首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A critical review is given about the isolation and cultivation methods of Frankia species fromAlnus glutinosa root-nodules. The best results so far are obtained with a combination of sucrose (60% w/v)-sedimentation of root-nodule homogenate and subsequent suspension in the top-layer of a doubleagar layer system. The top-layer needs to contain a suitable C-source, in this study often a lipid factor from an alcoholic root-extract and an organic N-source.The isolation and cultivation of Sp(–) and Sp(+) strains fromAlnus glutinosa root nodules and a Frankia from the root-nodules ofMyrica gale is reported. The regular observation of growing colonies appears to be very important for the interpretation of results. The latter was illustrated by the remarkable diauxic growth of the strains isolated fromAlnus glutinosa Sp(+) root nodules.  相似文献   

2.
The effects of soil type (an acid peat and 2 acid brown earths) andFrankia source (3 spore-positive crushed nodule inocula and spore-negative crushed nodules containing the singleFrankia ArI5) on nodulation, N content and growth ofAlnus glutinosa andA. rubra were determined in a glasshouse pot experiment of two years duration. Plants on all soils required additional P for growth. Growth of both species was very poor on peat withA. glutinosa superior toA. rubra. The former species was also superior toA. rubra on an acid brown earth with low pH and low P content. Some plant-inoculum combinations were of notable effectivity on particular soils but soil type was the major source of variation in plant weight. Inoculation with crushed nodules containingFrankia ArI5 only gave poor infection of the host plant, suggesting that inoculation with locally-collected crushed nodules can be a preferred alternative to inoculation withFrankia isolates of untested effectivity. Evidence of adaptation ofFrankia to particular soils was obtained. Thus, while the growth of all strains was stimulated by mineral soil extracts, inhibitory effects of peat extracts were more apparent with isolates from nodules from mineral soils than from peat, suggesting that survival ofFrankia on peat may be improved by strain selection.  相似文献   

3.
Three different strains of Frankia , the pure cultures AvcI1 and CpI1 and a local strain (crushed nodule inoculum), were compared in symbiosis with one clone of Alnus incana (L.) Moench. Hydrogen metabolism, nitrogenase (EC 1.7.99.2) activity and relative efficiency of nitrogenase were studied as well as growth and nitrogen content of the plants. The local Frankia strain showed no measurable hydrogen uptake but high H2-evolution. No H2-evolution was detected in Frankia AvcI1 because of its hydrogenase activity. CpI1 also had hydrogenase, although only a very small H2-evolution was detected at the end of the growth period. Hydrogenase activity was detected both in pure cultures and nodule homogenates of CpI1 and AvcI1. Growth, biomass production and nitrogen content were highest in alders inoculated with Frankia AvcI1 while the lowest values were found for alders living in symbiosis with the local Frankia strain. The presence of hydrogenase in Frankia seemed to be benefical for growth and biomass production in the alders. However, the strains also differed with respect to spore formation. The local strain, but not AvcI1 and CpI1, formed spores in the root nodules.  相似文献   

4.
Wheeler  C. T.  McLaughlin  M. E.  Steele  P. 《Plant and Soil》1981,61(1-2):169-188
Summary Alnus glutinosa andAlnus rubra growing in the field in Scotland show specific nitrogenase activities of the same order of magnitude. The period of maximum potential nitrogenase activity coincides with that of maximum growth in late Spring and Summer. It is suggested that the retention of nitrogenase activity into the Autumn when growth has virtually ceased may be important as a contribution to the nitrogenous reserves of the tree.Bioassay of different Scottish soils, all collected from the locality of natural stands ofAlnus glutinosa, showed wide variation in the nodulation of seedlings, although generally a soil poor for nodulation ofAlnus glutinosa generally gave poor nodulation ofAlnus rubra. Soils of pH 4.5 to 6.5, best suited for growth and nitrogen fixation of the two species, often gave nodules showing highest specific nitrogen fixing activity. Young (2 to 3 year old) plants in glasshouse or controlled environment cabinet, inoculated withAlnus glutinosa endophyte, differed from mature field grown plants, however, sinceAlnus rubra required a much larger (up to 2.5 times) mass of root nodules to fix a unit quantity of N. Microscopic comparison of the nodules of glasshouse plants showed that the proportion of cells containing the vesicular (nitrogen fixing) form of the endophyte was only slightly lower inAlnus rubra than inAlnus glutinosa and it is suggested that the differences in specific nitrogen fixing activity between the two species may reflect some incompatibility of function of theAlnus glutinosa endophyte when in symbiosis withAlnus rubra.  相似文献   

