首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Biological soil crusts (biocrust) are microbial communities that develop at the soil surface of drylands and play an important role in erosion control and fertility. Soil surface disturbance from a broad range of natural and human processes (e.g. fire, livestock grazing, off‐road traffic) cause significant losses in biocrust cover and associated ecosystems services. Hence, biocrust restoration is emerging as an important intervention strategy to rehabilitate degraded dryland soils. In a multistep process, we designed protocols for the establishment of “microbial nurseries” to produce photosynthetic cyanobacterial inoculum for biocrust seeding at scale. We first report on the strategy for isolation, directly from the target site, of a large culture collection of cyanobacteria that included multiple representatives of the five most common biocrust taxa. After genetic pedigreeing of these isolates, we could select those that best matched field populations genetically for scale‐up cultivation. We then developed protocols for effective cyanobacterial biomass production to obtain sufficient inoculum. This was followed by conditioning treatments (hardening off) to preacclimate this inoculum to the stressful conditions expected in the field. Finally, we show that the inoculum obtained was fit to thrive in its original soil under natural outdoor conditions if sufficient water was available. We repeated this process successfully for four sites, two in the hot Chihuanuan desert and two in the cooler Great Basin Desert, and on two textural types of soils in each. The cyanobacterial biocrust nursery approach represents a versatile, viable, and safe tool for the rehabilitation of dryland soils.  相似文献   

2.
Drylands are a widely degraded biome characterized by low productivity and high abiotic stress. Biological soil crust (biocrust) inoculants hold promise as a rehabilitation material in drylands, useful for boosting ecosystem functions including stabilization of eroding soil surfaces. However, biocrust materials cultivated ex situ by humans inconsistently establish under field conditions. We tested two approaches aimed at improving field establishment of biocrust inoculum: exposing the organisms within the inoculum to abiotic stress in an attempt to harden them, and applying habitat ameliorations intended to reduce the stressfulness of the environment. We hypothesized that both approaches in concert would lead to the most consistent field establishment of biocrusts. Overall, addition of biocrust inoculum did enhance biocrust establishment over the 1.5‐year duration of the study but did not result in full recovery. Generally, hardened biocrust inoculum performed no better than inoculum that was not hardened, although one indicator (chlorophyll a) was enhanced by addition of hardened inoculum in some circumstances. Temporary irrigation was initially an effective habitat amelioration but had no effect on biocrust establishment by 1.5 years. In contrast, application of jute net to the soil surface promoted biocrust establishment both in synergy with and in the absence of inoculum addition. We hypothesize that jute net stabilizes the soil surface, reduces abiotic stress, and enhances resource availability, overcoming barriers to establishment of biocrusts. Currently, there is broad support for the efficacy of habitat amelioration approaches in biocrust rehabilitation, but effective hardening techniques remain elusive.  相似文献   

3.
Methods to reduce soil loss and associated loss of ecosystem functions due to land degradation are of particular importance in dryland ecosystems. Biocrusts are communities of cyanobacteria, lichens, and bryophytes that are vulnerable to soil disturbance, but provide vital ecosystem functions when present. Biocrusts stabilize soil, improve hydrologic function, and increase nutrient and carbon inputs. Methods to reestablish biocrust rapidly, when lost from ecosystems, have the potential to restore important dryland ecosystem functions and thereby increase probability of successful rehabilitation. The aim of this study was to identify habitat ameliorations to enhance the success of biocrust inoculation by: (1) reducing physiological stress on biocrusts and increasing resource availability (using shade, soil surface roughening, and watering), and (2) stabilizing mobile soils (using straw borders, three soil tackifiers [soil stabilizers], and a combination of shade, water, roughening, and tackifier). In the Great Basin Desert on the Utah Test and Training Range near Salt Lake City, we applied field‐harvested biocrust material to experimental plots on coarse‐ and fine‐textured soils with the top 2 cm of soil and biocrust removed. Habitat ameliorations were applied with and without biocrust addition. Shade provision increased biocrust cover 50% over controls. Biocrust cover and soil stability were 65% lower in straw border plots relative to controls. Soil tackifiers, alone and in combination with resource augmentation and stress reduction, did not improve cover and stabilization over inoculated controls. We found variability in recovery by time and between soil types. These results suggest plausible strategies to improve success of biocrust inoculation.  相似文献   

