首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Growing evidence has revealed high expression levels of stanniocalcin-1 (STC1) in different types of human cancers. Numerous experimental studies using cancer cell lines demonstrated the involvement of STC1 in inflammatory and apoptotic processes; however the role of STC1 in carcinogenesis remains elusive. Hepatocellular carcinoma (HCC) an exemplified model of inflammation-related cancer, represents a paradigm of studying the association between STC1 and tumor development. Therefore, we conducted a statistical analysis on the expression levels of STC1 using clinicopathological data from 216 HCC patients. We found that STC1 was upregulated in the tumor tissues and its expression levels was positively correlated with the levels of interleukin (IL)-6 and IL-8. Intriguingly tumors with greater expression levels of STC1 (tumor/normal ≥ 2) were significantly smaller than the lower level (tumor/normal<2) samples (p = 0.008). A pharmacological approach was implemented to reveal the functional correlation between STC1 and the ILs in the HCC cell-lines. IL-6 and IL-8 treatment of Hep3B cells induced STC1 expression. Lentiviral-based STC1 overexpression in Hep3B and MHCC-97L cells however showed inhibitory action on the pro-migratory effects of IL-6 and IL-8 and reduced size of tumor spheroids. The inhibitory effect of STC1 on tumor growth was confirmed in vivo using the stable STC1-overexpressing 97L cells on a mouse xenograft model. Genetic analysis of the xenografts derived from the STC1-overexpressing 97L cells, showed upregulation of the pro-apoptotic genes interleukin-12 and NOD-like receptor family, pyrin domain-containing 3. Collectively, the anti-inflammatory and pro-apoptotic functions of STC1 were suggested to relate its inhibitory effect on the growth of HCC cells. This study supports the notion that STC1 may be a potential therapeutic target for inflammatory tumors in HCC patients.  相似文献   

6.
7.
Stanniocalcin (STC), a glycoprotein hormone, is expressed in a wide variety of tissues to regulate Ca2+ and PO4- homeostasis. STC2, a member of STC family, has been reported to be associated with tumor development. In this study, we investigated whether the expression of STC2 is associated with migration and invasion of breast cancer cells. We found that breast cancer cell line 231 HM transfected with STC2 shRNA displayed high motility, fibroblast morphology, and enhanced cell migration and invasion. Introduction of STC2 in 231 cells reduced cell migration and invasion. In response to irradiation, silencing of STC2 in 231 HM cells reduced apoptosis, whereas overexpression of STC2 in 231 cells promoted apoptosis, compared with in control cells. Mechanistic study showed that STC2 negatively regulated PKC to control the expression of Claudin-1, which subsequently induced the expressions of EMT-related factors including ZEB1, ZO-1, Slug, Twist, and MMP9. Suppression of PKC activity by using a PKC inhibitor (Go 6983) restored the normal motility of STC2-silenced cells. Furthermore, in vivo animal assay showed that STC2 inhibited tumorigenesis and metastasis of breast cancer cells. Collectively, these results indicate that STC2 may inhibit EMT at least partially through the PKC/Claudin-1-mediated signaling in human breast cancer cells. Thus, STC2 may be exploited as a biomarker for metastasis and targeted therapy in human breast cancer.  相似文献   

