首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Occurrence and activity of the hydrogen uptake enzyme were studied in root nodule homogenates made from plants of Alnus incana (L.) Moench collected from field sites in the northern part of Sweden. Nitrogenase (EC 1.7.99.2) activity (estimated by acetylene reduction) and hydrogen evolution were studied in excised nodules. All Frankia sources showed acetylene reduction activity, and possessed a hydrogen uptake system. Hydrogen uptake in nodule homogenates from the Frankia sources measured at 23.8 μM H2 ranged from 0.04 to 5.0 μmol H2 (g fresh weight nodule)−1 h−1. The H2 uptake capacity of nodule homogenates from one of the Frankia sources was almost 8 times higher than the hydrogen evolution from nitrogenase, both expressed on a nodule fresh weight basis. Frankia sources from field sites 6 and 11 showed Km for H2 of 13.0 and 23.6 μM H2, respectively. This indicates similarities in the hydrogen uptake enzymes in the two Frankia sources. It is concluded that hydrogen uptake is a common characteristic in Frankia.  相似文献   

2.
Hydrogen metabolism was studied in three Casuarina species, C, equisetifolia Forst., C. glauca Sieb. ex. Spreng. and C. obesa Miq., either inoculated with the pure Frankia culture HFP CcI3 or inoculated with a crushed nodule inoculum made from C. glauca nodules. Nitrogenase (EC 1.7.99.2) activity and hydrogen evolution was measured on intact plants, while hydrogen uptake was measured on excised nodules and in nodule homogenates.
Nitrogenase activity was highest in C. glauca inoculated with C. glauca nodules, while no hydrogen evolution was detected. Hydrogen evolution was highest in the symbiosis between C. equisetifolia and HFP CcI3, but the nitrogenase activity showed intermediate values compared to the other symbioses. Measured at a concentration of 93 μ M H2, H2 uptake was highest in C. glauca inoculated with the C. glauca inoculum. H2 uptake activity in homogenates was 83% of the intact nodule rate. With phenazinemethosulfate as the electron acceptor, H2 uptake by nodule homogenates showed typical Michaelis-Menten kinetics with a Km of 21.3 μ M for H2.
The data presented here indicate a host plant effect on the endobiont which alters the hydrogen metabolism.  相似文献   

3.
Immunogold localization of hydrogenase in free-living Frankia CpI1   总被引:1,自引:0,他引:1  
Abstract The free-living Frankia strain CpI1 cultured under nitrogen-fixing and non-nitrogen-fixing conditions was investigated for occurrence of hydrogenase protein by Western blots. Transmission electron microscopy and immunocytological labelling were used to study the distribution of hydrogenase in the Frankia strain.
Western immunoblots revealed that a 72-kDa protein in the Frankia strain CpI1 was immunologically related to the large subunit of a dimeric hydrogenase purified from Alcaligenes latus . Immunolocalization showed that the hydrogenase protein is located both in vesicles and hyphae in Frankia strain CpI1 grown in a nitrogen-free medium. Earlier reports that nitrogenase is localized in the vesicles [1,2], together with this finding, point out a possible role for hydrogenase in increasing relative efficiency of nitrogen fixation. In CpI1 grown in media containing nitrogen (lacking vesicles), the enzyme was evenly distributed in the hyphae. The impact of this result has to be further analysed.  相似文献   

4.
Five free-living Frankia strains isolated from Casuarina were investigated for occurrence of hydrogenase activity. Nitrogenase activity (acetylene reduction) and hydrogen evolution were also evaluated. Acetylene reduction was recorded in all Frankia strains. None of the Frankia strains had any hydrogenase activity when grown on nickel-depleted medium and they released hydrogen in atmospheric air. After addition of nickel to the medium, the Frankia strains were shown to possess an active hydrogenase, which resulted in hydrogen uptake but no hydrogen evolution. The hydrogenase activity in Frankia strain KB5 increased from zero to 3.86 μ mol H2 (mg protein)−1 h−1 after addition of up to 1.0 μ M Ni. It is likely that the hydrogenase activity could be enhanced even more as a response on further addition of Ni. It is indicated in this study that absence of hydrogenase activity in free-living Frankia isolated from Casuarina spp. is due to nickel deficiency. Frankia living in symbiosis with Casuarina spp. show hydrogenase activity. Therefore, the results also indicate that the hydrogenase to some extent is regulated by the host plant and/or that the host plant supplies the symbiotic microorganism with nickel. Moreover, the result shows that this Frankia is somewhat different from Frankia isolated from Alnus incana and Comptonia peregrina ., i.e., Frankia isolated from A. incana and C. peregrina showed a small hydrogen uptake activity even without addition of nickel.  相似文献   

