首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The number and positions of disulfide linkages in a therapeutic monoclonal antibody (mAb) play a crucial role in forming and stabilizing a correct mAb structure that is critical to its function. Peptide mapping by liquid chromatography–mass spectrometry (LC–MS) analysis of enzymatically digested mAb under nonreducing condition is a powerful method for disulfide linkage characterization to ensure mAb drug function and quality. However, the development of a robust sample preparation method with improved digestion efficiency and minimized disulfide scrambling for disulfide linkage analysis is essential but challenging. In this study, a sample preparation method for analysis of correct disulfide linkages in therapeutic mAbs was developed. Instead of common trypsin digestion, Lys-C plus trypsin was used in this approach to improve digestion efficiency. In addition, lower digestion temperature (25 °C) and lower digestion pH (pH 6.8) were also examined to minimize disulfide scrambling. Our results showed that Lys-C plus trypsin digestion at pH 6.8 and 25 °C is a better sample preparation condition for all therapeutic mAbs tested in this study because of a better digestion efficiency (all expected disulfide linkages can be confidently observed) and minimal disulfide scrambling.  相似文献   

2.
The formation of disulfide bonds between cysteine residues is crucial for the stabilization of native protein structures and, thus, determination of disulfide linkages is an important facet of protein structural characterization. Nonetheless, the identification of disulfide bond linkages remains a significant analytical challenge, particularly in large proteins with complex disulfide patterns. Herein, we have developed a new LC/MS strategy for rapid screening of disulfides in an intact protein mixture after a straightforward reduction step with tris(2‐carboxyethyl)phosphine. LC/MS analysis of reduced and nonreduced protein mixtures quickly revealed disulfide‐containing proteins owing to a 2 Da mass increase per disulfide reduction and, subsequently, the total number of disulfide bonds in the intact proteins could be determined. We have demonstrated the effectiveness of this method in a protein mixture composed of both disulfide‐containing and disulfide‐free proteins. Our method is simple (no need for proteolytic digestion, alkylation, or the removal of reducing agents prior to MS analysis), high throughput (fast on‐line LC/MS analysis), and reliable (no S–S scrambling), underscoring its potential as a rapid disulfide screening method for proteomics applications.  相似文献   

3.
Antibody-drug conjugation strategies are continuously evolving as researchers work to improve the safety and efficacy of the molecules. However, as a part of process and product development, confirmation of the resulting innovative structures requires new, specialized mass spectrometry (MS) approaches and methods, as compared to those already established for antibody-drug conjugates (ADCs) and the heightened characterization practices used for monoclonal antibodies (mAbs), in order to accurately elucidate the resulting conjugate forms, which can sometimes have labile chemical bonds and more extreme chemical properties like hydrophobic patches. Here, we discuss practical approaches for characterization of ADCs using new methodologies and ultrahigh-resolution MS, and provide specific examples of these approaches. Denaturing conditions of typical liquid chromatography (LC)/MS analyses impede the successful detection of intact, 4-chain ADCs generated via cysteine site-directed chemistry approaches where hinge region disulfide bonds are partially reduced. However, this class of ADCs is detected intact reliably under non-denaturing size-exclusion chromatography/MS conditions, also referred to as native MS. For ADCs with acid labile linkers such as one used for conjugation of calicheamicin, careful selection of mobile phase composition is critical to the retention of intact linker-payload during LC/MS analysis. Increasing the pH of the mobile phase prevented cleavage of a labile bond in the linker moiety, and resulted in retention of the intact linker-payload. In-source fragmentation also was observed with typical electrospray ionization (ESI) source parameters during intact ADC mass analysis for a particular surface-accessible linker-payload moiety conjugated to the heavy chain C-terminal tag, LLQGA (via transglutaminase chemistry). Optimization of additional ESI source parameters such as cone voltages, gas pressures and ion transfer parameters led to minimal fragmentation and optimal sensitivity. Ultrahigh-resolution (UHR) MS, combined with reversed phase-ultrahigh performance (RP-UHP)LC and use of the FabRICATOR® enzyme, provides a highly resolving, antibody subunit-domain mapping method that allows rapid confirmation of integrity and the extent of conjugation. For some ADCs, the hydrophobic nature of the linker-payload hinders chromatographic separation of the modified subunit/domains or causes very late elution/poor recovery. As an alternative to the traditionally used C4 UHPLC column chemistry, a diphenyl column resulted in the complete recovery of modified subunit/domains. For ADCs based on maleimide chemistry, control of pH during proteolytic digestion is critical to minimize ring-opening. The optimum pH to balance digestion efficiency and one that does not cause ring opening needed to be established for successful peptide mapping.  相似文献   

