首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the recent times, plants are facing certain types of environmental stresses, which give rise to formation of reactive oxygen species (ROS) such as hydroxyl radicals, hydrogen peroxides, superoxide anions and so on. These are required by the plants at low concentrations for signal transduction and at high concentrations, they repress plant root growth. Apart from the ROS activities, hydrogen sulfide (H2S) and nitric oxide (NO) have major contributions in regulating growth and developmental processes in plants, as they also play key roles as signaling molecules and act as chief plant immune defense mechanisms against various biotic as well as abiotic stresses. H2S and NO are the two pivotal gaseous messengers involved in growth, germination and improved tolerance in plants under stressed and non-stress conditions. H2S and NO mediate cell signaling in plants as a response to several abiotic stresses like temperature, heavy metal exposure, water and salinity. They alter gene expression levels to induce the synthesis of antioxidant enzymes, osmolytes and also trigger their interactions with each other. However, research has been limited to only cross adaptations and signal transductions. Understanding the change and mechanism of H2S and NO mediated cell signaling will broaden our knowledge on the various biochemical changes that occur in plant cells related to different stresses. A clear understanding of these molecules in various environmental stresses would help to confer biotechnological applications to protect plants against abiotic stresses and to improve crop productivity.  相似文献   

2.
Gases such as ethylene, hydrogen peroxide (H2O2), nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) have been recognized as vital signaling molecules in plants and animals. Of these gasotransmitters, NO and H2S have recently gained momentum mainly because of their involvement in numerous cellular processes. It is therefore important to study their various attributes including their biosynthetic and signaling pathways. The present review provides an insight into various routes for the biosynthesis of NO and H2S as well as their signaling role in plant cells under different conditions, more particularly under heavy metal stress. Their beneficial roles in the plant's protection against abiotic and biotic stresses as well as their adverse effects have been addressed. This review describes how H2S and NO, being very small-sized molecules, can quickly pass through the cell membranes and trigger a multitude of responses to various factors, notably to various stress conditions such as drought, heat, osmotic, heavy metal and multiple biotic stresses. The versatile interactions between H2S and NO involved in the different molecular pathways have been discussed. In addition to the signaling role of H2S and NO, their direct role in posttranslational modifications is also considered. The information provided here will be helpful to better understand the multifaceted roles of H2S and NO in plants, particularly under stress conditions.  相似文献   

3.
Signaling responses in plants to heavy metal stress   总被引:5,自引:0,他引:5  
Heavy metal toxicity is one of the major abiotic stresses leading to hazardous health effects in animals and plants. Because of their high reactivity they can directly influence growth, senescence and energy synthesis processes. In this review a new indirect mechanism of heavy metal action is proposed. This mechanism is connected with the generation of reactive oxygen species (especially H2O2) and jasmonate and ethylene signaling pathways and shows that toxicity symptoms observed in plants may result from direct heavy metal influence as well as the activity of some signaling molecules induced by the stress action.  相似文献   

4.
Gaseous molecules, such as hydrogen sulfide(H_2S)and nitric oxide(NO), are crucial players in cellular and(patho)physiological processes in biological systems. The biological functions of these gaseous molecules, which were first discovered and identified as gasotransmitters in animals, have received unprecedented attention from plant scientists in recent decades. Researchers have arrived at the consensus that H_2S is synthesized endogenously and serves as a signaling molecule throughout the plant life cycle.However, the mechanisms of H_2S action in redox biology is still largely unexplored. This review highlights what we currently know about the characteristics and biosynthesis of H_2S in plants. Additionally,we summarize the role of H_2S in plant resistance to abiotic stress. Moreover, we propose and discuss possible redox-dependent mechanisms by which H_2S regulates plant physiology.  相似文献   

5.
Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS) in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.  相似文献   

6.
Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals.  相似文献   

7.
Role of nitric oxide in tolerance of plants to abiotic stress   总被引:3,自引:0,他引:3  
Nitric oxide (NO) has now gained significant place in plant science, mainly due to its properties (free radical, small size, no charge, short-lived, and highly diffusible across biological membranes) and multifunctional roles in plant growth, development, and regulation of remarkable spectrum of plant cellular mechanisms. In the last few years, the role of NO in tolerance of plants to abiotic stress has established much consideration. As it is evident from the present review, recent progress on NO potentiality in tolerance of plants to environmental stresses has been impressive. These investigations suggest that NO, itself, possesses antioxidant properties and might act as a signal in activating ROS-scavenging enzyme activities under abiotic stress. NO plays an important role in resistance to salt, drought, temperature (high and low), UV-B, and heavy metal stress. Rapidly increasing evidences indicate that NO is essentially involve in several physiological processes; however, there has been much disagreement regarding the mechanism(s) by which NO reduces abiotic stress.  相似文献   

