首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular vesicles (EVs) mediate intercellular communication via transferring proteins and other biological molecules and have been recently investigated as biomarkers of disease. Sensitive and specific biomarkers are required for lung cancer diagnosis and prognosis. The present study screens for abnormal EV proteins in non‐small cell lung cancer (NSCLC) using a quantitative proteomics strategy involving LC‐MS/MS to identify ideal biomarkers for NSCLC diagnosis. EVs are enriched from the sera of early and advanced NSCLC patients and healthy controls and from cell culture supernatants of lung adenocarcinoma and bronchial epithelial cell lines. In the sera and supernatants, 279 and 632 differentially expressed proteins, respectively, are associated with signaling pathways including extracellular membrane–receptor interaction, focal adhesion, and regulation of the actin cytoskeleton. Thirty‐two EV proteins are identified at the intersection of differentially expressed proteins between the NSCLC groups and cell lines. Based on bioinformatics analysis, in silico immunohistochemical, and PRM verification, fibronectin is selected for following in vitro studies and validation with an independent cohort. Fibronectin on EVs is estimated to perform well in the diagnosis of NSCLC patients based on AUC, showing great potential for clinical use and demonstrating the efficacy of this method for EV‐associated biomarker screening.  相似文献   

2.
Cardiac remodelling following myocardial infarction (MI) is a maladaptive change associated with progressive heart failure and compromises long‐term clinical outcome. A substantial proportion of patients afflicted by MI still develop adverse outcomes associated with cardiac remodelling. Therefore, it is crucial to identify biomarkers for the early prediction of cardiac remodelling. An in‐depth proteomics approach, including both semi‐quantitative and quantitative antibody arrays, was used to identify circulating biomarkers that may be associated with detrimental cardiac remodelling. Furthermore, statistical correlation analysis was performed between the candidate biomarkers and clinical cardiac remodelling data to demonstrate their clinical utility. A systematic proteomics approach revealed that sclerostin (SOST), growth differentiation factor‐15 (GDF‐15), urokinase‐type plasminogen activator (uPA), and midkine (MK) were increased, while monocyte chemotactic protein‐3 (MCP‐3) was uniquely decreased in MI patients who developed cardiac remodelling, compared to MI patients who did not develop cardiac remodelling and healthy humen. Moreover, correlation analyses between serum proteomes and cardiac remodelling echocardiographic parameters demonstrated a moderate positive association between left ventricular end‐diastolic volume index (LVEDVi) and the three serum proteins, uPA, MK and GDF‐15 (P < .05, respectively), and a moderate negative correlation between LV ejection fraction (LVEF) and these serum proteins (P < .05, respectively). Importantly, uPA and MK were firstly identified to be associated with the development of cardiac remodelling. The present study contributes to a better understanding of the various cytokines expressed during adverse cardiac remodelling. The identified biomarkers may facilitate early identification of patients at high risk of ischaemic heart failure pending further confirmation through larger clinical trials.  相似文献   

3.
In patients with ST-segment elevation myocardial infarction (STEMI), the time of onset of ischemia has been associated with myocardial infarction (MI) size. Myocardial blush grade (MBG) reflects myocardial response to ischemia/reperfusion injury, which may differ according to time of the day. The aim of our study was to explore the 24-hour variation in MBG and MI size in relation to outcomes in STEMI patients. A retrospective multicenter analysis of 6970 STEMI patients was performed. Time of onset of STEMI was divided into four 6-hour periods. STEMI patients have a significant 24-hour pattern in onset of symptoms, with peak onset around 09:00 hour. Ischemic time was longest and MI size, estimated by peak creatine kinase concentration, was largest in patients with STEMI onset between 00:00 and 06:00 hours. Both MBG and MI size were independently associated with mortality. Time of onset of STEMI was not independently associated with mortality when corrected for baseline and procedural factors. Interestingly, patients presenting with low MBG between 00:00 and 06:00 hours had a better prognosis compared to other groups. In conclusion, patients with symptom onset between 00:00 and 06:00 hours have longer ischemic time and consequently larger MI size. However, this does not translate into a higher mortality in this group. In addition, patients with failed reperfusion presenting in the early morning hours have better prognosis, suggesting a 24-hour pattern in myocardial protection.  相似文献   