8.
Thrombospondin‐1 (TSP‐1), a matricellular protein and one of the first endogenous anti‐angiogenic molecules identified, has long been considered a potent modulator of human diseases. While the therapeutic effect of TSP‐1 to suppress cancer was investigated in both research and clinical settings, the mechanisms of how TSP‐1 is regulated in cancer remain elusive, and the scientific answers to the question of whether TSP‐1 expressions can be utilized as diagnostic or prognostic marker for patients with cancer are largely inconsistent. Moreover, TSP‐1 plays crucial functions in angiogenesis, inflammation and tissue remodelling, which are essential biological processes in the progression of many cardiovascular diseases, and therefore, its dysregulated expressions in such conditions may have therapeutic significance. Herein, we critically analysed the literature pertaining to TSP‐1 expression in circulating blood and pathological tissues in various types of cancer as well as cardiovascular and inflammation‐related diseases in humans. We compare the secretion rates of TSP‐1 by different cancer and non‐cancer cells and discuss the potential connection between the expression changes of TSP‐1 and vascular endothelial growth factor (VEGF) observed in patients with cancer. Moreover, the pattern and emerging significance of TSP‐1 profiles in cardiovascular disease, such as peripheral arterial disease, diabetes and other related non‐cancer disorders, are highlighted. The analysis of published TSP‐1 data presented in this review may have implications for the future exploration of novel TSP‐1‐based treatment strategies for cancer and cardiovascular‐related diseases.  相似文献   

9.
10.
斯钙素(Stanniocalcin, STC)是一类首先在鱼类特有的内分泌腺--斯坦尼氏小体(Corpuscles of Stannius, CS)、随后又在人和哺乳动物中发现的同型二聚体糖蛋白激素,具有广泛的组织表达模式和多种生物学效应.为阐明两栖类动物是否存在STC1基因的表达及其表达模式,本研究基于部分已知鱼类和哺乳动物的STC1基因序列,从中华大蟾蜍(Bufo bufo gargarizans)卵巢获得了STC1基因的部分序列(GenBank注册号为EF586886).同源性分析显示,所获得的中华大蟾蜍STC1基因部分序列与鱼类STC1基因相应序列的同源性在40%-48%,而与小鼠和人STC1基因相应序列的同源性分别为41.89%和37.95%.RT-PCR分析显示STC1基因可在肾脏、性腺等多种组织中表达;原位杂交(in situ hybridization, ISH)技术表明中华大蟾蜍肾脏的近端小管、远端小管和集合管细胞内表达STC1 mRNA.这些结果首次证实两栖类动物中华大蟾蜍组织中存在STC1基因的表达  相似文献   

11.
Stanniocalcin 1 as a pleiotropic factor in mammals   总被引:3,自引:0,他引:3  
Yoshiko Y  Aubin JE 《Peptides》2004,25(10):1663-1669
Stanniocalcin (STC)1 is the mammalian homologue of STC which was originally identified as a calcium/phosphate-regulating hormone in bony fishes. STC1 is a homodimeric phosphoglycoprotein with few if any identified unique motifs in its structure with the exception of CAG repeats in the 5'-untranslated region. In contrast to fish STC which is expressed mainly in the corpuscles of Stannius, STC1 is expressed in a wide variety of tissues, but unexpectedly is not detected in the circulation under normal circumstances. Thus, STC1 may play an autocrine/paracrine rather than a classic endocrine role in mammals. Consistent with this, pleiotropic effects of STC1 have been postulated in physiological and measured in pathological situations. There is much current interest in identifying a specific STC1 receptor and putative signaling pathways to which it may be coupled. In this regard, STC1 may regulate intracellular calcium and/or phosphate (Pi) levels. In the skeletal system, for example, Pi uptake in bone-forming osteoblasts via a direct effect of STC1 on expression of the NaPi transporter Pit1 may contribute to bone formation. Here we review current understanding of the role of STC1 and its possible molecular mechanisms in the skeleton and elsewhere.  相似文献   

12.
STC1 is a glycoprotein hormone involved in calcium/phosphate (Pi) homeostasis. There is mounting evidence that STC1 is tightly associated with the development of cancer. But the function of STC1 in cancer is not fully understood. Here, we found that STC1 is down-regulated in Clinical tissues of cervical cancer compared to the adjacent normal cervical tissues (15 cases). Subsequently, the expression of STC1 was knocked down by RNA interference in cervical cancer CaSki cells and the low expression promoted cell growth, migration and invasion. We also found that STC1 overexpression inhibited cell proliferation and invasion of cervical cancer cells. Moreover, STC1 overexpression sensitized CaSki cells to drugs. Further, we showed that NF-κB p65 protein directly bound to STC1 promoter and activated the expression of STC1 in cervical cancer cells. Thus, these results provided evidence that STC1 inhibited cell proliferation and invasion through NF-κB p65 activation in cervical cancer.  相似文献   

