quantities obtained indicated that anisotropic structural changes occur in cancellous bone adapting to the compressive loading condition. There were good correlations between the fabric tensor, bone volume fraction, and compliance tensor in the remodeling process. The result demonstrates that changes in the structural and mechanical properties of cancellous bone are essentially anisotropic and should be expressed by tensorial quantities.  相似文献   

11.
The bone remodeling process takes place at the surface of trabeculae and results in a non-uniform mineral distribution. This will affect the mechanical properties of cancellous bone, because the properties of bone tissue depend on its mineral content. We investigated how large this effect is by simulating several non-uniform mineral distributions in 3D finite element models of human trabecular bone and calculating the apparent stiffness of these models. In the ‘linear model’ we assumed a linear relation between mineral content and Young's modulus of the tissue. In the ‘exponential model’ we included an empirical exponential relation in the model. When the linear model was used the mineral distribution slightly changed the apparent stiffness, the difference varied between an 8% decrease and a 4% increase compared to the uniform model with the same BMD. The exponential model resulted in up to 20% increased apparent stiffness in the main load-bearing direction. A thin less mineralized surface layer (28 μm) and highly mineralized interstitial bone (mimicking mineralization resulting from anti-resorptive treatment) resulted in the highest stiffness. This could explain large reductions in fracture risk resulting from small increases in BMD. The non-uniform mineral distribution could also explain why bone tissue stiffness determined using nano-indentation is usually higher than finite element (FE)-determined stiffness. We conclude that the non-uniform mineral distribution in trabeculae does affect the mechanical properties of cancellous bone and that the tissue stiffness determined using FE-modeling could be improved by including detailed information about mineral distribution in trabeculae in the models.  相似文献   

12.
A brief historical perspective reviews studies that tested the hypotheses that PTH induces an anabolic effect in bone, and that the gain in trabecular bone was not at the expense of cortical bone. As PTH reduces the risk of fracture in humans with osteoporosis, the myths that postulated cortical bone porosity and increased bone turnover might increase fracture risk, are examined in the light of data from animals with osteonal bone. These show that PTH "braces" the bone by immediately stimulating bone formation at modeling and remodeling sites. Increased porosity is a late event, occurring close to the neutral axis of bone where detrimental effects on biomechanical strength are unlikely. PTH increases bone mass by stimulating modeling in favor of bone formation, and restructures bone geometry via more extensive remodeling. Cell and genetic events induced in bone by PTH have been studied in rats and are time- and regimen-dependent. In addition to the stimulation of gene expression for matrix proteins, early genes upregulated by once daily PTH are those associated with matrix degradation and induction of osteoclastic resorption, indicative of possible mechanisms by which PTH may increase bone turnover. Boneforming surfaces are increased due to increased numbers of newly differentiated osteoblasts and retention of older osteoblasts by inhibition of apoptosis. After stopping treatment, the number of osteoblasts is quickly reduced and bone turnover returns to that of controls, slowing both bone formation and resorption. The increased proportion of bone undergoing PTH-induced remodeling requires maturation and completion of mineralization. These responses may explain the delay in reversal of gains in bone mass and biomechanical properties for at least two turnover cycles following withdrawal in large animal models. Thus, the skeletal benefits of PTH extend beyond the active treatment phase.  相似文献   

13.
Glucocorticoid (GC)‐induced osteoporosis is a widespread health problem that is accompanied with increased fracture risk. Detrimental effects of anti‐inflammatory GC therapy on bone have been ascribed to the excess in GC exposure, but it is unknown whether there is also a role for disruption of the endogenous GC rhythm that is inherent to GC therapy. To investigate this, we implanted female C57Bl/6J mice with slow‐release corticosterone (CORT) pellets to blunt the rhythm in CORT levels without inducing hypercortisolism. Flattening of CORT rhythm reduced cortical and trabecular bone volume and thickness, whilst bone structure was maintained in mice injected with supraphysiologic CORT at the time of their endogenous GC peak. Mechanistically, mice with a flattened CORT rhythm showed disrupted circadian gene expression patterns in bone, along with changes in circulating bone turnover markers indicative of a negative balance in bone remodelling. Indeed, double calcein labelling of bone in vivo revealed a reduced bone formation in mice with a flattened CORT rhythm. Collectively, these perturbations in bone turnover and structure decreased bone strength and stiffness, as determined by mechanical testing. In conclusion, we demonstrate for the first time that flattening of the GC rhythm disrupts the circadian clock in bone and results in an osteoporotic phenotype in mice. Our findings indicate that at least part of the fracture risk associated with GC therapy may be the consequence of a disturbed GC rhythm, rather than excess GC exposure alone, and that a dampened GC rhythm may contribute to the age‐related risk of osteoporosis.  相似文献   