4.
Endometrial cancer (EC) is the most common gynaecological malignancy in the developed world, and concerningly incidence is rising, particularly in younger people. Therefore, there is increased interest in novel diagnostic and prognostic biomarkers. Extracellular vesicles (EVs) are membrane-bound particles present in bodily fluids that have the potential to facilitate non-invasive, early diagnosis of EC and could aid with monitoring of recurrence and treatment response. EV cargo provides molecular insight into the tumor, with the lipid bilayer providing stability for RNA species usually prone to degradation. miRNAs have recently become a focus for EV biomarker research due to their ability to regulate cancer related pathways and influence cancer development and progression. This review evaluates the current literature on EV miRNA biomarkers with a focus on EC, and discusses the challenges facing this research. This review finally highlights areas of focus for EV miRNA biomarker research going forward, such as standardization of normalization approaches, sample storage and processing, extensive reporting of methodologies and moving away from single miRNA biomarkers.  相似文献   

5.
We developed a pipeline to integrate the proteomic technologies used from the discovery to the verification stages of plasma biomarker identification and applied it to identify early biomarkers of cardiac injury from the blood of patients undergoing a therapeutic, planned myocardial infarction (PMI) for treatment of hypertrophic cardiomyopathy. Sampling of blood directly from patient hearts before, during and after controlled myocardial injury ensured enrichment for candidate biomarkers and allowed patients to serve as their own biological controls. LC-MS/MS analyses detected 121 highly differentially expressed proteins, including previously credentialed markers of cardiovascular disease and >100 novel candidate biomarkers for myocardial infarction (MI). Accurate inclusion mass screening (AIMS) qualified a subset of the candidates based on highly specific, targeted detection in peripheral plasma, including some markers unlikely to have been identified without this step. Analyses of peripheral plasma from controls and patients with PMI or spontaneous MI by quantitative multiple reaction monitoring mass spectrometry or immunoassays suggest that the candidate biomarkers may be specific to MI. This study demonstrates that modern proteomic technologies, when coherently integrated, can yield novel cardiovascular biomarkers meriting further evaluation in large, heterogeneous cohorts.  相似文献   

6.
Myocardial infarction (MI) is a major condition causing heart failure (HF). After MI, the renin angiotensin system (RAS) and its signalling octapeptide angiotensin II (Ang II) interferes with cardiac injury/repair via the AT1 and AT2 receptors (AT1R, AT2R). Our study aimed at deciphering the mechanisms underlying the link between RAS and cellular components of the immune response relying on a rodent model of HF as well as HF patients. Flow cytometric analyses showed an increase in the expression of CD4+ AT2R+ cells in the rat heart and spleen post‐infarction, but a reduction in the peripheral blood. The latter was also observed in HF patients. The frequency of rat CD4+ AT2R+ T cells in circulating blood, post‐infarcted heart and spleen represented 3.8 ± 0.4%, 23.2 ± 2.7% and 22.6 ± 2.6% of the CD4+ cells. CD4+ AT2R+ T cells within blood CD4+ T cells were reduced from 2.6 ± 0.2% in healthy controls to 1.7 ± 0.4% in patients. Moreover, we characterized CD4+ AT2R+ T cells which expressed regulatory FoxP3, secreted interleukin‐10 and other inflammatory‐related cytokines. Furthermore, intramyocardial injection of MI‐induced splenic CD4+ AT2R+ T cells into recipient rats with MI led to reduced infarct size and improved cardiac performance. We defined CD4+ AT2R+ cells as a T cell subset improving heart function post‐MI corresponding with reduced infarction size in a rat MI‐model. Our results indicate CD4+ AT2R+ cells as a promising population for regenerative therapy, via myocardial transplantation, pharmacological AT2R activation or a combination thereof.  相似文献   