4.
In dryland ecosystems, natural recovery of biological soil crusts (biocrusts) following disturbance may be slow or inhibited, necessitating active restoration practices. While biocrusts can be readily propagated under environmentally controlled conditions, rehabilitation in the field is complicated by environmental stresses which may be particularly acute in degraded, destabilized soils with harsh climatic conditions at the soil surface. In this study, we first present the results of a field trial at a severely degraded rangeland site examining the stabilizing effects of various soil amendments (polysaccharide glues and polyacrylamides) in combination with biocrust inoculum. We found that a psyllium compound was the only amendment to maintain effectiveness after 19 months, and the only treatment that maintained biocrust inoculum throughout the trial. In a subsequent short‐term experiment where plots were shaded and watered, we examined how biocrust inoculation rate (0, 20, and 40% initial cover) and the psyllium‐based amendment affected biocrust growth. After 4 months, visible biocrust cover in inoculated plots was greater than in controls, but only chlorophyll a exhibited a dosage‐response to inoculum application rate, indicating preferential establishment of cyanobacteria. Psyllium did not affect biocrust development but did improve soil stability. Shade and watering buffered against temperature extremes (up to 15°C) and increased the duration of moist surface conditions necessary for biocrust growth by up to 30%, mimicking conditions more common in the fall and winter months. Our results suggest that inducing early successional biocrusts on a highly degraded site is possible with suitable microclimate conditions.  相似文献   

5.
In most drylands, biological soil crusts (biocrusts), an assemblage of lichens, bryophytes, fungi, green algae, and cyanobacteria, are critical to healthy ecosystem function. However, they are extremely sensitive to disturbance and attempts to facilitate their recovery have had variable success. In this study, we applied soil amendments designed to improve soil surface stability and accelerate biocrust recovery on an area disturbed by oil/gas exploration vehicles. Treatments included: (1) control (one time water only); (2) biocrust‐only: biocrust inoculum + nutrients in water; (3) polyacrylamide gels (which are known to stabilize soils) + biocrust inoculum + nutrients in water; (4) gypsum + biocrust inoculum + nutrients in water; and (5) saline (NaCl) solution + biocrust inoculum + nutrients in water. Only the NaCl treatment showed any effects on soil properties and these were only short term. These effects included an increase in soil strength and a reduction in soil aggregate stability, unsaturated hydraulic conductivity (Kh), and cyanobacterial biomass. The inoculated biocrust material failed to develop and even after 10 years, there was only a very low natural recolonization of the plots. These results show that inoculating soils or applying these levels of soil amendments does not guarantee recovery of soil stability or biocrust, and that some sites are unlikely to recover without assistance. Thus, there is a need for more research into ways to enhance soil stability and identify the factors limiting biocrust establishment.  相似文献   

6.
Night-time stomatal conductance (g(night)) occurs in many ecosystems, but the g(night) response to environmental drivers is relatively unknown, especially in deserts. Here, we conducted a Bayesian analysis of stomatal conductance (g) (N=5013) from 16 species in the Sonoran, Chihuahuan, Mojave and Great Basin Deserts (North America). We partitioned daytime g (g(day)) and g(night) responses by describing g as a mixture of two extreme (dark vs high light) behaviors. Significant g(night) was observed across 15 species, and the g(night) and g(day) behavior differed according to species, functional type and desert. The transition between extreme behaviors was determined by light environment, with the transition behavior differing between functional types and deserts. Sonoran and Chihuahuan C(4) grasses were more sensitive to vapor pressure difference (D) at night and soil water potential (Ψ(soil)) during the day, Great Basin C(3) shrubs were highly sensitive to D and Ψ(soil) during the day, and Mojave C(3) shrubs were equally sensitive to D and Ψ(soil) during the day and night. Species were split between the exhibition of isohydric or anisohydric behavior during the day. Three species switched from anisohydric to isohydric behavior at night. Such behavior, combined with differential D, Ψ(soil) and light responses, suggests that different mechanisms underlie g(day) and g(night) regulation.  相似文献   

