首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Tumor necrosis factor-alpha (TNF-alpha) stimulates expression of endothelial cell (EC) genes that may promote atherosclerosis in part by an activation of mitogen-activated protein (MAP) kinases. Ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one), a selenoorganic compound, is effective for acute ischemic stroke; however, its effect on EC has not yet been elucidated. We examined the effect of ebselen on TNF-alpha-induced MAP kinase activation and adhesion molecule expression in cultured human umbilical vein endothelial cells (HUVEC). Extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 were rapidly and significantly activated by TNF-alpha in HUVEC. TNF-alpha-induced JNK activation was inhibited by ebselen, whereas ERK1/2 and p38 were not affected. Apoptosis signal-regulated kinase 1 (ASK1) was suggested to be involved in TNF-alpha-induced JNK activation because transfection of kinase-inactive ASK1 inhibited TNF-alpha-induced JNK activation. Ebselen inhibited TNF-alpha-induced TNF receptor-associated factor 2 (TRAF2)-ASK1 complex formation and phosphorylation of stress-activated protein kinase ERK kinase 1 (SEK1), which is an upstream signaling molecule of JNK. Finally, TNF-alpha-induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) activation and resultant intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions were inhibited by ebselen. Specific inhibitors for JNK and NF-kappaB also inhibited TNF-alpha-induced ICAM-1 and VCAM-1 expressions in HUVEC. These findings suggest that ebselen prevents TNF-alpha-induced EC activation through the inhibition of TRAF2-ASK1-SEK1 signaling pathway, which leads to JNK activation. Inhibition of JNK by ebselen may imply its usefulness for the prevention of atherosclerosis relevant to EC activation.  相似文献   

4.
5.
6.
7.
8.
9.
Alterations in the regulation of CD44 expression play a critical role in modulating cell adhesion, migration, and inflammation. LPS, a bacterial cell wall component, regulates CD44 expression and may modulate CD44-mediated biological effects in monocytic cells during inflammation and immune responses. In this study, we show that in normal human monocytes, LPS and LPS-induced cytokines IL-10 and TNF-alpha enhance CD44 expression. To delineate the mechanism underlying LPS-induced CD44 expression, we investigated the role of the mitogen-activated protein kinases (MAPKs), p38, p42/44 extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) by using their specific inhibitors. We demonstrate the involvement, at least in part, of p38 MAPK in TNF-alpha-induced CD44 expression in both monocytes and promonocytic THP-1 cells. However, neither p38 nor p42/44 MAPKs were involved in IL-10-induced CD44 expression in monocytes. To further dissect the TNF-alpha and LPS-induced signaling pathways regulating CD44 expression independent of IL-10-mediated effects, we used IL-10 refractory THP-1 cells as a model system. Herein, we show that CD44 expression induced by the LPS-mediated pathway predominantly involved JNK activation. This conclusion was based on results derived by transfection of THP-1 cells with a dominant-negative mutant of stress-activated protein/extracellular signal-regulated kinase kinase 1, and by exposure of cells to JNK inhibitors dexamethasone and SP600125. All these treatments prevented CD44 induction in LPS-stimulated, but not in TNF-alpha-stimulated, THP-1 cells. Furthermore, we show that CD44 induction may involve JNK-dependent early growth response gene activation in LPS-stimulated monocytic cells. Taken together, these results suggest a predominant role of JNK in LPS-induced CD44 expression in monocytic cells.  相似文献   