5.
A clone of Alnus incana (L.) Moench was grown in symbiosis with a local source of Frankia or with Frankia Ar14. Seven to 9-week-old plants were given 20 m M NH4Cl (20 m M KCl = control) for 3 days. Nitrogenase activity of intact plants decreased gradually within the 3 days of treatment to about 10% of the initial rates. Hydrogen evolution in air and total nitrogenase activity responded similarly to the treatment. Relative efficiency of nitrogenase thus remained the same throughout the study period. Control plants were not affected. Measurements of nitrogenase activity in root nodule homogenates (in vitro measurements) indicated loss of active nitrogenase rather than shortage of energy for nitrogenase activity in Frankia from ammonium-treated plants. Shoots were exposed to 14CO2 and translocation of 14C to Frankia vesicle clusters prepared from root nodules was studied. Frankia vesicle clusters from ammonium-treated plants contained about half as much 14C as those of control plants during all 3 days studied. One explanation for the observed effects is that a reduced supply of carbon to Frankia vesicles in the root nodules caused a reduced metabolic rate, including reduced protein synthesis and synthesis of nitrogenase.  相似文献   

6.
Actinorhizal nodules do not usually evolve H2 due to the action of an uptake hydrogenase. We have found that nodules of several Frankia symbioses evolved large amounts of H2 gas when returned to air following exposure to 10 kPa C2HT2 during an acetylene reduction assay. Increased H2 evolution in air persisted for several days when intact root systems of Alnus incana (L.) Moench (inoculated with Frankia UGL 011101) were treated with 10 kPa C.H2 for 1 h. Full recovery of uptake hydrogenase activity required 4 to 8 days. Studies with crude homogenates of nodules of the same plants showed that hydrogenase (measured amperometrically with phenazine metho-sulfate as electron acceptor) was directly affected, since activity in treated nodules was only 10% of that in untreated nodules. A survey of actinorhizal symbioses revealed variation in the effect of an acetylene reduction assay on hydrogen metabolism. Nodules of three species, including Alnus rubra Bong, inoculated with Frankia HFPArD. showed complete inactivation of hydrogenase. H2 evolution in air was 25% of the C2H2 reduction rate and H, evolution in Ar/O2 was equal to the QH2 reduction rate. Two symbioses, Ceanothus americanus L. (soil inoculant) and Batista glomerata Baill. (soil inoculant) showed no change following an acetylene reduction assay. A third group of symbioses showed an intermediate response.  相似文献   

7.
Summary The growth of Frankia isolates was monitored by dry weight, total protein and total ATP measurements under different temperature and pH regimes. Significant correlations (P<0.01) were found among all growth measures which meant that similar general conclusions were reached irrespective of the study method involved. The assessment of protein was the method of choice for regular assessments of Frankia growth due to its facility and relatively high sensitivity. The optimum temperature for growth of isolate LDAgp1 and AvcI1 was about 30°C while for CpI1 it lay between 30° and 35°C. No growth was observed at 40°C but some growth was observed at 10°C with isolate CpI1 and LDAgp1 over an extended growth period of 39 days. The range of pH favouring growth lay between 6 and 8. The optimum for LDAgp1 lay between 6.5 and 7, that for AvcI1 and CpI1 is close to 6.5. The pH response was medium dependent. Increases in biomass were observed for some isolates at 4.6 and above 8.0 on some media.  相似文献   

