首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《遗传学报》2022,49(8):748-755
Hydrogen sulfide (H2S) was once principally considered the perpetrator of plant growth cessation and cell death. However, this has become an antiquated view, with cumulative evidence showing that the H2S serves as a biological signaling molecule notably involved in abiotic stress response and adaptation, such as defense by phytohormone activation, stomatal movement, gene reprogramming, and plant growth modulation. Reactive oxygen species (ROS)-dependent oxidative stress is involved in these responses. Remarkably, an ever-growing body of evidence indicates that H2S can directly interact with ROS processing systems in a redox-dependent manner, while it has been gradually recognized that H2S-based posttranslational modifications of key protein cysteine residues determine stress responses. Furthermore, the reciprocal interplay between H2S and nitric oxide (NO) in regulating oxidative stress has significant importance. The interaction of H2S with NO and ROS during acclimation to abiotic stress may vary from synergism to antagonism. However, the molecular pathways and factors involved remain to be identified. This review not only aims to provide updated information on H2S action in regulating ROS-dependent redox homeostasis and signaling, but also discusses the mechanisms of H2S-dependent regulation in the context of oxidative stress elicited by environmental cues.  相似文献   

2.
Polysulfides (RSSnSR, n ≥ 1) are a class of sulfane sulfur compounds that have gained significant recent attention due to their connections to hydrogen sulfide (H2S) and hydropersulfides (RSSH), which are known to play important roles in redox signaling. While the potential regulatory functions of polysulfides in biological systems have been recognized for a long time, understanding their interactions with H2S/RSSH have only recently begun. In this Mini Review, some of the most recent discoveries of polysulfides within biological contexts are summarized and these include their biological formation pathways, detection methods for animal and plant samples, properties, and unique functions. These studies have set up a solid foundation for understanding polysulfide biology, and more mechanistic details are expected to be discovered in the coming years.  相似文献   

3.
Abiotic stresses, such as drought, can increase the production of reactive oxygen species (ROS) in plants. An increase in ROS levels can provoke a partial or severe oxidation of cellular components inducing redox status changes, so continuous control of ROS and therefore of their metabolism is decisive under stress conditions. The present work focuses on the contribution of one pro-oxidant, hydrogen peroxide (H2O2) and one antioxidant, ascorbate (AA) and its redox status, in the control of plant responses to drought-oxidative stress in resistant plants growing in field conditions. After a general introduction to the concept of drought and oxidative stress and its relationship, we describe the role of H2O2 in drought stress responses, emphasizing the importance of studies in H2O2 subcellular localization, needed for a better understanding of its role in plant responses to stress. Although more studies are needed in the study of changes of redox status in plants subjected to stress, the AA pools and its redox status can be indicative of its involvement as a part of cellular mechanisms by which the plant respond to drought-induced oxidative stress. The mechanism of resistance and/or tolerance to drought-oxidative stress is complex, especially when studies are carried out in plants growing in field conditions, where an interaction of stresses occurs. This study sheds light on the mechanisms of plant responses to water-oxidative stress in plants growing in the field.  相似文献   

4.
In the recent times, plants are facing certain types of environmental stresses, which give rise to formation of reactive oxygen species (ROS) such as hydroxyl radicals, hydrogen peroxides, superoxide anions and so on. These are required by the plants at low concentrations for signal transduction and at high concentrations, they repress plant root growth. Apart from the ROS activities, hydrogen sulfide (H2S) and nitric oxide (NO) have major contributions in regulating growth and developmental processes in plants, as they also play key roles as signaling molecules and act as chief plant immune defense mechanisms against various biotic as well as abiotic stresses. H2S and NO are the two pivotal gaseous messengers involved in growth, germination and improved tolerance in plants under stressed and non-stress conditions. H2S and NO mediate cell signaling in plants as a response to several abiotic stresses like temperature, heavy metal exposure, water and salinity. They alter gene expression levels to induce the synthesis of antioxidant enzymes, osmolytes and also trigger their interactions with each other. However, research has been limited to only cross adaptations and signal transductions. Understanding the change and mechanism of H2S and NO mediated cell signaling will broaden our knowledge on the various biochemical changes that occur in plant cells related to different stresses. A clear understanding of these molecules in various environmental stresses would help to confer biotechnological applications to protect plants against abiotic stresses and to improve crop productivity.  相似文献   