10.
Interleukin-1 (IL-1) plays a crucial role in the immunopathological responses involved with tissue destruction in chronic inflammatory diseases, such as periodontal disease, as it stimulates host cells including fibroblasts to produce various inflammatory mediators and catabolic factors. We comprehensively investigated the involvement of mitogen-activated protein kinases (MAPKs)/activator protein-1 (AP-1) and IkappaB kinases (IKKs)/IkappaBs/nuclear factor-kappaB (NF-kappaB) in IL-1beta-stimulated IL-6, IL-8, prostaglandin E(2) (PGE(2)) and matrix metalloproteinase-1 (MMP-1) production by human gingival fibroblasts (HGF). Three MAPKs, extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK), which were simultaneously activated by IL-1beta, mediated subsequent c-fos and c-jun mRNA expression and DNA binding of AP-1 at different magnitudes. IKKalpha/beta/IkappaB-alpha/NF-kappaB was also involved in the IL-1 signaling cascade. Further, IL-1beta stimulated HGF to produce IL-6, IL-8, PGE(2) and MMP-1 via activation of the 3 MAPKs and NF-kappaB, as inhibitors of each MAPK and NF-kappaB significantly suppressed the production of IL-1beta-stimulated factors, though these pathways might also play distinct roles in IL-1beta activities. Our results strongly suggest that the MAPKs/AP-1 and IKK/IkappaB/NF-kappaB cascades cooperatively mediate the IL-1beta-stimulated synthesis of IL-6, IL-8, PGE(2) and MMP-1 in HGF.  相似文献   

11.
Collagenase-1 (matrix metalloproteinase-1, MMP-1) is expressed by several types of cells, including fibroblasts, and apparently plays an important role in the remodeling of collagenous extracellular matrix in various physiologic and pathologic situations. Here, we have examined the molecular mechanisms of the activation of fibroblast MMP-1 gene expression by a naturally occurring non-phorbol ester type tumor promoter okadaic acid (OA), a potent inhibitor of serine/threonine protein phosphatase 2A. We show that in fibroblasts OA activates three distinct subgroups of mitogen activated protein kinases (MAPKs): extracellular signal-regulated kinase 1,2 (ERK 1,2), c-Jun N-terminal-kinase/stress-activated protein kinase (JNK/SAPK) and p38. Activation of MMP-1 promoter by OA is entirely blocked by overexpression of dual-specificity MAPK phosphatase CL100. In addition, expression of kinase-deficient forms of ERK 1,2, SAPKβ, p38, or JNK/SAPK kinase SEK1 strongly inhibited OA-elicited activation of MMP-1 promoter. OA-elicited enhancement of MMP-1 mRNA abundance was also strongly prevented by two chemical MAPK inhibitors: PD 98059, a specific inhibitor of the activation of ERK1,2 kinases MEK1,2; and SB 203580, a selective inhibitor of p38 activity. Results of this study show that MMP-1 gene expression in fibroblasts is coordinately regulated by ERK1,2, JNK/SAPK, and p38 MAPKs and suggest an important role for the stress-activated MAPKs JNK/SAPK and p38 in the activation of MMP-1 gene expression. Based on these observations, it is conceivable that specific inhibition of stress-activated MAPK pathways may serve as a novel therapeutic target for inhibiting degradation of collagenous extracellular matrix.  相似文献   