5.
The efficiency of different FinnishFrankia strains as symbionts onAlnus incana (L.) Moench was evaluated in inoculation experiments by measuring nitrogen fixation and biomass production. Since all available pure cultures ofFrankia are of the Sp type (sporangia not formed in nodules), but the dominant nodule endophyte ofA. incana in Finland is of the Sp+ type (sporangia formed in nodules), crushed nodules of thisFrankia type were included. The Sp pure cultures, whether originating fromA. incana orA. glutinosa, produced with one exception, similar biomass withA. incana. The highest biomass was produced with an American reference strain fromA. viridis crispa. Using Sp+ nodule homogenates fromA. incana as inoculum, the biomass production was only one third of that produced by Sp pure cultures from the same host. Hence, through selection of the endophyte it is possible to exert a considerable influence on the productivity ofAlnus incana.  相似文献   

6.
U. Benecke 《Plant and Soil》1969,30(1):145-149
Summary Micro-organisms capable of forming effective nodules on roots ofAlnus viridis have been found to be present in New Zealand soils. It is concluded that endemic soil organisms suitable for nodulation ofAlnus viridis occur, and cross inoculation trials have indicated that there are probably differences between organisms forming nodules with various species of alders.  相似文献   

7.
AIMS: In order to depict the fine interactions that lead to nodulation, absolute microbiological control of the symbiotic partners is required, i.e. the ability to obtain in vitro axenic nodulation, a condition that has never been fulfilled with the Casuarina-Frankia symbiosis. The effects of culture conditions on plant growth and nodule formation by Casuarina cunninghamiana were investigated. METHODS AND RESULTS: Axenic (capped tubes with different substrates), and nonaxenic cultures (Gibson tubes, pot cultures) were tested. In axenic conditions, C. cunninghamiana, inoculated with Frankia, had poor growth and did not form nodules at 6 weeks. Plants cultivated in Gibson tubes reached the four axillary shoots stage within 6 weeks and formed nodules 4 weeks after inoculation. Sand-pot cultures allowed us to relate the plant development stage at inoculation with nodulation. CONCLUSIONS: The sterile replacement of the cap by a plastic bag increased plant growth and enabled nodule formation 6 weeks after inoculation. The new system of plant culture allows the axenic nodule formation 6 weeks after inoculation. Nodulation behaviour is related to plant development and confinement. SIGNIFICANCE AND IMPACT OF THE STUDY: This axenic plant nodulation system is of major interest in analysing the roles of Frankia genes in nodulation pathways.  相似文献   

8.
Summary Seedlings ofCasuarina spp. andAllocasuarina spp. were grown from seed in the greenhouse and inoculated with a nodule suspension fromC. equisetifolia. Plants ofCasuarina spp. nodulated regularly and were effective in nitrogen-fixation. Only one species ofAllocasuariona, A. lehmanniana formed root nodules. Using these plants as source of inoculum, the isolation of a newFrankia sp. HFPA11I1 (HFP022 801) was made and the strain was grown in pure culture.Frankia sp. HFPA11I1 grows well in a defined medium and shows typical morphological characteristics. In media lacking combined nitrogen, the filamentours bacterium forms terminal vesicles in abundance and differentiaties large intrahyphal or terminal sporangia containing numerous spores. This strain, used as inoculum, nodulates effectively seedlings ofC. equisietifolia andC. cunninghamiana, forming nodules with verically-growing nodule roots. Although effective in acetylene reduction, the endophyte within the nodules is filamentous and lacks veiscles. When used to inoculated seedlings ofA llocasuarina lehmanniana, Frankia sp. HFPA11I1 induces root nodules which are coralloid and lacking nodule roots. The nodules are effective in acetylene reduction and the filamentous hyphae ofFrankia within the nodule lobes lack vesicles. Effective nodulation inA. Lehmanniana depends upon environmental conditions of the seedlings and proceeds much more slowly than in Casuariana.  相似文献   