5.
Plants are exposed to a plethora of abiotic stresses such as drought, salinity, heavy metal and temperature stresses at different stages of their life cycle, from germination to seedling till the reproductive phase. As protective mechanisms, plants release signaling molecules that initiate a cascade of stress-signaling events, leading either to programmed cell death or plant acclimation. Hydrogen sulfide (H2S) and nitric oxide (NO) are considered as new ‘gasotransmitter’ molecules that play key roles in regulating gene expression, posttranslational modification (PTM), as well as cross-talk with other hormones. Although the exact role of NO in plants remains unclear and is species dependent, various studies have suggested a positive correlation between NO accumulation and environmental stress in plants. These molecules are also involved in a large array of stress responses and act synergistically or antagonistically as signaling components, depending on their respective concentration. This study provides a comprehensive update on the signaling interplay between H2S and NO in the regulation of various physiological processes under multiple abiotic stresses, modes of action and effects of exogenous application of these two molecules under drought, salt, heat and heavy metal stresses. However, the complete picture of the signaling cascades mediated by H2S and NO is still elusive. Recent researches indicate that during certain plant processes, such as stomatal closure, H2S could act upstream of NO signaling or downstream of NO in response to abiotic stresses by improving antioxidant activity in most plant species. In addition, PTMs of antioxidative pathways by these two molecules are also discussed.  相似文献   

6.

Hydrogen sulfide (H2S) has emerged as a novel gaseous signal molecule with multifarious effects on seed germination, plant growth, development, and physiological processes. Due to its dominant role in plant stress tolerance and cross-adaptation, it is getting more attention nowadays, although it has been largely referred as toxic and environmental hazardous gas. In this review work, we are highlighting the importance of H2S as an essential gaseous molecule to help in signaling, metabolism, and stress tolerance in plants. Firstly, production of H2S from different natural and artificial sources were discussed with its transformation from sulfur (S) to sulfate (SO42−) and then to sulfite (SO32−). The importance of different kinds of transporters that helps to take SO42− from the soil solution was presented. Mainly, these transporters are SULTRs (H+/SO42− cotransporters) and multigene family encodes them. Furthermore, these SULTRs have LAST (Low affinity transport proteins), HAST (High affinity transport proteins), vacuole transporters, and plastid transporters. Since it is well known that there is strong relationship between SO42− and synthesis of hydrogen sulfide or dihydrogen sulfide or sulfane in plant cells. Thus, cysteine (Cys) metabolism through which H2S could be generated in plant cell with the role of different enzymes has been presented. Furthermore, H2S in interaction with other molecules could help to mitigate biotic and abiotic stress. Based on this review work, it can be concluded that H2S has potential to induce cross-adaptation to biotic and abiotic stress; thus, it is recommended that it should be considered in future studies to answer the questions like what are the receptors of H2S in plant cell, where in plants the physiological concentration of H2S is high in response to multiple stress and how it induces cross-adaptation by interaction with other signal molecules.