14.
Age-related bone remodeling may cause fragility of the femoral neck, thereby increasing fracture risk in elderly populations. We investigated the effects of age-remodeling and stress-reduction on the femoral neck region using the Finite Strip Method (FSM). We verified the possibility that the femoral neck is likely to undergo fracture through two mechanisms: yielding and local buckling. We hypothesized that the femoral necks of young subjects are more prone to fracture by yielding, whereas those of elderly subjects are more susceptible to fracture initiated by local buckling. The slices from the CT-scans of 15 subjects corresponding to the lowest area moment of inertia were segregated into cortex and trabeculae. Geometric and material properties for each strip were obtained from the CT-scans. The FSM, proposed here as an approximation to the better-known Finite Element Method (FEM), was implemented on a model comprising both cortex and trabeculae. Finite strip (FS) analyses were performed on models that incorporated the effects of age-related bone remodeling, as well as a reduction in physiological stress on the bone (as a result of weight loss). Comparisons were made with similar FS analyses performed on only the cortical shell, in order to ascertain the contributions of the trabeculae to femoral neck strength. We observed that the femoral necks of simulated young subjects manifested a marked predisposition to undergo yielding, whereas the femoral neck models of simulated elderly subjects were more prone to buckling before yielding. The trabecular degradation and cortical thinning involved in aging render the femoral neck more susceptible to failure by buckling.  相似文献   

15.
In women with osteoporosis, each 1% improvement in spine BMD (by DXA) is expected to reduce vertebral fracture risk by about 4%. However, randomized trials of antiresorptive agents show that 1 to 6% improvements in spine BMD reduce vertebral fracture risk by 35 to 50%. Less 20% of the decreased spine fracture risk produced by alendronate or raloxifene be explained by improvement in spine BMD. The discrepancy is even greater during the first year or two of treatment when 1 to 4% improvements in BMD are associated with 65-68% decreases in spine fracture risk. Bisphosphonates continue to increase BMD but the reduction in fracture risk wanes to 20 to 45%. DXA underestimates the change in bone density of spinal trabecular bone and this might explain part of the discrepancy between expected and observed reductions in spine fracture risk. Even more accurate measurement of BMD would not explain the rapid onset and later waning of effect despite gradually increasing BMD. The biomechanical effects inhibiting bone resorption could explain the early onset but not the waning effectiveness. The waning effectiveness of antiresorptives raises concerns that prolonged inhibition of remodeling may weaken bone by allowing microdamage to accumulate. The effect of drugs on nonspine fracture risk is more complex and cannot be predicted from changes in DXA BMD. For example, Beck showed that long-term users of estrogen increase section modulus vs. nonusers with a net increase in section modulus and predicted femoral neck strength despite losing about 0.4% per year in femoral neck BMD. PTH reduces spine fracture risk and this effect is more completely explained by improvement in spine BMD. This suggests that sustaining the increased BMD produced by PTH may maintain long-term reductions in fracture risk.  相似文献   

16.
Micro-finite element (micro-FE) analysis became a standard tool for the evaluation of trabecular bone mechanical properties. The accuracy of micro-FE models for linear analyses is well established. However, the accuracy of recently developed nonlinear micro-FE models for simulations of trabecular bone failure is not known. In this study, a trabecular bone specimen was compressed beyond the apparent yield point. The experiment was simulated using different micro-FE meshes with different element sizes and types, and material models based on cortical bone. The results from the simulations were compared with experimental results to study the effects of the different element and material models. It was found that a decrease in element size from 80 to 40 μm had little effect on predicted post-yield behaviour. Element type and material model had significant effects. Nevertheless, none of the established material models for cortical bone were able to predict the typical descent in the load-displacement curve seen during compression of trabecular bone.  相似文献   

17.
H Wang  B Ji  XS Liu  XE Guo  Y Huang  KC Hwang 《Journal of biomechanics》2012,45(14):2417-2425
Bone remodeling is a complex dynamic process, which modulates both bone mass and bone microstructure. In addition to bone mass, bone microstructure is an important contributor to bone quality in osteoporosis and fragility fractures. However, the quantitative knowledge of evolution of three-dimensional (3D) trabecular microstructure in adaptation to the external forces is currently limited. In this study, a new 3D simulation method of remodeling of human trabecular bone was developed to quantitatively study the dynamic evolution of bone mass and trabecular microstructure in response to different external loading conditions. The morphological features of trabecular plate and rod, such as thickness and number density in different orientations were monitored during the remodeling process using a novel imaging analysis technique, namely Individual Trabecula Segmentation (ITS). We showed that the volume fraction and microstructures of trabecular bone including, trabecular type and orientation, were determined by the applied mechanical load. Particularly, the morphological parameters of trabecular plates were more sensitive to the applied load, indicating that they played the major role in the mechanical properties of the trabecular bone. Reducing the applied load caused severe microstructural deteriorations of trabecular bone, such as trabecular plate perforation, rod breakage, and a conversion from plates to rods.  相似文献   