9.
High-N(2)-fixing activities of Frankia populations in root nodules on Alnus glutinosa improve growth performance of the host plant. Therefore, the establishment of active, nodule-forming populations of Frankia in soil is desirable. In this study, we inoculated Frankia strains of Alnus host infection groups I, IIIa, and IV into soil already harboring indigenous populations of infection groups (IIIa, IIIb, and IV). Then we amended parts of the inoculated soil with leaf litter of A. glutinosa and kept these parts of soil without host plants for several weeks until they were spiked with [(15)N]NO(3) and planted with seedlings of A. glutinosa. After 4 months of growth, we analyzed plants for growth performance, nodule formation, specific Frankia populations in root nodules, and N(2) fixation rates. The results revealed that introduced Frankia strains incubated in soil for several weeks in the absence of plants remained infective and competitive for nodulation with the indigenous Frankia populations of the soil. Inoculation into and incubation in soil without host plants generally supported subsequent plant growth performance and increased the percentage of nitrogen acquired by the host plants through N(2) fixation from 33% on noninoculated, nonamended soils to 78% on inoculated, amended soils. Introduced Frankia strains representing Alnus host infection groups IIIa and IV competed with indigenous Frankia populations, whereas frankiae of group I were not found in any nodules. When grown in noninoculated, nonamended soil, A. glutinosa plants harbored Frankia populations of only group IIIa in root nodules. This group was reduced to 32% +/- 23% (standard deviation) of the Frankia nodule populations when plants were grown in inoculated, nonamended soil. Under these conditions, the introduced Frankia strain of group IV was established in 51% +/- 20% of the nodules. Leaf litter amendment during the initial incubation in soil without plants promoted nodulation by frankiae of group IV in both inoculated and noninoculated treatments. Grown in inoculated, amended soils, plants had significantly lower numbers of nodules infected by group IIIa (8% +/- 6%) than by group IV (81% +/- 11%). On plants grown in noninoculated, amended soil, the original Frankia root nodule population represented by group IIIa of the noninoculated, nonamended soil was entirely exchanged by a Frankia population belonging to group IV. The quantification of N(2) fixation rates by (15)N dilution revealed that both the indigenous and the inoculated Frankia populations of group IV had a higher specific N(2)-fixing capacity than populations belonging to group IIIa under the conditions applied. These results show that through inoculation or leaf litter amendment, Frankia populations with high specific N(2)-fixing capacities can be established in soils. These populations remain infective on their host plants, successfully compete for nodule formation with other indigenous or inoculated Frankia populations, and thereby increase plant growth performance.  相似文献   

10.
Summary Alnus species are used widely in Britain for land reclamation, forestry and other purposes. Rapid juvenile growth of the AmericanAlnus rubra makes it an attractive species for planting on N-deficient soils, particularly those of low organic content. In small plot trials, this species is nodulated by indigenous soil frankiae as effectively asAlnus glutinosa. Over a three year period both species return similar amounts of N to the ecosystem, estimated at up to 10–12 kg N ha–1. Several strains ofFrankia have been isolated from local (Lennox Forest)A. rubra nodules. These differ morphologically and in their growth on different culture media, both from each other and fromA. glutinosa nodule isolates. AllAlnus isolates, however, have a total cellular fatty acid composition qualitatively similar to some other Group B frankiae. Glasshouse tests in N free culture suggest thatA. rubra nodules formed after inoculation of seedlings with American spore (–) isolates are three times more effective in N fixation than those inoculated with LennoxA. rubra spore (+) nodule homogenates. By contrast, the early growth of seedlings inoculated with spore (–)Frankia strains suggests at best a 35% improvement in N fixing activity over seedlings inoculated with LennoxA. rubra nodule isolates. Nevertheless, this improvement in activity, together with the better performance of seedlings inoculated with isolates compared with those treated with crushed nodule preparations, suggest that it would be worthwhile commercially to inoculate nursery stock with a spore (–)Frankia strain.  相似文献   