4.
We describe quantitative characterization of a sample preparation platform for rapid and high-throughput analysis of recombinant monoclonal antibodies (MAbs) and their post-translational modifications. MAb capture, desalting and in situ reduction/alkylation were accomplished by sequential adsorption of analyte to solid phase beads (protein A, reverse-phase) suspended in microtiter plate wells. Following elution and rapid tryptic digestion in the presence of acid-labile surfactant (RapiGest), peptides were fractionated by stepwise elution from reverse-phase pipet tips and the fraction containing Fc N-glycopeptides isolated. Direct quantitative analysis of the relative abundance of peptide glycoforms by MALDI-TOF MS in linear mode closely correlated with normal phase HPLC analysis of fluorophore labeled N-glycans released by PNGaseF.  相似文献   

5.
A novel open tubular nanoproteomic platform featuring accelerated on-line protein digestion and high-resolution nano liquid chromatography mass spectrometry (LC-MS) has been developed. The platform features very narrow open tubular columns, and is hence particularly suited for limited sample amounts. For enzymatic digestion of proteins, samples are passed through a 20 µm inner diameter (ID) trypsin + endoproteinase Lys-C immobilized open tubular enzyme reactor (OTER). Resulting peptides are subsequently trapped on a monolithic pre-column and transferred on-line to a 10 µm ID porous layer open tubular (PLOT) liquid chromatography LC separation column. Wnt/ß-catenein signaling pathway (Wnt-pathway) proteins of potentially diagnostic value were digested+detected in targeted-MS/MS mode in small cell samples and tumor tissues within 120 minutes. For example, a potential biomarker Axin1 was identifiable in just 10 ng of sample (protein extract of ∼1,000 HCT15 colon cancer cells). In comprehensive mode, the current OTER-PLOT set-up could be used to identify approximately 1500 proteins in HCT15 cells using a relatively short digestion+detection cycle (240 minutes), outperforming previously reported on-line digestion/separation systems. The platform is fully automated utilizing common commercial instrumentation and parts, while the reactor and columns are simple to produce and have low carry-over. These initial results point to automated solutions for fast and very sensitive MS based proteomics, especially for samples of limited size.  相似文献   

6.
We have deduced the disulfide bond linkage patterns, at very low protein levels (<0.5 nmol), in two cysteine-rich polypeptide domains using a new strategy involving partial reduction/alkylation of the protein, followed by peptide mapping and tanden mass spectrometry (MS/MS) sequencing on a nanoflow liquid chromatography-MS/MS system. The substrates for our work were the cysteine-rich ectodomain of human Fn14, a member of the tumor necrosis factor receptor family, and the IgV domain of murine TIM-1 (T-cell, Ig domain, and mucin domain-1). We have successfully determined the disulfide linkages for Fn14 and independently confirmed those of the IgV domain of TIM-1, whose crystal structure was published recently. The procedures that we describe here can be used to determine the disulfide structures for proteins with complex characteristics. They will also provide a means to obtain important information for structure-function studies and to ensure correct protein folding and batch-to-batch consistency in commercially produced recombinant proteins.  相似文献   