7.
Recent increases in the frequency and size of desert wildfires bring into question the impacts of fire on desert invertebrate communities. Furthermore, consumer communities can strongly impact invertebrates through predation and top‐down effects on plant community assembly. We experimentally applied burn and rodent exclusion treatments in a full factorial design at sites in both the Mojave and Great Basin deserts to examine the impact that fire and rodent consumers have on invertebrate communities. Pitfall traps were used to survey invertebrates from April through September 2016 to determine changes in abundance, richness, and diversity of invertebrate communities in response to fire and rodent treatments. Generally speaking, rodent exclusion had very little effect on invertebrate abundance or ant abundance, richness or diversity. The one exception was ant abundance, which was higher in rodent access plots than in rodent exclusion plots in June 2016, but only at the Great Basin site. Fire had little effect on the abundances of invertebrate groups at either desert site, with the exception of a negative effect on flying‐forager abundance at our Great Basin site. However, fire reduced ant species richness and Shannon's diversity at both desert sites. Fire did appear to indirectly affect ant community composition by altering plant community composition. Structural equation models suggest that fire increased invasive plant cover, which negatively impacted ant species richness and Shannon's diversity, a pattern that was consistent at both desert sites. These results suggest that invertebrate communities demonstrate some resilience to fire and invasions but increasing fire and spread of invasive due to invasive grass fire cycles may put increasing pressure on the stability of invertebrate communities.  相似文献   

8.
Biological soil crusts are complex communities of organisms that develop on the top layer of dryland soils where they enhance important ecosystem services, including soil fertility and protection from erosion. Regrettably, a range of human activities such as cattle grazing, off‐road driving, hiking, and global warming result in significant deterioration of biocrust cover and their associated services. This scenario has prompted efforts to develop effective biocrust restoration strategies, which often involve the production of biocrust inoculum, both in greenhouse and in laboratory settings. Sometimes this inoculum is preconditioned in a process of “hardening” at considerable expense and effort in order to improve its fitness under harsh field conditions. But the positive effects of such hardening procedures have yet to be rigorously demonstrated. Here, we compared the growth performance of 20 cultured strains of biocrust cyanobacteria in outdoor tests on native soils as a function of preconditioning regimes consisting of increasingly high exposure to solar radiation, temperature and illumination daily variability, and recurrent wet‐dry cycles. Preconditioning improved performance in 13 out of 20 strains, particularly among pioneer crust‐forming Microcoleus spp. (eight out of eight). Improvements were variable among heterocystous strains (three out of four Scytonema spp., two out of four Tolypothrix spp., and none out of four Nostoc spp.). Based on these results, we recommend the inclusion of preconditioning treatments to increase inoculum survival rate and speed of cyanobacterial biocrust recovery in restoration of dryland soils.  相似文献   

9.
Douglas A. Kelt 《Ecography》1999,22(2):123-137
Several recent studies have compared small mammal community structure across multiple deserts on different continents. These studies have tacitly assumed that variation in community structure was greater between continents than within, and so have not evaluated variation across desert regions within continents. I evaluated several metrics of community structure and a model of community assembly for four desert regions in North America - the Great Basin, Mojave. Sonoran. and Chihuahuan Deserts in order to explicitly compare these metrics across these deserts. Additionally. I compared these results with similar analyses conducted on two desert regions in central Asia - the Gobi Desert and the Turan Desert Region to evaluate the relative magnitude of intra- vs inter-continental variation. Although the patterns observed are complex, they demonstrated marked heterogeneity in desert small mammal communities within North America. However, this heterogeneity is much less than that observed in inter-continental comparisons, in which Asian and North American deserts differ markedly. These results agree with other recent studies providing limited or no support for the existence of substantial convergence in community characteristics or ecological function across geographically distant regions. Rather, the results support the hypothesis that the common evolutionary history of faunas in globally disjunct landmasses has had a stronger influence on the evolution of communities and faunas than do regional variations in climate, physiography, etc. Whereas a common ecological setting may have large impacts on some facets of organismal structure (e.g., bipedalism in desert small mammals), common evolutionary history appears to have a more profound influence on local dynamics.  相似文献   