11.
Factors affecting the establishment of Alnus/Frankia symbioses were studied partly by following the survival ofFrankia strains exposed to different soil conditions, and partly by investigating the effect of pH on nodulation. TwoFrankia strains were used, both of the Sp type (sporangia not formed in nodules). One of the strains sporulated heavily, while the other formed mainly hyphae. The strains originated fromAlnus incana root nodules growing in soils of pH 3.5 and 5.0. The optimum pH for their growth in pure culture was found to be 6.7 and 6.2, respectively. The strains were introduced into twoFrankia-free soils, peat and fine sand. Their survival, measured as the persistance of nodulation capacity using the plant infection technique, was followed for 14 months. The survival curves of the strains were similar despite the morphological differences between the strains in pure culture. The nodulation capacities declined over time both at 14 and 22°C. Survival was better in soils limed to a pH above 6 than in soils at their original pH (peat 2.9, fine sand 4.2). The effect of pH on nodule formation in Alnus seedlings by theFrankia strains was studied in liquid culture. The number of nodules increased linearly within the pH range studied (3.5–5.8). No nodules were formed at pH 3.5.  相似文献   

12.
Nodulation (mean number of nodules per seedling) was 5 times greater for Elaeagnus angustifolia than for Alnus glutinosa overall when seedlings were grown in pots containing either an upland or an alluvial soil from central Illinois, USA. However, the upland Alfisol had 1.3 times greater nodulation capacity for A. glutinosa than for E. angustifolia. The presence of A. glutinosa trees on either soil was associated with a two-fold increase in nodulation capacity for E. angustifolia. Nodulation increases for soils under A. glutinosa were obtained for A. glutinosa seedlings in the Alfisol, but decreased nodulation for A. glutinosa seedlings occurred in the Mollisol. Greatest nodulation of E. angustifolia seedlings occurred near pH 6.6 for soil pH values ranging from 4.9 to 7.1, while greatest nodulation of A. glutinosa occurred at pH 4.9 over the same pH range. Nodulation was not affected by total soil nitrogen concentrations ranging from 0.09 to 0.20%. Mollisol pH was significantly lower under A. glutinosa trees than under E. angustifolia trees. For 4- to 8-year-old field-grown trees, A. glutinosa nodule weights were negatively correlated with soil pH, while for similar aged E. angustifolia trees nodulation in the acidic Alfisol was not detected.  相似文献   

13.
Summary Alders have an important role to play in biomass producing stands because of their N2-fixing ability and their capacity to withstand soils having an excess of moisture. The objectives of preliminary trials were (1) to find if there is any alder-genotype xFrankia-strain interaction when the effect of inoculating the bacteria was compared to no inoculation in seed beds of different species and provenances of alder, (2) to measure the possible effect of black alders interplanted in poplars compared to pure poplar plots. Two trials were laid out to study the alder-Frankia interaction. Both produced interaction. In the first one the inoculation had a favorable effect onAlnus glutinosa at age 2 years andA. cordata at age 1 and 2 and no effect onA. rubra. In the second one the inoculation had a depressive effect at age 1 on 2 of 3 provenances ofA. rubra and no effect on 1A. rubra, 3A.glutinosa and 3A. cordata provenances.A closely spaced field trial associating one black alder provenance and the poplar clone UNAL gives no superiority of mixed plots compared to pure plots. The results suggest that the N2-fixation of alders is not profitable to poplars at age 3 with a 1.5×2 m spacing.  相似文献   