7.
We compared detection sensitivity and protein sequence coverage of the adenovirus type 5 proteome achievable by liquid chromatography and tandem mass spectroscopy (LC/MS/MS) using three sample preparation and clean up methods. Tryptic digestion was performed on either purified viral proteins or whole virus, and followed by shotgun sequencing using tandem mass spectrometry for peptide identification. We used a recombinant adenovirus type 5 as a test system. The methods included separation of adenoviral proteins by reversed-phase high-performance liquid chromatography followed by tryptic digestion and analysis by LC/MS/MS. Alternatively, the purified whole virus was digested with trypsin and the peptides separated either by one-dimensional (reversed-phase) or by two-dimensional (cation exchange and reversed-phase) chromatography and analyzed by tandem mass spectrometry. A total of 11 protein species were identified from 154 peptides. All of the major viral proteins were found. In addition, two minor proteins, the 23 kDa viral protease and the late L1 protein, were identified for the first time by chromatography based assays. The 23 kDa viral protease, present at only 10 copies per virus, and representing 0.2% of the protein content of the virus, was detected by the 2D LC/MS/MS analysis of the whole virus digest from a sample containing only 70 fmols of the protein. This demonstrates the high sensitivity and selectivity of the method. The 2D LC/MS/MS analysis of the whole virus digest was also able to detect all viral proteins with copy numbers at or above 10/virus particle, with broad coverage of the amino acid sequences. Coverage ranged from 2 to 54%, a majority between 20 and 35%, suggesting the possibility of using this analysis to assess the purity of the virus preparations. This broad coverage may also provide a useful approach to identify posttranslational modifications on the structural proteins of the adenovirus.  相似文献   

8.
An online nonenzymatic digestion method utilizing a microwave-heated flow cell and mild acid hydrolysis at aspartic acid (D) for rapid protein identification is described. This methodology, here termed microwave D-cleavage, was tested with proteins ranging in size from 5 kDa (insulin) to 67 kDa (bovine serum albumin) and a bacterial cell lysate ( Escherichia coli). A microwave flow cell consisting of a 5 microL total volume reaction loop connected to a sealed reaction vessel was introduced into a research grade microwave oven. With this dynamic arrangement, the injected sample was subjected to microwave radiation as it flowed through the reaction loop and was digested in less than 5 min. Different digestion times can be achieved by varying the sample flow rate and/or length of the loop inside the microwave flow cell. The microwave flow cell can be operated individually with the output being collected for matrix assisted laser ionization/desorption (MALDI) mass spectrometry (MS) or connected online for liquid chromatography (LC) electrospray ionization (ESI)-MS. In the latter configuration, the microwave flow cell eluates containing digestion products were transferred online to a reversed phase liquid chromatography column for direct ESI-MS and ESI-MS/MS analyses (specifically, Collision Induced Dissociation, CID). Concurrently with the microwave D-cleavage step, disulfide bond reduction/cleavage was achieved by the coinjection of dithiothreitol (DTT) with the sample prior to online microwave heating and online LC-MS analysis and so eliminating the need for alkylation of the reduced protein. All protein standards, protein mixtures, and proteins in a bacterial cell lysate analyzed by this new online methodology were successfully identified via a SEQUEST database search of fragment ion mass spectra. Overall, online protein digestion and identification was achieved in less than 40 min total analysis time, including the chromatographic step.  相似文献   

9.
A unique, late-eluting “basic peak” (relative to the “main peak”) was observed by weak cation exchange-HPLC (WCX) for a recombinant monoclonal antibody (mAb) sample. Peak fractions were collected, desalted, and analyzed by high-resolution MS using a top-down characterization approach that provided accurate masses of intact mAb charge isoforms and a comprehensive profile of the structural heterogeneity. The individual light (L) and heavy (H) chain subunits from the main and basic peaks were analyzed by reversed-phase (RP) HPLC/MS after disulfide bond reduction and cysteine alkylation. Three mAb isoforms were detected, and their modifications were localized to H chain. Bottom-up characterization using RP-HPLC/MS peptide mapping and accurate mass measurements identified three distinct H chain C-terminal peptides ending in glycine, lysine, or α-amidated proline. The combined analyses showed that the main WCX peak mAb isoform contained two unmodified L chains and two H chains terminating in glycine. Each mAb isoform that coeluted in the basic peak consisted of two unmodified L chain subunits and a single H chain ending in glycine, but the second H chain terminated in lysine for one isoform and α-amidated proline for another isoform. The WCX elution positions of the isoforms were consistent with their respective net charge. To the best of our knowledge, the occurrence of C-terminal α-amidation in mAbs has not been reported previously.  相似文献   