  相似文献   

7.
Since the discovery of endogenously‐produced hydrogen sulfide (H2S) in various tissues, there has been an explosion of interest in H2S as a biological mediator alongside other gaseous mediators, nitric oxide and carbon monoxide. The identification of enzyme‐regulated H2S synthetic pathways in the cardiovascular system has led to a number of studies examining specific regulatory actions of H2S. We review evidence showing that endogenously‐generated and exogenously‐administered H2S exerts a wide range of actions in vascular and myocardial cells including vasodilator/vasoconstrictor effects via modification of the smooth muscle tone, induction of apoptosis and anti‐proliferative responses in the smooth muscle cells, angiogenic actions, effects relevant to inflammation and shock, and cytoprotection in models of myocardial ischemia‐reperfusion injury. Several molecular mechanisms of action of H2S have been described. These include interactions of H2S with NO, redox regulation of multiple signaling proteins and regulation of KATP channel opening. The gaps in our current understanding of precise mechanisms, the absence of selective pharmacological tools and the limited availability of H2S measurement techniques for living tissues, leave many questions about physiological and pathophysiological roles of H2S unanswered at present. Nevertheless, this area of investigation is advancing rapidly. We believe H2S holds promise as an endogenous mediator controlling a wide range of cardiovascular cell functions and integrated responses under both physiological and pathological conditions and may be amenable to therapeutic manipulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Hydrogen sulfide (H2S) has been known for hundreds of years because of its poisoning effect. Once the basal bio-production became evident its pathophysiological role started to be investigated in depth. H2S is a gas that can be formed by the action of two enzymes, cystathionine gamma-lyase and cystathionine beta-synthase, both involved in the metabolism of cysteine. It has several features in common with the other two well known “gasotransmitters” (nitric oxide and carbon monoxide) in the biological systems. These three gasses share some biological targets; however, they also have dissimilarities. For instance, the three gases target heme-proteins and open KATP channels; H2S as NO is an antioxidant, but in contrast to the latter molecule, H2S does not directly form radicals. In the last years H2S has been implicated in several physiological and pathophysiological processes such as long term synaptic potentiation, vasorelaxation, pro- and anti-inflammatory conditions, cardiac inotropism regulation, cardioprotection, and several other physiological mechanisms. We will focus on the biological role of H2S as a molecule able to trigger cell signaling. Our attention will be particularly devoted on the effects in cardiovascular system and in cardioprotection. We will also provide available information on H2S-donating drugs which have so far been tested in order to conjugate the beneficial effect of H2S with other pharmaceutical properties.  相似文献   

9.
In plants, the chloroplast is the main reactive oxygen species (ROS) producing site under high light stress. Catalase (CAT), which decomposes hydrogen peroxide (H2O2), is one of the controlling enzymes that maintains leaf redox homeostasis. The catalase mutants with reduced leaf catalase activity from different plant species exhibit an H2O2‐induced leaf cell death phenotype. This phenotype was differently affected by light intensity or photoperiod, which may be caused by plant species, leaf redox status or growth conditions. In the rice CAT mutant nitric oxide excess 1 (noe1), higher H2O2 levels induced the generation of nitric oxide (NO) and higher S‐nitrosothiol (SNO) levels, suggesting that NO acts as an important endogenous mediator in H2O2‐induced leaf cell death. As a free radical, NO could also react with other intracellular and extracellular targets and form a series of related molecules, collectively called reactive nitrogen species (RNS). Recent studies have revealed that both RNS and ROS are important partners in plant leaf cell death. Here, we summarize the recent progress on H2O2‐induced leaf cell death and the crosstalk of RNS and ROS signals in the plant hypersensitive response (HR), leaf senescence, and other forms of leaf cell death triggered by diverse environmental conditions. [ Chengcai Chu (Corresponding author)]  相似文献   