14.
Host compatibility of different spore-positive (Sp+)and spore-negative (Sp?) strain types of Frankia from alder stands in Finland was studied in Modulation tests with hydrocultures of Alnus glutinosa (L.) Gaertner, A. incana (L.) Moench and A. nitida Endl. Root nodules and soil samples from stands of A. incana (Lammi forest and Hämeenlinna forest) were dominated by Sp + types of Frankia (coded AiSp+ and AiSp+ H. respectively), which caused effective root nodules in test plants of A. incana, but failed to induce nodules in A. nitida. In A. glutinosa Frankia strain types AiSp + and AiSp + H caused small, ineffective root nodules with sporangia (coded Ineff ?), which were recognized by the absence or near absence of vesicles in the nodule tissue. Ineffective nodules without sporangia (coded Ineff ?) were induced on A. glutinosa with soil samples collected at Lammi swamp. The spore-negative strain type of Frankia was common in root nodules of A. glutinosa in Finland (Lammi swamp) and caused effective Sp? type root nodules (coded AgSp ?) in hydrocultures of A. incana, A. glutinosa and A. nitida. A different Sp + strain type of Frankia. coded AgSp+ Finland, was occasionally found in stands of A. glutinosa. It was clearly distinguished from strain type AiSp + by the ability to produce effective nodules on both A. glutinosa and A. incana. The nodulation capacities of soil and nodule samples were calculated from the nodulation response in hydrocutlure and served as a measure for the population density of infective Frankia particles. Sp + nodules from both strain types had equal and high nodulation capacities with compatible host species. The nodulation capacities of Sp type root nodules from A. glutinosa were consistently low. High frequencies of Frankia AiSp+ and AiSp+ H were found in the soil environment of dominant AiSp + nodule populations on A. incana. The numbers of infective particles of this strain type were insignificant in the soil environment of nearby Sp ? nodule populations on A. glutinosa and in the former field at Hämeen-linna near the Sp+ nodule area in Hämeenlinna forest. Strain type AgSp? had low undulation capacity in the soil environment of both A. incana and A. glutinosa stands, Explanations for the strong associations between Frankia strain types AiSp+ and AiSp ? H and A. incana and between strain type AgSp? and A. glutinosa are discussed in the light of host specificity and of some characteristics of population dynamics of both strain types. The possible need to adapt the concept of Frankia strain types Sp + and Sp ? to strains with some variation in spore development was stressed by the low potentials of strain type AiSp + H to develop spores in symbioses with hydrocultures of A. incnna.  相似文献   

15.
Summary The nodulation and the morphology and physiology of the nodules were studied onDatisca cannabina, a perennial herb from northern Pakistan andAlnus nitida, a nodulated tree in the same locality. Both species bear coralloid clusters of actinorhizal nodules. The main free amino acid inD. cannabina nodules was arginine while the predominant free amino acid inA. nitida nodules was citrulline. The infectivity of crushed nodules of both types of plants on their respective host was about 106 infective particles per gram of nodule fresh wt. In cross-inoculation experiments crushed nodule inoculum fromA. nitida failed to induce nodulation onD. cannabina seedlings but the crushed nodule inoculum fromD. cannabina caused low nodulation on seedlings ofA. nitida (103 infective particles. g. nodule fresh wt.).The activity of nitrogenase, hydrogenase and respiration (O2 uptake) were measured in detached nodules, nodule homogenates and the 20 m residue and 20 m filtrate preparations from the nodules of both species. Both species showed similar patterns of activities except that only the nodule homogenate and 20 m residue preparations fromD. cannabina showed pronounced enhancement of the O2 uptake by succinate which was further stimulated by ADP. This has in part been explained by the presence of mitochondria in close connection with the endophyte.  相似文献   