10.
Leal WS  Nikonova L  Peng G 《FEBS letters》1999,464(1-2):85-90
Disulfide bond formation is the only known posttranslational modification of insect pheromone binding proteins (PBPs). In the PBPs from moths (Lepidoptera), six cysteine residues are highly conserved at positions 19, 50, 54, 97, 108 and 117, but to date nothing is known about their respective linkage or redox status. We used a multiple approach of enzymatic digestion, chemical cleavage, partial reduction with Tris-(2-carboxyethyl)phosphine, followed by digestion with endoproteinase Lys-C to determine the disulfide connectivity in the PBP from Bombyx mori (BmPBP). Identification of the reaction products by on-line liquid chromatography-electrospray ionization mass spectrometry (LC/ESI-MS) and protein sequencing supported the assignment of disulfide bridges at Cys-19-Cys-54, Cys-50-Cys-108 and Cys-97-Cys-117. The disulfide linkages were identical in the protein obtained by periplasmic expression in Escherichia coli and in the native BmPBP.  相似文献   

11.
An automated approach for the rapid analysis of protein structure has been developed and used to study acid-induced conformational changes in human growth hormone. The labeling approach involves hydrogen/deuterium exchange (H/D-Ex) of protein backbone amide hydrogens with rapid and sensitive detection by mass spectrometry (MS). Briefly, the protein is incubated for defined intervals in a deuterated environment. After rapid quenching of the exchange reaction, the partially deuterated protein is enzymatically digested and the resulting peptide fragments are analyzed by liquid chromatography mass spectrometry (LC-MS). The deuterium buildup curve measured for each fragment yields an average amide exchange rate that reflects the environment of the peptide in the intact protein. Additional analyses allow mapping of the free energy of folding on localized segments along the protein sequence affording unique dynamic and structural information. While amide H/D-Ex coupled with MS is recognized as a powerful technique for studying protein structure and protein–ligand interactions, it has remained a labor-intensive task. The improvements in the amide H/D-Ex methodology described here include solid phase proteolysis, automated liquid handling and sample preparation, and integrated data reduction software that together improve sequence coverage and resolution, while achieving a sample throughput nearly 10-fold higher than the commonly used manual methods.  相似文献   

12.
Comprehensive proteome profiling of breast cancer tissue samples is challenging, as the tissue samples contain many proteins with varying concentrations and modifications. We report an effective sample preparation strategy combined with liquid chromatography (LC) electrospray ionization (ESI) quadrupole time-of-flight (QTOF) MS/MS for proteome analysis of human breast cancer tissue. The complexity of the breast cancer tissue proteome was reduced by using protein precipitation from a tissue extract, followed by sequential protein solubilization in solvents of different solubilizing strength. The individual fractions of protein mixtures or subproteomes were subjected to trypsin digestion and the resultant peptides were separated by strong cation exchange (SCX) chromatography, followed by reversed-phase capillary LC combined with high resolution and high accuracy ESI-QTOF MS/MS. This approach identified 14407 unique peptides from 3749 different proteins based on peptide matches with scores above the threshold scores at the 95% confidence level in MASCOT database search of the acquired MS/MS spectra. The false positive rate of peptide matches was determined to be 0.95% by using the target-decoy sequence search strategy. On the basis of gene ontology categorization, the identified proteins represented a wide variety of biological functions, cellular processes, and cellular locations.  相似文献   

13.
14.
Recombinant human osteoprotegerin chimera is a 90-kDa protein containing a human IgG Fc domain fused to human osteoprotegerin. The molecule is a dimer linked by two intermolecular disulfide bonds and contains eleven intramolecular disulfide bonds per monomer. A cysteine-rich region in osteoprotegerin contains nine disulfide bridges homologous to the cysteine-rich signature structure of the tumor necrosis factor receptor/nerve growth factor receptor superfamily. In this report, we have developed peptide mapping procedures suitable to generate disulfide-containing peptides for disulfide structure assignment of the fusion molecule. The methods employed included proteolytic digestion using endoproteinases Glu-C and Lys-C in combination followed by LC-MS analyses. Disulfide linkages of peptide fragments containing a single disulfide bond were assigned by sequence analysis via detection of (phenylthiohydantoinyl) cystine and/or by MS analysis. Disulfide bonds of a large, core fragment containing three peptide sequences linked by four disulfides were assigned after generation of smaller disulfide-linked peptides by a secondary thermolysin digestion. Disulfide structures of peptide fragments containing two disulfide bonds were assigned using matrix-assisted laser desorption ionization mass spectrometry with postsource decay. Both the inter- and intramolecular disulfide linkages of the chimeric dimer were confirmed.  相似文献   