12.
Chen C  Chou C  Sun Y  Huang W 《Cellular signalling》2001,13(8):543-553
TNF-alpha induced an increase in intercellular adhesion molecule-1 (ICAM-1) expression in human A549 epithelial cells and immunofluorescence staining confirmed this result. The enhanced ICAM-1 expression was shown to increase the adhesion of U937 cells to A549 cells. Tyrosine kinase inhibitors (genistein or tyrphostin 23) or phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor (D 609) attenuated TNF-alpha-induced ICAM-1 expression. TNF-alpha produced an increase in protein kinase C (PKC) activity and this effect was inhibited by D 609. PKC inhibitors (staurosporine, Ro 31-8220, calphostin C, or Go 6976) also inhibited TNF-alpha-induced response. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a PKC activator, stimulated ICAM-1 expression, this effect was inhibited by genistein or tyrphostin 23. Treatment of cells with TNF-alpha resulted in stimulation of p44/42 MAPK, p38, and JNK. However, TNF-alpha-induced ICAM-1 expression was not affected by either MEK inhibitor, PD 98059, or p38 inhibitor, SB 203580. A cell-permeable ceramide analog, C(2) ceramide, also stimulated the activation of these three MAPKs, but had no effect on ICAM-1 expression. NF-kappaB DNA-protein binding and ICAM-1 promoter activity were enhanced by TNF-alpha and these effects were inhibited by D 609, calphostin C, or tyrphostin 23, but not by PD 98059 or SB 203580. TPA also stimulated NF-kappaB DNA-protein binding and ICAM-1 promoter activity, these effects being inhibited by genistein or tyrphostin 23. TNF-alpha- or TPA-induced ICAM-1 promoter activity was inhibited by dominant negative PKCalpha or IKK2, but not IKK1 mutant. IKK activity was stimulated by both TNF-alpha and TPA, and these effects were inhibited by Ro 31-8220 or tyrphostin 23. These data suggest that, in A549 cells, TNF-alpha activates PC-PLC to induce activation of PKCalpha and protein tyrosine kinase, resulting in the stimulation of IKK2, and NF-kappaB in the ICAM-1 promoter, then initiation of ICAM-1 expression and neutrophil adhesion. However, activation of p44/42 MAPK, p38, and JNK is not involved in this event.  相似文献   

13.
Inducible nitric oxide synthase (iNOS) has been shown to be frequently expressed in melanomas; up-regulation of this enzyme is though to be associated with tumor progression. In this study, we investigated whether diverse cytokines such as: IL-6, TNF-alpha, IL-1beta, IFN-gamma and IL6RIL6 (a highly active fusion protein of the soluble form of the IL-6R (sIL-6R) and IL-6) enhance the iNOS gene expression in B16/F10.9 murine metastatic melanoma cells. An increase at iNOS expression and NO production was observed with the co-treatment of IL6RIL6 plus TNF-alpha. Gel shift and reporter gene analyses revealed that IL6RIL6 selectively activated AP-1; while TNF-alpha increased the activities of both NF-kappaB and AP-1. Persistent activation of AP-1 was also seen in cells treated with IL6RIL6 plus TNF-alpha. Stimulation of cells with IL6RIL6/TNF-alpha resulted in the activation of mitogen-activated protein kinases (MAPK) such as c-Jun N-terminal kinase (JNK) and p38, and the abrogation by pretreatment with JNK or p38 MAPK inhibitor. IL6RIL6 or IL6RIL6/TNFalpha-inducible AP-1 binding increase was supershifted by anti-c-Jun or c-Fos antibodies, and the activation of c-Jun and c-Fos was dependent on JNK and p38, respectively. These results suggest that IL-6/sIL-6R/gp130 complex signaling has an unexpected positive effect on iNOS gene expression through JNK/p38 MAPK mediated-AP-1 activation in melanoma cells.  相似文献   

14.
Thy-1 (CD90) crosslinking by monoclonal antibodies (mAb) in the context of costimulation causes the activation of mouse T-lymphocytes; however, the associated signal transduction processes have not been studied in detail. In this study we investigated the role of mitogen-activated protein kinases (MAPKs) in Thy-1-mediated T-lymphocyte activation using mAb-coated polystyrene microspheres to crosslink Thy-1 and costimulatory CD28 on murine T-lymphocytes. Concurrent Thy-1 and CD28 crosslinking induced DNA synthesis by T-lymphocytes, as well as interleukin (IL)-2 and IL-2 receptor (IL-2R) α chain (CD25) expression. Increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38 MAPK, and c-Jun N-terminal protein kinase (JNK) was also observed. Pharmacologic inhibition of ERK1/2 or JNK activation inhibited Thy-1-induced DNA synthesis and IL-2 production by T-lymphocytes. p38 MAPK inhibition also decreased DNA synthesis in Thy-1-stimulated T-lymphocytes; however, IL-2 production was increased in these cells. Inhibition of JNK, but not ERK1/2 or p38 MAPK, caused a marked reduction in Thy-1-induced CD25 expression. In addition, inhibition of p38 MAPK or JNK, but not ERK1/2, impaired the growth of IL-2-dependent CTLL-2 T-lymphocytes but did not substantially affect CD25 expression. Finally, exogenous IL-2 reversed the inhibitory effect of ERK1/2 or JNK inhibition on Thy-1-stimulated DNA synthesis by T-lymphocytes but did not substantially reverse JNK inhibition of CD25 expression. Collectively, these results suggest that during Thy-1-induced T-lymphocyte activation, ERK1/2 and JNK promoted IL-2 production whereas p38 MAPK negatively regulated IL-2 expression. JNK signalling was also required for CD25 expression. IL-2R signalling involved both p38 MAPK and JNK in CTLL-2 cells, whereas p38 MAPK was most important for IL-2R signalling in primary T-lymphocytes. MAPKs are therefore essential signalling intermediates for the Thy-1-driven proliferation of mouse T-lymphocytes.  相似文献   