10.
Aging involves the time-dependent deterioration of physiological functions attributed to various intracellular and extracellular factors. Cellular senescence is akin to aging and involves alteration in redox homeostasis. This is primarily marked by increased reactive oxygen/nitrogen species (ROS/RNS), inflammatory gene expression, and senescence-associated beta-galactosidase activity, all hallmarks of aging. It is proposed that gasotransmitters which include hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), may affect redox homeostasis during senescence. H2S has been independently shown to induce DNA damage and suppress oxidative stress. While an increase in NO levels during aging is well established, the role of H2S has remained controversial. To understand the role of H2S during aging, we evaluated H2S homeostasis in non-senescent and senescent cells, using a combination of direct measurements with a fluorescent reporter dye (WSP-5) and protein sulfhydration analysis. The free intracellular H2S and total protein sulfhydration levels are high during senescence, concomitant to cystathionine gamma-lyase (CSE) expression induction. Using lentiviral shRNA-mediated expression knockdown, we identified that H2S contributed by CSE alters global gene expression, which regulates key inflammatory processes during cellular senescence. We propose that H2S decreases inflammation during cellular senescence by reducing phosphorylation of IκBα and the p65 subunit of nuclear factor kappa B (NF-κB). H2S was also found to reduce NO levels, a significant source of nitrosative stress during cellular senescence. Overall, we establish H2S as a key gasotransmitter molecule that regulates inflammatory phenotype and nitrosative stress during cellular senescence.  相似文献   

11.
Gases such as ethylene, hydrogen peroxide (H2O2), nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) have been recognized as vital signaling molecules in plants and animals. Of these gasotransmitters, NO and H2S have recently gained momentum mainly because of their involvement in numerous cellular processes. It is therefore important to study their various attributes including their biosynthetic and signaling pathways. The present review provides an insight into various routes for the biosynthesis of NO and H2S as well as their signaling role in plant cells under different conditions, more particularly under heavy metal stress. Their beneficial roles in the plant's protection against abiotic and biotic stresses as well as their adverse effects have been addressed. This review describes how H2S and NO, being very small-sized molecules, can quickly pass through the cell membranes and trigger a multitude of responses to various factors, notably to various stress conditions such as drought, heat, osmotic, heavy metal and multiple biotic stresses. The versatile interactions between H2S and NO involved in the different molecular pathways have been discussed. In addition to the signaling role of H2S and NO, their direct role in posttranslational modifications is also considered. The information provided here will be helpful to better understand the multifaceted roles of H2S and NO in plants, particularly under stress conditions.  相似文献   

12.
The dual roles of H2S as an endogenously synthesized respiratory substrate and as a toxin raise questions as to how it is cleared when the electron transport chain is inhibited. Sulfide quinone oxidoreductase (SQOR) catalyzes the first step in the mitochondrial H2S oxidation pathway, using CoQ as an electron acceptor, and connects to the electron transport chain at the level of complex III. We have discovered that at high H2S concentrations, which are known to inhibit complex IV, a new redox cycle is established between SQOR and complex II, operating in reverse. Under these conditions, the purine nucleotide cycle and the malate aspartate shuttle furnish fumarate, which supports complex II reversal and leads to succinate accumulation. Complex II knockdown in colonocytes decreases the efficiency of H2S clearance while targeted knockout of complex II in intestinal epithelial cells significantly decreases the levels of thiosulfate, a biomarker of H2S oxidation, to approximately one-third of the values seen in serum and urine samples from control mice. These data establish the physiological relevance of this newly discovered redox circuitry between SQOR and complex II for prioritizing H2S oxidation and reveal the quantitatively significant contribution of intestinal epithelial cells to systemic H2S metabolism.  相似文献   