8.
Plants often face a variety of abiotic stresses, which affects them negatively and lead to yield loss. The antioxidant system efficiently removes excessive reactive oxygen species and maintains redox homeostasis in plants. With better understanding of these protective mechanisms, recently the concept of hydrogen sulfide (H2S) and its role in cell signaling has become the center of attention. H2S has been recognized as a third gasotransmitter and a potent regulator of growth and development processes such as germination, maturation, senescence and defense mechanism in plants. Because of its gaseous nature, H2S can diffuse to different part of the cells and balance the antioxidant pools by supplying sulfur to cells. H2S showed tolerance against a plethora of adverse environmental conditions like drought, salt, high temperature, cold, heavy metals and flood via changing in level of osmolytes, malonaldialdehyde, Na+/K+ uptake, activities of H2S biosynthesis and antioxidative enzymes. It also promotes cross adaptation through persulfidation. H2S along with calcium, methylglyoxal and nitric oxide, and their cross talk induces the expression of mitogen activated protein kinases as well as other genes in response to stress. Therefore, it is sensible to evaluate and explore the stress responsive genes involved in H2S regulated homeostasis and stress tolerance. The current article is aimed to summarize the recent updates on H2S-mediated gene regulation in special reference to abiotic stress tolerance mechanism, and cross adaptation in plants. Moreover, new insights into the H2S-associated signal transduction pathway have also been explored.  相似文献   

9.
10.

Salinity stress is one of the most significant global issues that negatively affect plant growth and development. Modern agricultural practices have expanded the destructive effects of salinity stress, affecting plants through immediate osmotic stress, followed by a slow onset of ionic or hyper-osmotic stress. Plants alteration and resistance to salinity stress involve complex physiological, biochemical, and molecular systems to maintain homeostasis. As of late, the investigation of gaseous molecules in plants has attained much consideration, particularly for abiotic stress. Abiotic stresses generally initiate gasotransmitter (GT) generation in plants. In the interim, these GTs enhance the accumulation and activities of few antioxidant molecules, check the destructiveness of reactive oxygen species (ROS), and improve plant resilience under different stress conditions. The current review presented the role of gaseous molecules in plants under salinity stress, which include nitric oxide (·NO), hydrogen sulfide (H2S), hydrogen gas (H2), carbon monoxide (CO), methane (CH4), and the only gaseous phytohormone ethylene. Further, we highlighted the underlying molecular mechanisms of the gasotransmitter signaling and cross-talks in salinity stress. Also, we presented a general update on the inclusion of GT in salt stress response, including the research gaps and its applications in the advancement of salinity-resistant plants.

  相似文献   

11.
《遗传学报》2022,49(8):715-725
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.  相似文献   

12.
13.
The review considers involvement of nitric oxide (NO) in regulation of basic physiological processes underlying growth, development, and senescence in plants. The NO sources in plants, as well as direct and indirect NO signaling mechanisms are also reviewed. Particular attention is paid to the role of this secondary messenger in plant responses to various abiotic stresses, such as mechanical injury, salinity, drought, UV irradiation, high and low temperatures, ozonation, hypoxia, the impacts of heavy metals and herbicides. The role of NO in the hypersensitive response and in a systemic response upon plant infection with invasive pathogens is described.  相似文献   

14.
夏海威  施国新  黄敏  吴娟 《生态学报》2015,35(10):3139-3147
一氧化氮(NO)作为一种重要的信号分子,在调节植物重金属胁迫抗性方面上起着非常重要的作用。综述了NO在植物体内的产生途径,重金属胁迫下植物体内内源NO含量的变化以及外源NO与内源NO对植物重金属胁迫抗性的影响。大量研究表明外源NO能够增强植物对重金属胁迫的抗性,一方面是通过增强植物细胞的抗氧化系统或直接清除活性氧,另一方面是通过影响植物对重金属的吸收以及重金属在植物细胞内的分布。然而内源NO在调节植物重金属胁迫抗性上的功能角色仍存在争议。有些研究表明内源NO是有益的,能够缓解重金属胁迫诱导的毒性;但是也有证据表明内源NO是有害的,能够通过促进植物对重金属的吸收以及对植物螯合素进行S-亚硝基化弱化其解毒功能,从而参与重金属诱导的毒害反应和细胞凋亡过程。  相似文献   

15.

Adverse environmental conditions greatly influence crop production every year and threaten food security. Plants have a range of signaling networks to combat these stresses, in which several stress-responsive genes and regulatory proteins function together. One such important family of proteins, the Stress Associated Protein (SAP) family, has been identified as a novel regulator of multiple stresses. The SAPs possess a characteristic N-terminal A20 zinc-finger domain combined with either AN1 or C2H2 at the C-terminus. SAPs provide tolerance against various abiotic stresses, including cold, salt, drought, heavy metal, and wounding. The majority of SAPs are stress-inducible and have a function in conferring stress tolerance in transgenics. The role of SAPs in regulating biotic stress responses is a newly emerging field among researchers. SAPs interact with many other proteins to execute their functions; however, the detailed mechanism of these interactions needs to be elucidated. In this context, the present review provides a detailed view of the evolution and functions of SAPs in plants. The involvement in crosstalk between abiotic and biotic stress signaling pathways makes SAPs ideal targets to develop crops with tolerance against multiple stresses without any yield penalty. Altogether, we provide current knowledge on SAPs for investigating their role in stress response, which can further be exploited to develop climate-resilient crops through transgene-based, breeding-mediated, or genome-editing approaches.