8.
Abstract The metronidazole-resistant ( Mtn-R ) mutant strain of N. muscorum produced drug-resistant NADPH: ferredoxin (Fd) oxidoreductase and showed derepression of heterocyst formation and uptake hydrogenase activity in NH4+-medium. The observation of NH4+-repression in regulation of nitrogenase activity alone in the mutant strain suggests, that heterocyst formation and nitrogenase activity are regulated by two separate NH4+-repression control systems, one specific for heterocyst and uptake hydrogenase and the other for nitrogenase. The partial drug-resistant NADPH: Fd oxidoreductase enzymatic activity seems to be the reason for drug-resistant growth of the cyanobacterium in N2-medium and NH4+-medium.  相似文献   

9.
The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different genomic backgrounds. The resulting strains were tested in symbiosis with plants of Pisum sativum using a flow-through apparatus in which nodule nitrogenase activity and respiration were measured simultaneously under steady state conditions. Nodules formed by strains containing the background of JI6015 had the lowest carbon costs of N2 fixation (7.10–8.10 μmol C/μmol N2), but shoot dry weight of those plants was also smaller than that of plants nodulated by strains with the background of B151 or JI8400. Nodules formed by these two strain types had carbon costs of N2 fixation varying between 11.26 and 13.95 μmol C/μmol N2. The effect of symbiotic plasmids on the carbon costs was relatively small. A time-course experiment demonstrated that nodules formed by a strain derived from JI6015 were delayed in the onset of nitrogenase activity and had a lower rate of activity compared to nodules induced by a strain with the background of B151. The relationship between nitrogenase activity, carbon costs of N2 fixation and host plant biomass production is discussed.  相似文献   

10.
In soybeans ( Glycine max L. Merr.), high levels of soil nitrate inhibit N2 fixation, and nitrate-tolerant symbioses have been identified within a chemically mutagenized line of cv. Bragg denoted nts382 and within the line K466, a genotype representative of a number of Korean soybean cultivars. The genotypes nts382 and K466 were examined to see if they could be used as a model system for studying the mechanism responsible for the short-term (i.e. 3-day) inhibition of specific nitrogenase activity, especially the mechanism behind the greater O2 limitation of nodule metabolism that is characteristic of nitrate inhibition of N2 fixation in soybean. In nts382, total nitrogenase activity (TNA = H2 production in Ar:O2) was inhibited to a lesser degree (48% of control) relative to Bragg (30% of control), and the nitrate-treated symbioses showed less of an O2 limitation of nodule metabolism in nts382 than in Bragg. However, the relative proportion of O2 limitation to the total nitrate inhibition was similar (40 and 41%) in nts382 and Bragg, respectively. Therefore, the nts382 symbioses may be useful in elucidating the general mechanism for down-regulation of nitrogenase activity in soybean, but would not be a useful model system for studying the control of O2-limited metabolism following nitrate exposure. The effects of nitrate on TNA and on the degree of O2 limitation of nodule metabolism were the same in K466 and a reference cultivar Maple Arrow. Consequently, the tolerance of K466 to nitrate reported previously was attributed to the ability of this symbiosis to maintain nodule biomass in the presence of nitrate, not to any ability to maintain specific nitrogenase activity in the presence of nitrate.  相似文献   

11.
Presence and activity of the enzymes superoxide dismutase (SOD) and catalase were studied in Frankia in symbiosis with Alnus incana (L.) Moench. Analysis on native PAGE gels indicated that symbiotic Frankia contained an FeSOD and catalase. The activity of the enzymes was in the same range as reported for cultured Frankia . Attempts to characterize SOD by western blots with antisera from Escherichia coli and Azotobacter vinelandii did not give clear-cut results with the antibodies used. Alnus incana plants were grown with the root system in 5, 10, 21 or 40% O2 for up to 6 days. Nitrogenase activity, measured as ARA (acetylene reducing activity) dropped within 3 h when roots were exposed to low or high oxygen. At 40% O2 ARA was almost completely lost while at 5 and 10% O2 ARA decreased to 69 and 74% of the inital value, respectively, Nitrogenase activity recovered at ail oxygen tensions. Recovery rates resembled the continuous increase in ARA in plants continuosly kept at 21% O2, and suggests that new vesicles with envelopes of appropriate thickness were formed. The ARA measurements confirm results from an earlier study where nitrogenase activity was measured as H2 evolution. There was a tendency for increased SOD and catalase activities in Frankia from root systems exposed to 40% O2 for 24 h but not earlier or later than this. When data from all experimental times were pooled. SOD activity increased significantly with increased oxygen tension whereas catalase activity decreased. Although ARA per plant varied with oxygen tension, there was no statistically significant correlation between ARA and SOD or between ARA and catalase. It seems that being linked to nitrogenase activity is only one role of SOD and catalase in this symbiotic Frankia .  相似文献   