16.
Summary The inoculation ofAlnus rubra (red alder) withFrankia sp. can lead to a highly efficient symbiosis. Several factors contribute to the successful establishment of nitrogenfixing nodules: (1) quantity and quality ofFrankia inoculant; (2) time and method of inoculation; (3) nutritional status of the host plant.Frankia isolates were screened for their ability to nodulate and promote plant growth of container-grown red alder. Inoculations were performed on seedlings and seeds. Apparent differences in symbiotic performance could be seen when seeds or seedlings were inoculated. Plants inoculated at planting performed significantly better than those inoculated four weeks later in terms of shoot height, nodule number and shoot dry weight. If inoculation was delayed further, reduction in shoot height, nodule number and shoot dry weight resulted. The effect of fertilizer was also investigated with regard to providing optimal plant growth after inoculation. Plants receiving 1/5 Hoagland's solution minus nitrogen showed maximal plant growth with abundant nodulation. Plants receiving 1/5 Hoagland's solution with nitrogen showed excellent plant growth with significantly reduced nodulation.  相似文献   

17.
Six strains and a commercial inoculant ofBradyrhizobium japonicum were evaluated in association withGlycine max (L.) cultivar Clark. Inoculated and uninoculated plants were grown in pot and field experiments. Nodules were counted and weighed and roots and shoots were separated and analysed for total nitrogen. In pot experiments, two of six bacterial strains were superior to the other four, and to the commercial inoculant (Nitragin) in promoting greater root and top growth and plant nitrogen accumulation. In the field experiment, there were indications that environmental conditions may have affected nodulation by the bacteria. The strains could be divided into three groups according to nodule efficiencies, accumulation of plant dry matter, and total nitrogen content. The greater variations in nodule efficiencies of the tested strains could be attributed to the quantities of bacteroid, cytosol protein and leghaemoglobin in the nodules.  相似文献   

18.
The distribution of spore-positive (sp+) and spore-negative (sp−) root nodules ofAlnus incana ssp.rugosa (DuRoi) Clausen (speckled alder) was examined at 29 sites with a wide range of environmental conditions in Maine, USA. These included: pH 3.4 to 7.0, soil texture ranging from coarse gravel to clay to organic soils, elevation from 3 to 591 m and latitude 43 to 47°N. Habitat types included disturbed areas, streamsides, swamps and old fields. Sp (−) nodules were substantially more common, making up 76% of all nodules, whereas only 24% were sp (+). Sp (−) nodules often occurred in pure stands and predominated at disturbed sites with mineral soils at the surface and in old fields and swamps with pH>4.0 Sp (+) nodules were nearly always found in mixture with sp (−) nodules. They occurred primarily at streamside and lakeshore sites where they made up 40% of the nodules and at sites with pH<4.0 regardless of habitat type. It is suggested that sp (−) strains ofFrankia may be maintained at a site by saprophytic growth in soil and thus nodulate newly established hosts, whereas sp (+) strains may be maintained primarily by spore production within nodules and thus depend on extended presence of the host.  相似文献   

19.
The present contribution covers the cross-inoculation between two actinorhizae belonging to different genera and families, mainlyAlnus glutinosa andCoriaria myrtifolia. Frankia strains isolated fromA. glutinosa received from the Netherlands (LDAgp1r1, LDAgn1) and from Scotland (UGL010708), induced a fully effective nodulation onC. myrtifolia. The same effect was caused by a nodule extract fromA. glutinosa. The reverse, a crushed-nodule inoculum fromC. myrtifolia nodulated all theA. glutinosa seedlings, though nodules formed were less effective than those induced by the other inocula. Re-isolation of thoseFrankia strains from the nodules formed onA. glutinosa was readily obtained, whereas attempts to re-isolate them from the nodules formed onC. myrtifolia failed, suggesting that isolation procedures different to those employed should be tried.  相似文献   

20.
Samira R. Mansour 《Protoplasma》1994,183(1-4):126-130
Summary Measurements of auxin and cytokinin activities in extracts ofCasuarina root nodules were made. The nodules were induced either by pure culture ofFrankia strain CgI4 or by crushed nodule inoculum. Levels of cytokinin activity were significantly higher in root nodules induced by pureFrankia culture than in those induced by crushed nodule inoculum. However, the reasons for this are unknown. Seasonal variation in levels of cytokinin activity inCasuarina nodules has also been detected.Dedicated to the memory of Professor John G. Torrey  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号