13.
In [FeFe]-hydrogenases, the H cluster (hydrogen-activating cluster) contains a di-iron centre ([2Fe]H subcluster, a (L)(CO)(CN)Fe(μ-RS2)(μ-CO)Fe(CysS)(CO)(CN) group) covalently attached to a cubane iron-sulphur cluster ([4Fe-4S]H subcluster). The Cys-thiol functions as the link between one iron (called Fe1) of the [2Fe]H subcluster and one iron of the cubane subcluster. The other iron in the [2Fe]H subcluster is called Fe2. The light sensitivity of the Desulfovibrio desulfuricans enzyme in a variety of states has been studied with infrared (IR) spectroscopy. The aerobic inactive enzyme (Hinact state) and the CO-inhibited active form (Hox–CO state) were stable in light. Illumination of the Hox state led to a kind of cannibalization; in some enzyme molecules the H cluster was destroyed and the released CO was captured by the H clusters in other molecules to form the light-stable Hox–CO state. Illumination of active enzyme under 13CO resulted in the complete exchange of the two intrinsic COs bound to Fe2. At cryogenic temperatures, light induced the photodissociation of the extrinsic CO and the bridging CO of the enzyme in the Hox–CO state. Electrochemical redox titrations showed that the enzyme in the Hinact state converts to the transition state (Htrans) in a reversible one-electron redox step (E m, pH 7=–75 mV). IR spectra demonstrate that the added redox equivalent not only affects the [4Fe-4S]H subcluster, but also the di-iron centre. Enzyme in the Htrans state reacts with extrinsic CO, which binds to Fe2. The Htrans state converts irreversibly into the Hox state in a redox-dependent reaction most likely involving two electrons (E m, pH 7=–261 mV). These electrons do not end up on any of the six Fe atoms of the H cluster; the possible destiny of the two redox equivalents is discussed. An additional reversible one-electron redox reaction leads to the Hred state (E m, pH 7=–354 mV), where both Fe atoms of the [2Fe]H subcluster have the same formal oxidation state. The possible oxidation states of Fe1 and Fe2 in the various enzyme states are discussed. Low redox potentials (below –500 mV) lead to destruction of the [2Fe]H subcluster.  相似文献   

14.

Salinity stress is one of the most significant global issues that negatively affect plant growth and development. Modern agricultural practices have expanded the destructive effects of salinity stress, affecting plants through immediate osmotic stress, followed by a slow onset of ionic or hyper-osmotic stress. Plants alteration and resistance to salinity stress involve complex physiological, biochemical, and molecular systems to maintain homeostasis. As of late, the investigation of gaseous molecules in plants has attained much consideration, particularly for abiotic stress. Abiotic stresses generally initiate gasotransmitter (GT) generation in plants. In the interim, these GTs enhance the accumulation and activities of few antioxidant molecules, check the destructiveness of reactive oxygen species (ROS), and improve plant resilience under different stress conditions. The current review presented the role of gaseous molecules in plants under salinity stress, which include nitric oxide (·NO), hydrogen sulfide (H2S), hydrogen gas (H2), carbon monoxide (CO), methane (CH4), and the only gaseous phytohormone ethylene. Further, we highlighted the underlying molecular mechanisms of the gasotransmitter signaling and cross-talks in salinity stress. Also, we presented a general update on the inclusion of GT in salt stress response, including the research gaps and its applications in the advancement of salinity-resistant plants.

  相似文献   

15.
Hydrogen sulfide is an endogenously generated molecule with many reported physiological functions. Although several biological targets have been proposed, the biochemical mechanisms by which it elicits activity are not established. Thus, in an effort to begin to delineate the fundamental biological chemistry of H2S, we have examined the reaction of H2S with oxidized thiols and thiol proteins in order to determine whether persulfide formation occurs, is stable and how this may affect protein function. We have found that persulfides are easily generated, relatively stable and can alter enzyme activity. Moreover, we have begun to develop methodology for in situ generation of persulfides to facilitate further study of this potentially important species.  相似文献   

16.
Hydrogen sulfide (H2S) has emerged as an important gaseous signaling molecule that is produced endogenously by enzymes in the sulfur metabolic network. H2S exerts its effects on multiple physiological processes important under both normal and pathological conditions. These functions include neuromodulation, regulation of blood pressure and cardiac function, inflammation, cellular energetics and apoptosis. Despite the recognition of its biological importance and its beneficial effects, the mechanism of H2S action and the regulation of its tissue levels remain unclear in part owing to its chemical and physical properties that render handling and analysis challenging. Furthermore, the multitude of potential H2S effects has made it difficult to dissect its signaling mechanism and to identify specific targets. In this review, we focus on H2S metabolism and provide an overview of the recent literature that sheds some light on its mechanism of action in cellular redox signaling in health and disease. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.  相似文献   