12.
There were significant levels of in vitro hydrogenase activity in Methanosarcina strains. The multiple forms of hydrogenase were observed in cell free extracts of cells grown on methanol. Strains having poor growth on H2 : CO2 had four forms while strains having normal growth on all substrates contained two forms of hydrogenase. These multiple forms differ in their charges as well as in their composition of transition metal ions. The strain having normal growth showed higher incorporation of 63Ni2+ and 65Zn2+. Both hydrogenases, A and D, of strain P3 had methylviologen and F420-reducing activity and contained Zn2+ and Co2+ respectively. Hydrogenases A and D of strains P1 and P4 also had similar characteristics whereas hydrogenases B and C had only methylviologen reducing activity.  相似文献   

13.
Abstract Photoproduction of hydrogen, nitrogenase activity (acetylene reduction) and hydrogenase activity (methylene blue dye reduction) were studied in free and alginate immobilized whole cells of a purple non-sulfur photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Four-fold increase in hydrogen production, two-fold increase in nitrogenase activity and 1.2-fold increase in the hydrogenase activity were observed in immobilized cells compared to free cells. Effect of various inhibitors (CO and C2H2) and electron donor (H2) on the above three functions by free and immobilized cells has also been studied.  相似文献   

14.
Carbon and nitrogen partitioning was examined in a wild-type and a nitrate reductase-deficient mutant (A317) of Pisum sativum L. (ev. Juneau), effectively inoculated with two strains of Rhizobium leguminosarum (128C23 and 128C54) and grown hydroponically in medium without nitrogen for 21 days, followed by a further 7 days in medium without and with 5 mM NH4NO3. In wild-type symbioses the application of NH4NO3 significantly reduced nodule growth, nitrogenase (EC 1.7.99.2) activity, nodule carbohydrates (soluble sugars and starch) and allocation of [14C]-labelled (NO3, NH4+, amino acids) in roots. In nodules, there was a decline in amino acids together with an increase in inorganic nitrogen concentration. In contrast, symbioses involving A317 exhibited no change in nitrogenase activity or nodule carbohydrates, and the concentrations of all nitrogenous solutes measured (including asparagine) in roots and nodules were enhanced. Photosynthate allocation to the nodule was reduced in the 128C23 symbiosis. Nitrite accumulation was not detected in any case. These data cannot be wholly explained by either the carbohydrate deprivation hypothesis or the nitrite hypothesis for the inhibition of symbiotic nitrogen fixation by combined nitrogen. Our result with A317 also provided evidence against the hypothesis that NO3 and NH4+ or its assimilation products exert a direct effect on nitrogenase activity. It is concluded that more than one legume host and Rhizobium strain must be studied before generalizations about Rhizobium /legume interactions are made.  相似文献   