10.
Biological soil crusts (biocrusts) are a key component of dryland ecosystems worldwide. However, large extensions of biocrusts are disturbed by human activities, gypsum quarry being an outstanding example. Restoration techniques applied have offered satisfactory results for vascular plants but they could greatly differ in promoting biocrust recovery. A basic question remains unaddressed: can measures for plant recovery accelerate or promote the recovery of biological crusts? We have examined eight different situations: undisturbed natural habitat, five treatments with no restoration measures (overgrazed area, abandoned quarry, topsoil removal from natural habitat, and two areas filled with gypsum mining spoil), and 2 areas receiving restoration measures (manual sowing and hydroseeding). We took 40 soil cores to determine cover of lichen, moss, and cyanobacteria. Biocrust richness and cover were higher in the undisturbed habitat, with remarkable differences for the different components among treatments. Cyanobacteria were well represented in all the cores (restored and non‐restored). Mosses were promoted the most by hydroseeding. Lichen cover was remarkably higher in undisturbed samples, very low in the quarry abandoned in 1992, and 0 in the rest. Complete spontaneous recovery of biocrusts was inefficient in the 25‐year period examined. Plant restoration measures could speed up its recovery comparing with non‐restored areas. Cyanobacteria and mosses can spontaneously recover fairly well. However, promoting them would accelerate the appearance of lichen. For lichen, inoculation or translocation of lichen thalli might be proposed. Therefore, our results call for the inclusion of active restoration measures of biocrust components in recovery plans, especially for lichens.  相似文献   

11.
We examined the 10-day response of soil microbial biomass-N to additions of carbon (dextrose) and nitrogen (NH4NO3) to water-amended soils in a factorial experiment in four plant communities of the Chihuahuan desert of New Mexico (U.S.A.). In each site, microbial biomass-N and soil carbohydrates increased and extractable soil N decreased in response to watering alone. Fertilization with N increased microbial biomass-N in grassland soils; whereas, fertilization with C increased microbial biomass-N and decreased extractable N and P in all communities dominated by shrubs, which have invaded large areas of grassland in the Chihuahuan desert during the last 100 years. Our results support the hypothesis that the control of soil microbial biomass shifts from N to C when the ratio of C to N decreases during desertification.  相似文献   

12.
Bromus tectorum, an inbreeding annual grass, is a dominant invader in sagebrush steppe habitat in North America. It is also common in warm and salt deserts, displaying a larger environmental tolerance than most native species. We tested the hypothesis that a suite of habitat-specific B. tectorum lineages dominates warm desert habitats. We sampled 30 B. tectorum Mojave Desert and desert fringe populations and genotyped 10–26 individuals per population using 69 single nucleotide polymorphic (SNP) markers. We compared these populations to 11 Great Basin steppe and salt desert populations. Populations from warm desert habitats were dominated by members of two haplogroups (87 % of individuals) that were distinct from haplogroups common in Great Basin habitats. We conducted common garden studies comparing adaptive traits and field performance among haplogroups typically found in different habitats. In contrast to the haplogroup abundant in sagebrush steppe, warm desert haplogroups generally lacked a vernalization requirement for flowering. The most widespread warm desert haplogroup (Warm Desert 1) also had larger seeds and a higher root:shoot ratio than other haplogroups. In the field, performance of warm desert haplogroups was dramatically lower than the sagebrush steppe haplogroup at one steppe site, but one warm desert haplogroup performed as well as the steppe haplogroup under drought conditions at the other site. Our results suggest that B. tectorum succeeds in widely disparate environments through ecotypic variation displayed by distinct lineages of plants. Accounting for this ecotypic variation is essential in modeling its future distribution in response to climate change.  相似文献   