18.
The ability to evaluate fracture risk at an early time point is essential for improved prognostics as well as enhanced treatment in cases of bone loss such as from osteoporosis. Improving the diagnostic ability is inherent upon both high-resolution non-invasive imaging, and a thorough understanding of how the derived indices of structure and density relate to its true mechanical behavior. Using sheep femoral trabecular bone with a range of strength, the interrelationship of mechanical and microstructural parameters was analyzed using multi-directional mechanical testing and micro-computed tomography. Forty-five cubic trabecular bone samples were harvested from 23 adult female sheep, some of whom had received hind-limb vibratory stimuli over the course of 2 years with consequently enhanced mechanical properties. These samples were pooled into a low, medium, or high strength group for further analysis. The findings show that microCT indices that are structural in nature, e.g., structural model index (SMI) (r2=0.85, p<0.0001) is as good as more density oriented indices like bone volume/total volume (BV/TV) (r2=0.81, p<0.0001) in predicting the ultimate strength of a region of trabecular bone. Additionally, those indices more related to global changes in trabecular structure such as connectivity density (ConnD) or degree of anisotropy (DA) are less able to predict the mechanical properties of bone. Interrelationships of trabecular indices such as trabecular number (TbN), thickness (TbTh), and spacing (TbSp) provide clues as to how the trabecular bone will remodel to ultimately achieve differences in the apparent mechanical properties. For instance, the analysis showed that a loss of bone primarily affects the connectedness and overall number of trabeculae, while increased strength results in an increase of the overall thickness of trabeculae while not improving the connectedness. Certainly, the microCT indices studied are able to predict the bulk mechanical properties of a trabecular ROI well, leaving unaccounted only about 15-20% of its inherent variability. Diagnostically, this implies that future work on the early prediction of fracture risk should continue to explore the role of bone quality as the key factors or as an adjuvant to bone quantity (e.g., apparent density).  相似文献   

19.
Skeletal fragility in postmenopausal osteoporosis is not due solely to reduction in bone mass. This fact explains some of the overlap in bone mineral measurements observed between patients who are fracturing and age- and sex-matched normals who are not. Changes in skeletal architecture and bone remodeling occur with age which can account for some of the fragility. These changes are exaggerated in patients with postmenopausal osteoporosis who are suffering spine fractures. Three abnormalities have been described by histomorphometric methods which can account for skeletal fragility out of proportion to the degree of bone loss. They are: (i) loss of trabecular connectivity such that vertical weight-bearing bars lose their cross-attachments with each other, thus becoming susceptible to buckling; (ii) inefficient and prolonged microdamage repair due to periods of pause in the formation phase of remodeling; and (iii) accumulation of unrepaired microdamage in unremodeled bone tissue in the central part of trabeculae due to reduced osteon wall thickness coupled with maintenance of trabecular thickness. Recognition of these abnormalities should broaden our approach to the study of skeletal fragility in the syndrome of postmenopausal osteoporosis.  相似文献   

20.
Exosomes are secreted into the blood by various types of cells. These extracellular vesicles are involved in the contribution of exosomal proteins to osteoblastic or osteoclastic regulatory networks during the failure of bone remodeling, which results in age‐related bone loss. However, the molecular changes in serum‐derived exosomes (SDEs) from aged patients with low bone density and their functions in bone remodeling remain to be fully elucidated. We present a quantitative proteomics analysis of exosomes purified from the serum of the elderly patients with osteoporosis/osteopenia and normal volunteers; these data are available via Proteome Xchange with the identifier PXD006463. Overall, 1,371 proteins were identified with an overlap of 1,160 Gene IDs among the ExoCarta proteins. Bioinformatics analysis and in vitro studies suggested that protein changes in SDEs of osteoporosis patients are not only involved in suppressing the integrin‐mediated mechanosensation and activation of osteoblastic cells, but also trigger the differentiation and resorption of osteoclasts. In contrast, the main changes in SDEs of osteopenia patients facilitated both activation of osteoclasts and formation of new bone mass, which could result in a compensatory elevation in bone remodeling. While the SDEs from aged normal volunteers might play a protective role in bone health through facilitating adhesion of bone cells and suppressing aging‐associated oxidative stress. This information will be helpful in elucidating the pathophysiological functions of SDEs and aid in the development of senile osteoporosis diagnostics and therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号