15.
Application of allopurinol (AP; 1H-pyrazolo-[3,5- d ]pyrimidine-4-o1) to intact nodulated roots of ureide-forming legumes causes rapid inhibition of NAD:xanthine dehydrogenase (XDH: EC 1.2.1.37), cessation of ureide synthesis and, subsequently, severe nitrogen deficiency (Atkins et al. 1988. Plant Physiology 88: 1229–1234). Nitrogen deficiency is a result of inhibited nitrogenase (EC 1.7.99.2) activity. Using an open gas exchange system to measure H2 and CO2 evolution, short term effects of AP application were examined in a Hup soybean symbiosis [ Glycine max (L.) Merr. cv. Harosoy: USDA 16]. The onset of inhibition of nitrogenase was detected after ca 2 h exposure of the roots to AP. At the same time xanthine began to accumulate and ureide levels declined in nodules as a result of inhibition of XDH. The decline in H2 evolution following AP application was not due to altered electron allocation between N2 and H+ by nitrogenease but was coincident with increased gaseous diffusive resistance of nodules and a decline in intracellular oxygen concentration. A possible scheme for the intermediary metabolism of soybean nodules which might account for a direct connection between nitrogenase activity and ureide synthesis is proposed. The suggested mechanism envisages coupling production of reducing power by cytosolic enzymes of purine oxidation to synthesis of dicarboxylic acid substrates (malate and succinate) required for bacteroid respiration.  相似文献   

16.
In vivo H2 evolution by Anabaena cylindrica Lemm. strain PCC 7122 grown in the presence of ammonia at low and high light intensities was studied. We found that after 2 h of anaerobic incubation, H2 evolution [at a rate of 0.5 μmol (mg dry weight)1 h−1] via reversible hydrogenase occurred in high light grown cells, while this kind of activity was not found in low light grown cells. H2 evolution was inhibited by 3-(3'. 4'-dichlorophenyl-1, 1-dimethylurea (DCMU). Illuminating the cells in the phycocyanin absorption region resulted in a higher rate of H2 evolution than illuminating the cells in the chlorophyll absorption region. The results indicate that reversible hydrogenase receives reducing equivalents from photosynthetic water photolysis and that both photosystem II and photosystem I participate in the H2 production. Hydrogenase activity was found in the soluble fraction after mild sonication in the case of low light grown cells. After this treatment high light grown cells retained 70% of their hydrogenase activity in the particulate fraction, but released it into the soluble fraction in the presence of 2% deoxycholic acid.
In vitro H2 evolution did not differ significantly in the low and high light grown cells. Hence, the differences in the in vivo H2 evolution reflect the different availability of endogenous reductants for hydrogenase in the two kinds of cells. On the basis of our results it is suggested that high light grown Anabaena cells eliminate part of the photosynthetically produced excess electrons via an induced reversible hydrogenase activity. This is the first report of H2 evolution associated with water photolysis and catalyzed by hydrogenase in cyanobacteria.  相似文献   

17.
Host specificity between local Frankia strains and native alders [Alnus incana (L.) Moench and A. glutinosa (L.) Gaertn.] was evaluated in inoculation experiments. Pure cultures of Frankia , whether originating from A. incana or A. glutinosa , were infective and effective on both host species. These pure cultures were isolated from spore-negative (Sp) nodules. From spore-positive (Sp+) nodules no Frankia isolates were obtained. This strain type resisted all our isolation attempts and therefore crushed nodules had to be used for Sp+ type inoculations.
The Sp+ type Frankia populations differed in their host specificity. Sp+ nodules from A. glutinosa were effective on both alder species, but Sp+ nodules from A. incana induced effective nodules only on the original host; on A. glutinosa only small (1-3mm) prenodule-like structures were found. Such A. glutinosa plants died on N-free medium, thus showing that these nodules were ineffective. In the effective nodules the middle cortex was dominated by infected cells filled with vesicle clusters. In the ineffective nodules only a few cortical cells were infected and sporangia predominated in these cells. Surprisingly enough they also contained vesicle-like structures as demonstrated in electron micrographs.  相似文献   