17.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serves not only as a key enzyme in glycolysis, but also as a multifunctional protein in other biological processes, especially in response to abiotic stresses in plants. Cytosolic GAPDH (GAPC) is a typical redox protein with selected catalytic cysteine, which undergoes reversible redox post-translational modifications (RPTMs) on its thiol group by reacting with hydrogen peroxide and nitric oxide related species. Moreover, the modified GAPC may interact with certain signal transmitters such as phosphatidic acid, phospholipase D, and osmotic stress-activated protein kinase. All these observations suggest that GAPC serve as a key mediator in redox signal transduction in plants. In this review, we provide an up-to-date insight into molecular mechanisms after H2O2- and NO-dependent oxidation of GAPC. We also discuss GAPC catalytic functions and potential functions as a modified protein by RPTMs.  相似文献   

18.
Hydrogen sulfide (H2S) is a crucial endogenous signaling component in organisms that is involved in redox homeostasis and numerous biological processes. Modern medical research has confirmed that hydrogen sulfide plays an important role in the pathogenesis of many diseases. Herein, a fluorescent probe Eu(ttbd)3abt based on europium(III) complex was designed and synthesized for the detection of H2S. Eu(ttbd)3abt exhibited significant quenching for H2S at long emission wavelength (625 nm), with rapid detection ability (less than 2 min), high sensitivity [limit of detection (LOD) = 0.41 μM], and massive Stokes shift (300 nm). Additionally, this probe showed superior selectivity for H2S despite the presence of other possible interference species such as biothiols. Furthermore, the probe Eu(ttbd)3abt was successfully applied to detect H2S in water samples.  相似文献   

19.
Reactive oxygen species (ROS) have pleiotropic effects in plants. ROS can lead to cellular damage and death or play key roles in control and regulation of biological processes, such as programmed cell death (PCD). This dual role of ROS, as toxic or signalling molecules, is possible because plant antioxidant system (AS) is able to achieve a tight control over ROS cellular levels, balancing properly their production and scavenging. AS response in plant PCD has been clearly described only in the hypersensitive response in incompatible plant–pathogen interactions and in the senescence process and has not been completely unravelled. In sycamore (Acer pseudoplatanus L.) cultured cells PCD can be induced by Fusicoccin (Fc), Tunicamycin (Tu), and Brefeldin A (Ba). These chemicals induce comparable PCD time course and extent, while H2O2 production is detectable only in Fc- and, to a lesser extent, in Ba-treated cells. In this paper the AS has been investigated during PCD of sycamore cells, measuring the effects of the three inducers on the cellular levels of non-enzymatic and enzymatic antioxidants. Results show that the AS behaviour is different in the PCD induced by the three chemicals. In Fc-treated cells AS is mainly devoted to decrease the concentration of toxic intracellular H2O2 levels. On the contrary, in cells treated with Tu and Ba, the cell redox state is shifted to a more reduced state and the enzymatic AS is partially down-regulated, allowing ROS to act as signalling molecules.  相似文献   

20.
Effects of hydrogen sulfide (H2S) on plant physiology have been previously studied, but such studies have relied on the use of NaSH as a method for supplying H2S to tissues. Now new compounds which give a less severe H2S shock and a more prolonged exposure to H2S have been developed. Here the effects of one such compound, GYY4137, has been investigated to determine its effects on stomatal closure in Arabidopsis thaliana. It was found that both NaSH and GYY4137 caused stomatal opening in the light and prevented stomatal closure in the dark. Nitric oxide (NO) has been well established as a mediator of stomatal movements and here it was found that both NaSH and GYY4137 reduced the accumulation of NO in guard cells, perhaps suggesting a mode of action for H2S in this system. GYY4137, and future related compounds, will be important tools to unravel the effects of plant exposure to H2S and to determine how H2S may fit into plant cell signalling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号