15.
MAPK-dependent activation of AP-1 protein c-Jun is involved in PC12 cell differentiation and apoptosis. However, the role of other AP-1 proteins and their connection to MAPKs during growth, differentiation and apoptosis has remained elusive. Here we studied the activation of AP-1 proteins in response to ERK, JNK, and p38 signaling upon NGF, EGF and anisomycin exposures. All treatments caused different kinetics and strength of MAPK and AP-1 activities. NGF induced persistent ERK and AP-1 activities, whereas upon EGF and anisomycin exposures, their activities were only weakly and transiently induced. The sustained AP-1 activity was associated with concomitant c-Fos and c-Jun expression and phoshorylation, which were JNK and ERK dependent. While inhibition of the ERK, JNK, and p38 activities partially prevented AP-1 activity and suppressed differentiation, none of them was required for anisomycin-induced apoptosis. The importance of c-Fos and c-Jun as mediators of differentiation was demonstrated by the findings that the corresponding siRNAs suppressed NGF-induced neurite outgrowth. However, the capacity of c-Fos to promote differentiation required cooperation with Jun proteins. In contrast, Fra-2 expression was not required for the differentiation response. Together, the results show that sustained c-Jun and c-Fos activities mediate MAPK signaling and are essential for differentiation of PC12 cells.  相似文献   

16.
17.
18.
19.
20.
Tumor necrosis factor-alpha (TNF-alpha) is a multifunctional cytokine that induces a broad spectrum of responses including angiogenesis. Angiogenesis promoted by TNF-alpha is mediated, at least in part, by ephrin A1, a member of the ligand family for Eph receptor tyrosine kinases. Although TNF-alpha induces ephrin A1 expression in endothelial cells, the signaling pathways mediating ephrin A1 induction remain unknown. In this study, we investigated the signaling mechanisms of TNF-alpha-dependent induction of ephrin A1 in endothelial cells. Both TNFR1 and TNFR2 appear to be involved in regulating ephrin A1 expression in endothelial cells, because neutralizing antibodies to either TNFR1 or TNFR2 inhibited TNF-alpha-induced ephrin A1 expression. Inhibition of nuclear factor-kappaB (NF-kappaB) activation by a trans-dominant inhibitory isoform of mutant IkappaBalpha did not affect ephrin A1 induction, suggesting that NF-kappaB proteins are not major regulators of ephrin A1 expression. In contrast, ephrin A1 induction was blocked by inhibition of p38 mitogen-activated protein kinase (MAPK) or SAPK/JNK, but not p42/44 MAPK, using either selective chemical inhibitors or dominant-negative forms of p38 MAPK or TNF receptor-associated factor 2. These findings indicate that TNF-alpha-induced ephrin A1 expression is mediated through JNK and p38 MAPK signaling pathways. Taken together, the results of our study demonstrated that induction of ephrin A1 in endothelial cells by TNF-alpha is mediated through both p38 MAPK and SAPK/JNK, but not p42/44 MAPK or NF-kappaB, pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号