13.
The great desert skink (Liopholis kintorei) of the Egerniinae subfamily (Reptilia: Scincidae) is a communal burrowing lizard that inhabits arid spinifex grasslands in central Australia. Great desert skink activity is centred in and around the burrows which are inhabited for many years. However, it is not known whether skinks select burrow sites with specific attributes or how continuing occupancy of burrows is influenced by the surrounding habitat; especially post‐fire, when plant cover is reduced. Here, we test whether great desert skink burrows in areas burnt 2 years previously and in longer unburnt areas are associated with particular habitat attributes, and whether there are differences between occupied and recently abandoned burrow sites. Vegetation composition, cover and soil surface characteristics at 56 established great desert skink burrows, including occupied and recently unoccupied burrows, were compared with 56 random nearby non‐burrow control sites. Burrow sites had higher plant cover compared with the surrounding landscape in both recently burnt and longer unburnt areas and were more likely to be associated with the presence of shrubs. Soil stability and infiltration were also higher at burrow sites. However, we found no evidence that burrows with lower cover were more likely to be abandoned. Our results suggest that great desert skinks may actively select high cover areas for burrow construction, although differences between burrow and control sites may also partly reflect local changes to plant cover and composition and soil properties resulting from burrow construction and long‐term habitation of a site. Further research should determine if burrows with shrubs or higher plant cover provide greater protection from predators, more structural stability for burrow construction, increased prey abundance or other benefits. We recommend that maintenance of areas with relatively higher plant cover be prioritized when managing great desert skink habitat.  相似文献   

14.
Carbon addition has been proposed as an alternative to herbicide and manual removal methods to treat non‐native plants and reduce non‐target effects of treatments (e.g. impacts on native plants; surface disturbance). On Mojave Desert pavement and biocrust substrates after experimental soil disturbance and carbon addition (1,263 g C/m2 as sucrose), we observed declines in lichens and moss cover in sucrose‐treated plots. To further explore this unforeseen potential side effect of using carbon addition as a non‐native plant treatment, we conducted biocrust surveys 5 and 7 years after treatments, sampled surface soils to observe if treatments additionally affected soil filamentous cyanobacteria, and conducted laboratory trials testing the effects of different levels of sucrose on cyanobacteria and desert mosses. Sucrose addition to biocrust plots reduced lichen and moss cover by 33–78% and species richness by 40–80%. Sucrose reduced biocrust cover in biocrust plots to levels similarly detected in pavement plots (<1%). While cyanobacteria in the field did not appear to be affected by sucrose, laboratory tests showed negative effects of sucrose on both cyanobacteria and mosses. Cyanobacteria declined by 41% 1 month after exposure to 5.4 g C/m2 equivalent solutions. We detected injury to photosynthesis in mosses after 96 hour exposure to 79–316 g C/m2 equivalent solutions. Caution is warranted when using carbon addition, at least in the form and concentration of sucrose, as a treatment for reducing non‐native plants on sites where conserving biocrust is a goal.  相似文献   

15.
Aim This study presents a phytogeographical characterization of the vine flora of two lower North American desert regions as a biogeographical framework for further ecological inquiry into desert vines. Location The phytogeography of the vine flora of the Sonoran and Chihuahuan Deserts was c haracterized based on 263 known species. Methods Checklists of the vines of each desert were developed. Represented genera were then grouped into 10 phytogeographical elements based on worldwide distribution patterns. To compare the floristic composition of the desert floras, an index of species similarity was calculated. Results About a third more species of vines occur in the Sonoran Desert than in the Chihuahuan Desert. Based on the analysis, cosmopolitan genera are the only group more numerous in absolute terms in the Chihuahuan Desert than in the Sonoran Desert. Tropical elements are represented in about the same proportion in each desert as the number of species, however, nearly twice as many pantropical and neotropical genera are represented in the Sonoran Desert as in the Chihuahuan Desert. Proportionately, more genera of temperate elements occur in the Chihuahuan Desert than in the Sonoran desert, although the absolute number of genera is slightly higher in the latter. Main conclusions As these deserts are relatively recent ecological formations and as vines evolved in forest ecosystems, the composition of the desert vine floras is the result of the interaction between historical vegetation types, their constituent taxa and climatic and geological history. The main differences in the vining floras of the present‐day Sonoran and Chihuahuan Deserts appear to be the result of greater historical influence in the Sonoran Desert of (1) tropical vegetation types and (2) the emergence of the Gulf of California. The Chihuahuan Desert vine flora seems to be the result of (1) a more pronounced historical temperate vegetation, (2) the lack of an important isolating event, such as the creation of the Baja California peninsula, and (3) a cooler climate with shorter growing seasons.  相似文献   