13.
14.
The human glycoprotein, stanniocalcin-2 (STC2) is a HIF-1 target gene that is found to be associated with tumor development. The relationship of the prognostic outcome to the level of its expression in cancer tissues is controversial; however experimental evidence suggests that STC2 is a positive regulator of cancer progression. In the present study, we investigated if the expression of STC2 in hypoxic cells is associated with cancer invasion and metastasis. We studied the epithelial-mesenchymal transition (EMT) markers in STC2-silenced and over-expressed SKOV3 cells maintained in hypoxic condition. Western blot and immunocytochemical analysis revealed that the stable expression of exogenous STC2 promoted EMT, as revealed by the increase of N-cadherin/vimentin but a decrease of E-cadherin levels. This observation was further confirmed by colony formation assay where the STC2 stably transfected cells showed high degree of motility with fibroblast morphology under hypoxic condition. In conducting invasion assay in hypoxia, the STC2 stably transfected cells showed high degree of invasiveness. This observation was correlated with the significant increase of MMP2 and MMP9 expression in the STC2 stably transfected cells. In HUVEC/SKOV3 co-culture invasion study, endothelial invasion was found to be enhanced by the seeding of STC2 stably transfected cells in the lower compartment. These observations were possibly mediated by an increase of ROS and activated ERK1/2 levels in the cells. Collectively, the finding provides the first evidence that STC2 is a positive regulator in tumor progression at hypoxia.  相似文献   

15.
16.
17.
斯钙素的研究进展   总被引:4,自引:0,他引:4  
Chen WN  Zhu GJ 《生理科学进展》2008,39(3):225-228
斯钙素(stanniocalcin,STC)是一种糖蛋白激素,最早在硬骨鱼中发现,起着调节钙/磷平衡的作用.近年来在人和其它哺乳动物中发现也存在STC,先后分别命名为STC1和STC2.STC1基因可以产生两种形式的STC:一个是分子量为50kD的多肽,被称作STC50;另一种是一组分子量较大的不同形式的STC,被统称为big STC.STC1和STC2均可广泛表达于各种组织.STC成为一种新的肿瘤标志物,并且在心血管疾病、炎症细胞迁移、胚泡着床和子宫的蜕膜化等多方面都起重要作用.  相似文献   

18.
19.
Epithelial–mesenchymal transition (EMT) plays an important role in the invasiveness and metastasis of gastric cancer. Therefore, identifying key molecules involved in EMT will provide new therapeutic strategy for treating patients with gastric cancer. TIPE1 is a newly identified member of the TIPE (TNFAIP8) family, and its contributions to progression and metastasis have not been evaluated. In this study, we found that the levels of TIPE1 were significantly reduced and inversely correlated with differentiation status and distant metastasis in primary gastric cancer tissues. We further observed overexpression of TIPE1 in aggressive gastric cancer cell lines decreased their metastatic properties both in vitro and in vivo as demonstrated by markedly inhibiting EMT and metastasis of gastric cancer cells in nude mice. Consistently, gene silencing of TIPE1 in well‐differentiated gastric cancer cell line (AGS) inhibited these processes. Mechanistically, we found that TIPE1‐medicated Wnt/β‐catenin signalling was one of the critical signal transduction pathways that link TIPE1 to EMT inhibition. Importantly, TIPE1 dramatically restrained the expression and activities of MMP2 and MMP9 which are demonstrated to promote tumour progression and are implicated in EMT. Collectively, these findings provide new evidence for a better understanding of the biological activities of TIPE1 in progression and metastasis of gastric cancer and suggest that TIPE1 may be an innovative diagnostic and therapeutic target of gastric cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号