15.
This study shows that state-of-the-art liquid chromatography (LC) and mass spectrometry (MS) can be used for rapid verification of identity and characterization of sequence variants and posttranslational modifications (PTMs) for antibody products. A candidate biosimilar IgG1 monoclonal antibody (mAb) was compared in detail to a commercially available innovator product. Intact protein mass, primary sequence, PTMs and the micro-differences between the two mAbs were identified and quantified simultaneously. Although very similar in terms of sequences and modifications, a mass difference observed by LC-MS intact mass measurements indicated that they were not identical. Peptide mapping, performed with data independent acquisition LC-MS using an alternating low and elevated collision energy scan mode (LC-MSE), located the mass difference between the biosimilar and the innovator to a two amino acid residue variance in the heavy chain sequences. The peptide mapping technique was also used to comprehensively catalogue and compare the differences in PTMs of the biosimilar and innovator mAbs. Comprehensive glycosylation profiling confirmed that the proportion of individual glycans was different between the biosimilar and the innovator, although the number and identity of glycans were the same. These results demonstrate that the combination of accurate intact mass measurement, released glycan profiling and LC-MSE peptide mapping provides a set of routine tools that can be used to comprehensively compare a candidate biosimilar and an innovator mAb.Key words: biosimilar mAb, innovator mAb, molecular similarity, sequence variants, posttranslational modifications, N-linked glycosylation, chemical degradations, micro-heterogeneities, characterization, intact protein mass measurement, peptide mapping, glycan profiling, LC-MS, LC-fluorescence, MALDI MS  相似文献   

16.
《MABS-AUSTIN》2013,5(4):379-394
This study shows that state-of-the-art liquid chromatography (LC) and mass spectrometry (MS) can be used for rapid verification of identity and characterization of sequence variants and posttranslational modifications (PTMs) for antibody products. A candidate biosimilar IgG1 monoclonal antibody (mAb) was compared in detail to a commercially available innovator product. Intact protein mass, primary sequence, PTMs, and the micro-differences between the two mAbs were identified and quantified simultaneously. Although very similar in terms of sequences and modifications, a mass difference observed by LC-MS intact mass measurements indicated that they were not identical. Peptide mapping, performed with data independent acquisition LC-MS using an alternating low and elevated collision energy scan mode (LC-MSE), located the mass difference between the biosimilar and the innovator to a two amino acid residue variance in the heavy chain sequences. The peptide mapping technique was also used to comprehensively catalogue and compare the differences in PTMs of the biosimilar and innovator mAbs. Comprehensive glycosylation profiling confirmed that the proportion of individual glycans was different between the biosimilar and the innovator, although the number and identity of glycans were the same. These results demonstrate that the combination of accurate intact mass measurement, released glycan profiling, and LC-MSE peptide mapping provides a set of routine tools that can be used to comprehensively compare a candidate biosimilar and an innovator mAb.  相似文献   

17.
Proteomic applications have been increasingly used to study posttranslational modifications of proteins (PTMs). For the purpose of identifying and localizing specific but unknown PTMs on huge proteins, improving their sequence coverage is fundamental. Using liquid chromatography coupled to mass spectrometry (LC–MS/MS), peptide mapping of the native apolipoprotein-B-100 was performed to further document the effects of oxidation. Apolipoprotein-B-100 is the main protein of low-density lipoprotein particles and its oxidation could play a role in atherogenesis. Because it is one of the largest human proteins, the sequence recovery rate of apolipoprotein-B-100 only reached 1% when conventional analysis parameters were used. The different steps of the peptide mapping process—from protein treatment to data analysis—were therefore reappraised and optimized. These optimizations allowed a protein sequence recovery rate of 79%, a rate which has never been achieved previously for such a large human protein. The key points for improving peptide mapping were optimization of the data analysis software; peptide separation by LC; sample preparation; and MS acquisition. The new protocol has allowed us to increase by a factor of 4 the detection of modified peptides in apolipoprotein-B-100. This approach could easily be transferred to any study of PTMs using LC–MS/MS.  相似文献   