16.
Soil carbon losses to the atmosphere through soil respiration are expected to rise with ongoing temperature increases, but available evidence from mesic biomes suggests that such response disappears after a few years of experimental warming. However, there is lack of empirical basis for these temporal dynamics in soil respiration responses, and for the mechanisms underlying them, in drylands, which collectively form the largest biome on Earth and store 32% of the global soil organic carbon pool. We coupled data from a 10 year warming experiment in a biocrust‐dominated dryland ecosystem with laboratory incubations to confront 0–2 years (short‐term hereafter) versus 8–10 years (longer‐term hereafter) soil respiration responses to warming. Our results showed that increased soil respiration rates with short‐term warming observed in areas with high biocrust cover returned to control levels in the longer‐term. Warming‐induced increases in soil temperature were the main drivers of the short‐term soil respiration responses, whereas longer‐term soil respiration responses to warming were primarily driven by thermal acclimation and warming‐induced reductions in biocrust cover. Our results highlight the importance of evaluating short‐ and longer‐term soil respiration responses to warming as a mean to reduce the uncertainty in predicting the soil carbon–climate feedback in drylands.  相似文献   

17.
生物结皮作为荒漠地表的重要覆被类型, 在荒漠生态系统的氮素循环中扮演重要角色。融雪期为古尔班通古特沙漠生物结皮的复苏和生长提供了充足的水分, 也成为该沙漠氮素固定和转化的重要时期, 但该时期生物结皮如何影响驱动氨氧化转化的微生物群落动态尚未明确。因此, 我们利用荧光定量PCR (fluorescent quantitative PCR, qPCR)方法分析融雪期生物结皮与去除结皮不同土层(0-2, 2-5, 5-10和10-20 cm)氨氧化菌群丰度特征, 结合潜在硝化速率和土壤理化参数, 探究融雪期生物结皮对荒漠土壤氮素转化作用。结果表明: 氨氧化古菌(ammonia-oxidizing archaea, AOA)是古尔班通古特沙漠土壤优势氨氧化菌, 生物结皮对0-2 cm层土壤中AOA、氨氧化细菌(ammonia-oxidizing bacteria, AOB) amoA基因丰度具有显著抑制作用(P < 0.01), 对10-20 cm层土壤中AOA amoA基因丰度具有显著促进作用(P < 0.01)。冗余分析(redundancy analysis, RDA)表明, AOA、AOB amoA基因丰度主要受土壤含水量和铵态氮含量的影响, 占总条件效应的54.90%。氨氧化速率分析发现, 去除生物结皮显著降低古尔班通古特沙漠土壤硝化作用潜力(P < 0.001), 证实生物结皮对荒漠土壤氮素转化具有重要的调控作用。综上所述, 古尔班通古特沙漠氨氧化微生物的分布规律受环境因子调控, 特别是生物结皮可以通过调节土壤含水量和铵态氮含量影响AOA和AOB的空间生态位分化, 促进沙漠土壤的硝化作用。  相似文献   