18.
In soybeans ( Glycine max L. Merr.), high levels of soil nitrate inhibit N2 fixation, and nitrate-tolerant symbioses have been identified within a chemically mutagenized line of cv. Bragg denoted nts382 and within the line K466, a genotype representative of a number of Korean soybean cultivars. The genotypes nts382 and K466 were examined to see if they could be used as a model system for studying the mechanism responsible for the short-term (i.e. 3-day) inhibition of specific nitrogenase activity, especially the mechanism behind the greater O2 limitation of nodule metabolism that is characteristic of nitrate inhibition of N2 fixation in soybean. In nts382, total nitrogenase activity (TNA = H2 production in Ar:O2) was inhibited to a lesser degree (48% of control) relative to Bragg (30% of control), and the nitrate-treated symbioses showed less of an O2 limitation of nodule metabolism in nts382 than in Bragg. However, the relative proportion of O2 limitation to the total nitrate inhibition was similar (40 and 41%) in nts382 and Bragg, respectively. Therefore, the nts382 symbioses may be useful in elucidating the general mechanism for down-regulation of nitrogenase activity in soybean, but would not be a useful model system for studying the control of O2-limited metabolism following nitrate exposure. The effects of nitrate on TNA and on the degree of O2 limitation of nodule metabolism were the same in K466 and a reference cultivar Maple Arrow. Consequently, the tolerance of K466 to nitrate reported previously was attributed to the ability of this symbiosis to maintain nodule biomass in the presence of nitrate, not to any ability to maintain specific nitrogenase activity in the presence of nitrate.  相似文献   

19.
Three experiments examined the effects of NaCl concentrations 0 to 500 mM on the growth of isolates of Frankia from Casuarinaceae and selected North American host plants. Four Casuarina isolates grew well in defined medium (pyruvate-BAP) but not in a yeast extract medium. Conversely the non-Casuarina isolates preferred the yeast-extract medium, although two of them grew in the defined medium. When grown in their preferred medium, the Casuarina isolates were little affected by NaCl concentrations up to 200 m M but did not grow at 500 m M . The non-Casuarina isolates, with the exception of an isolate from Purshia tridentata . were severely affected above 50 m M NaCl.
Nitrogenase activity (C2H2 reduction) by the non-Casuarina isolates could not be detected in low-N medium although protein determinations indicated that a low level of nitrogen fixation had occurred. All four Casuarina isolates showed nitrogenase activity in culture, up to 200 m M NaCl, although at that concentration of NaCl, growth was affected more than that of cultures in N-supplemented medium. All four strains showed a marked increase in nitrogenase activity up to 72 h after the addition of C2H2, with the magnitude of the effect and their subsequent behaviour being strain dependent.
The results indicate that the isolates of Frankia from Casuarina and Allocasuarina , and that from Purshia tridentata , are more tolerant of NaCl than isolates from species not normally growing under sodic conditions. They provide optimism that these strains could successfully establish in saline soils if introduced with species of host plants tolerant to these soils.  相似文献   

20.
Characterization of populations of aerobic hydrogen-oxidizing soil bacteria   总被引:2,自引:0,他引:2  
Abstract Freshly isolated soil bacteria were screened for different characteristics of the H2 metabolism without prior selection for growth on H2. The bacteria were isolated from different grain size fractions of a neutral meadow cambisol and an acidic forest cambisol, and then tested (1) for the ability to oxidize H2, (2) for chemolithoautotrophic growth on H2 as sole electron donor and energy source, (3) for DNA-DNA-hybridization with two hydrogenase gene fragments from Alcaligenes eutrophus and Rhizobium leguminosarum , and (4) for reduction of 2,3,5-triphenyl-2H-tetrazoliumchloride (TTC) in the presence of H2. Many (65–90%) of the isolates were able to reduce TTC, but only 30–65% were actually able to oxidize H2 indicating that the TTC test was not a specific characteristic for H2 oxidation ability. The TTC test was only reliable in pure cultures of known bacteria with optimized test conditions, here shown for Alcaligenes eutrophus, Bradyrhizobium japonicum and Nocardia opaca , but not in mixed cultures of unknown bacteria. Still less (< 30%) of the isolates were able to grow chemolithoautotrophically indicating that culturable aerobic bacteria with the ability for H2 oxidation are more abundant than bacteria with the ability for chemolithoautotrophic growth. The DNA-DNA-hybridization test failed to detect many of the bacteria with H2 oxidation activity, probably since the hydrogenase genes present in the isolates were too diverse to be all detected by the DNA probes applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号