18.
美洲大蠊主要变应原蛋白的质谱鉴定与分析   总被引:3,自引:1,他引:2  
为了建立美洲大蠊Periplaneta americana变应原蛋白的质谱鉴定方法,我们将美洲大蠊粗浸液通过DEAE-52离子交换层析、Sephacryl S-200凝胶过滤层析等分离步骤得到纯化的74 kD蛋白,对纯化前后的该74 kD蛋白分别进行SDS-PAGE及凝胶内胰酶酶切,再经液相色谱-电喷雾-串联质谱(HPLC-ESI-MS/MS)在线联机分析,所得质谱数据进入网站(http://www.matrixscience.com)进行Mascot检索比对。通过对两者质谱鉴定结果的比较来评估美洲大蠊天然主要变应原蛋白的纯化效果。结果表明,纯化蛋白经HPLC-ESI-MS/MS鉴定是美洲大蠊主要变应原蛋白;离子交换层析等纯化步骤可以去除同一分子量的杂蛋白(如卵黄原蛋白),从而获得较好的鉴定结果。我们首次成功地运用质谱建立起变应原蛋白的新鉴定方法。  相似文献   

19.
Profile of the disulfide bonds in acetylcholinesterase   总被引:20,自引:0,他引:20  
The inter- and intrasubunit disulfide bridges for the 11 S form of acetylcholinesterase isolated from Torpedo californica have been identified. Localized within the basal lamina of the synapse, the dimensionally asymmetric forms of acetylcholinesterase contain either two (13 S) or three (17 S) sets of catalytic subunits linked to collagenous and noncollagenous structural subunits. Limited proteolysis of these molecules yields a tetramer of catalytic subunits that sediments at 11 S. Each catalytic subunit contains 8 cysteine residues which were identified following tryptic digestion of the reduced, 14C-carboxymethylated protein. The tryptic peptides were purified by gel filtration followed by reverse-phase high performance liquid chromatography (HPLC) and then sequenced. The disulfide bonding profile was determined by treating the native, nonreduced 11 S form of acetylcholinesterase with a fluorescent, sulfhydryl-specific reagent, monobromobimane, prior to tryptic digestion. Peptides again were resolved by gel filtration and reverse-phase HPLC. One fluorescent cysteine-containing peptide was identified, indicating that a single sulfhydryl residue, Cys231, was present in its reduced form. Three pairs of disulfide-bonded peptides were identified. These were localized in the polypeptide chain based on the cDNA-deduced sequence of the protein and were identified as Cys67-Cys94, Cys254-Cys265, and Cys402-Cys521. Hence, three loops are found in the secondary structure. Cys572, located in the carboxyl-terminal tryptic peptide, was disulfide-bonded to an identical peptide and most likely forms an intersubunit cross-link. Since the 6 cysteine residues in acetylcholinesterase that are involved in intrachain disulfide bonds are conserved in the sequence of the homologous protein thyroglobulin, it is likely that both proteins share a common folding pattern in their respective tertiary structures. Cys231 and the carboxyl-terminal cysteine residue Cys572 are not conserved in thyroglobulin.  相似文献   

20.
Garaguso I  Borlak J 《Proteomics》2008,8(13):2583-2595
The analytical performance of MALDI-MS is highly influenced by sample preparation and the choice of matrix. Here we present an improved MALDI-MS sample preparation method for peptide mass mapping and peptide analysis, based on the use of the 2,5-dihydroxybenzoic acid matrix and prestructured sample supports, termed: matrix layer (ML). This sample preparation is easy to use and results in a rapid automated MALDI-MS and MS/MS with high quality spectra acquisition. The between-spot variation was investigated using standard peptides and statistical treatment of data confirmed the improvement gained with the ML method. Furthermore, the sample preparation method proved to be highly sensitive, in the lower-attomole range for peptides, and we improved the performance of MALDI-MS/MS for characterization of phosphopeptides as well. The method is versatile for the routine analysis of in-gel tryptic digests thereby allowing for an improved protein sequence coverage. Furthermore, reliable protein identification can be achieved without the need of desalting sample preparation. We demonstrate the performance and the robustness of our method using commercially available reference proteins and automated MS and MS/MS analyses of in-gel digests from lung tissue lysate proteins separated by 2-DE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号