  相似文献   

16.
17.
《遗传学报》2022,49(8):748-755
Hydrogen sulfide (H2S) was once principally considered the perpetrator of plant growth cessation and cell death. However, this has become an antiquated view, with cumulative evidence showing that the H2S serves as a biological signaling molecule notably involved in abiotic stress response and adaptation, such as defense by phytohormone activation, stomatal movement, gene reprogramming, and plant growth modulation. Reactive oxygen species (ROS)-dependent oxidative stress is involved in these responses. Remarkably, an ever-growing body of evidence indicates that H2S can directly interact with ROS processing systems in a redox-dependent manner, while it has been gradually recognized that H2S-based posttranslational modifications of key protein cysteine residues determine stress responses. Furthermore, the reciprocal interplay between H2S and nitric oxide (NO) in regulating oxidative stress has significant importance. The interaction of H2S with NO and ROS during acclimation to abiotic stress may vary from synergism to antagonism. However, the molecular pathways and factors involved remain to be identified. This review not only aims to provide updated information on H2S action in regulating ROS-dependent redox homeostasis and signaling, but also discusses the mechanisms of H2S-dependent regulation in the context of oxidative stress elicited by environmental cues.  相似文献   

18.
NO和H2O2诱导大豆根尖和边缘细胞耐铝反应的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
 NO和H2O2是参与植物抗非生物胁迫反应的重要信号分子, 为了确定NO和H2O2在大豆(Glycine max)根尖和根边缘细胞(root border cells, RBCs)耐铝反应中的作用及其相互关系, 以‘浙春3号’大豆为材料, 研究了铝毒胁迫下大豆根尖内源NO和H2O2的变化, 以及外源NO和H2O2诱导大豆根尖和RBCs的耐铝反应。结果表明, 50 μmol·L–1 Al处理48 h显著抑制大豆根的伸长, 提高Al在根尖的积累, 同时显著增加根尖内源NO和H2O2含量。施加0.25 mmol·L–1外源NO供体亚硝基铁氰化钠(Na2[Fe(CN)5NO]·2H2O, sodium nitroprusside, SNP)和0.1 mmol·L–1H2O2, 能有效地缓解Al对大豆根伸长的抑制、根尖Al积累和RBCs 的死亡, 该缓解作用可以被0.05 mmol·L–1 NO清除剂2-(4- 羧基苯)-4,4,5,5- 四甲基咪唑-1- 氧-3- 氧化物, 钾盐(C14H16N2O4·K, carboxy-PTIO, cPTIO)和150 U·mL–1 H2O2清除酶(catalase, CAT)逆转。并且外源NO能够显著促进根尖H2O2的积累, 而外源H2O2对根尖NO的含量无显著影响。这表明NO和H2O2是诱导大豆根尖及RBCs耐铝反应的两种信号分子, NO可能通过调控H2O2的形成, 进而诱导大豆根尖及RBCs的耐铝反应。  相似文献   

19.
《Cell calcium》2015,57(6):472-481
The oscillation of intracellular calcium (Ca2+) concentration is a primary event in numerous biological processes in plants, including stress response. Hydrogen sulfide (H2S), an emerging gasotransmitter, was found to have positive effects in plants responding to chromium (Cr6+) stress through interacting with Ca2+ signaling. While Ca2+ resemblances H2S in mediating biotic and abiotic stresses, crosstalk between the two pathways remains unclear. In this study, Ca2+ signaling interacted with H2S to produce a complex physiological response, which enhanced the Cr6+ tolerance in foxtail millet (Setaria italica). Results indicate that Cr6+ stress activated endogenous H2S synthesis as well as Ca2+ signaling. Moreover, toxic symptoms caused by Cr6+ stress were strongly moderated by 50 μM H2S and 20 mM Ca2+. Conversely, treatments with H2S synthesis inhibitor and Ca2+ chelators prior to Cr6+-exposure aggravated these toxic symptoms. Interestingly, Ca2+ upregulated expression of two important factors in metal metabolism, MT3A and PCS, which participated in the biosynthesis of heavy metal chelators, in a H2S-dependent manner to cope with Cr6+ stress. These findings also suggest that the H2S dependent pathway is a component of the Ca2+ activating antioxidant system and H2S partially contributes Ca2+-activating antioxidant system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号