18.
Biological soil crusts are diverse assemblages of bacteria, cyanobacteria, algae, fungi, lichens, and mosses that cover much of arid land soils. The objective of this study was to quantify protozoa associated with biological soil crusts and test the response of protozoa to increased temperature and precipitation as is predicted by some global climate models. Protozoa were more abundant when associated with cyanobacteria/lichen crusts than with cyanobacteria crusts alone. Amoebae, flagellates, and ciliates originating from the Colorado Plateau desert (cool desert, primarily winter precipitation) declined 50-, 10-, and 100-fold, respectively, when moved in field mesocosms to the Chihuahuan Desert (hot desert, primarily summer rain). However, this was not observed in protozoa collected from the Chihuahuan Desert and moved to the Sonoran desert (hot desert, also summer rain, but warmer than Chihuahuan Desert). Protozoa in culture began to encyst at 37 degrees C. Cysts survived the upper end of daily temperatures (37-55 degrees C), and could be stimulated to excyst if temperatures were reduced to 15 degrees C or lower. Results from this study suggest that cool desert protozoa are influenced negatively by increased summer precipitation during excessive summer temperatures, and that desert protozoa may be adapted to a specific desert's temperature and precipitation regime.  相似文献   

19.
Transition zones between biomes, also known as ecotones, are areas of pronounced ecological change. They are primarily maintained by abiotic factors and disturbance regimes that could hinder or promote species range shifts in response to climate change. We evaluated how climate change has affected metacommunity dynamics in two adjacent biomes and across their ecotone by resurveying 106 sites that were originally surveyed for avian diversity in the early 20th century by Joseph Grinnell and colleagues. The Mojave, a warm desert, and the Great Basin, a cold desert, have distinct assemblages and meet along a contiguous, east–west boundary. Both deserts substantially warmed over the past century, but the Mojave dried while the Great Basin became wetter. We examined whether the distinctiveness and composition of desert avifaunas have changed, if species distributions shifted, and how the transition zone impacted turnover patterns. Avifauna change was characterized by (a) reduced occupancy, range contractions, and idiosyncratic species redistributions; (b) degradation of historic community structure, and increased taxonomic and climatic differentiation of the species inhabiting the two deserts; and (c) high levels of turnover at the transition zone but little range expansion of species from the warm, dry Mojave into the cooler, wetter Great Basin. Although both deserts now support more drier and warmer tolerant species, their bird communities still occupy distinct climatological space and differ significantly in climatic composition. Our results suggest a persistent transition zone between biomes contributes to limiting the redistribution of birds, and highlight the importance of understanding how transition zone dynamics impact responses to climate change.  相似文献   

20.
Soil crust lichens can be the dominant vegetation in desert regions that are unsuitable for higher plants, and are vital to soil stabilization and primary production. Biological soil crusts are vulnerable to disturbance and there is little evidence of the lichen components achieving full recovery following human disturbances in semi-arid to arid environments, and no records of recovery in hyper-arid deserts. Eight sites with varying anthropogenic, mechanical disturbance regimes were assessed in the hyper-arid Namib Desert for levels of recovery and successional convergence, based on a comparative analysis of overall lichen cover and community composition in disturbed and control locations. Recovery time estimations ranged from 5 to 530 years, with no detected linear relationship to impact gradient (low to high impact). Variables that were found to most strongly influence recovery rates were the overall cover of lichen growth and total number of lichen species in the bordering undisturbed areas, followed by the extent of soil compaction in the disturbed area, altered soil surface microrelief and vitality of subsurface soil crust components. An assessment of pioneering species demonstrated a link between increased soil depressions, i.e. track ruts, and the occurrence of fragmenting, wind-dispersing species. Track ruts in hype-arid deserts are not as vulnerable to the water erosion found in less arid deserts, and may be advancing recovery by trapping fragments. However, the lichen community structure was significantly different between all of the disturbed and control areas, regardless of the recovery phase, suggesting that while the lichen community composition may not. The ecological consequences of such disturbances may be far reaching in hyper-arid deserts where lichens are primary heterotrophs soil stabilizers. Given the economic development occurring within coastal hyper-acid deserts of the world, these impacts undoubtedly call for conservation attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号