7.
甲基化异常是肿瘤早期的频发事件,DNA甲基化随着时间的推移相对稳定,并且可以在血液中非侵入性地检测到,因此DNA甲基化具有成为癌症早期诊断生物标志物的巨大潜力.为了找到肺鳞状细胞癌(LUSC)潜在的诊断标志物,本文提出了一种LUSC特异性候选诊断标志物的识别方法,使用癌症基因组图谱数据库(TCGA)的LUSC的甲基化数据集,通过比较LUSC与正常肺组织和其他癌症类型,得到了6个LUSC特异性甲基化位点,使用支持向量机建立诊断模型,采用六折交叉划分数据集,验证特异性标志物的有效性. 6个标志物的组合在预测LUSC方面达到约93%~99%的灵敏度,在排除正常组织时达到100%的特异性,在排除其他癌症时达到约99%的特异性.我们的研究为LUSC的早期诊断提供了潜在的生物标志物.  相似文献   

8.
Lu LF  Wang CP  Yu TH  Hung WC  Chiu CA  Chung FM  Tsai IT  Yang CY  Cheng YA  Lee YJ  Yeh LR 《Cytokine》2012,57(1):74-80
Visfatin is a cytokine that is expressed in many tissues, including the heart, and has been proposed to play a role in plaque destabilization leading to acute myocardial injury. The present study evaluates plasma levels of visfatin in acute ST-elevation myocardial infarction (STEMI) patients and examines the temporal changes in visfatin levels from the acute period to the subacute period to determine a correlation with the degree of myocardial ischemia. We evaluated 54 patients with STEMI. Circulating levels of visfatin and brain natriuretic peptide (BNP) were measured by ELISA. In addition, local expression of visfatin and BNP were detected by quantitative real-time polymerase chain reaction and immunohistochemical (IHC) analysis of left ventricular myocytes in a mouse model of myocardial infarction (MI). Plasma levels of visfatin were significantly increased in patients with STEMI on admission, relative to controls (effort angina patients and individuals without coronary artery disease). The visfatin levels reached a peak 24 h after percutaneous coronary intervention (PCI) and then decreased toward the control range during the first week after PCI. The basal plasma visfatin levels were found to correlate with peak troponin-I, peak creatine kinase-MB, total white blood cell count, and BNP levels. Trend analyses confirmed that visfatin levels correlated with the number of diseased coronary arteries. Further, in MI mice, mRNA levels of visfatin and BNP were found to be higher than in sham-treated mice. IHC analysis showed that visfatin and BNP immunoreactivity was diffusely observable in left ventricular myocytes of the MI mice. This study indicates that plasma visfatin levels are significantly higher in STEMI patients and that these higher visfatin levels correlate with elevated levels of cardiac enzymes, suggesting that increased plasma visfatin may be closely related to the degree of myocardial damage.  相似文献   

9.
COVID-19 is heterogeneous; therefore, it is crucial to identify early biomarkers for adverse outcomes. Extracellular vesicles (EV) are involved in the pathophysiology of COVID-19 and have both negative and positive effects. The objective of this study was to identify the potential role of EV in the prognostic stratification of COVID-19 patients. A total of 146 patients with severe or critical COVID-19 were enrolled. Demographic and comorbidity characteristics were collected, together with routine haematology, blood chemistry and lymphocyte subpopulation data. Flow cytometric characterization of the dimensional and antigenic properties of COVID-19 patients' plasma EVs was conducted. Elastic net logistic regression with cross-validation was employed to identify the best model for classifying critically ill patients. Features of smaller EVs (i.e. the fraction of EVs smaller than 200 nm expressing either cluster of differentiation [CD] 31, CD 140b or CD 42b), albuminemia and the percentage of monocytes expressing human leukocyte antigen DR (HLA-DR) were associated with a better outcome. Conversely, the proportion of larger EVs expressing N-cadherin, CD 34, CD 56, CD31 or CD 45, interleukin 6, red cell width distribution (RDW), N-terminal pro-brain natriuretic peptide (NT-proBNP), age, procalcitonin, Charlson Comorbidity Index and pro-adrenomedullin were associated with disease severity. Therefore, the simultaneous assessment of EV dimensions and their antigenic properties complements laboratory workup and helps in patient stratification.  相似文献   

10.
Congenital scoliosis (CS) is a form of spinal curvature resulting from anomalous development of vertebrae. Recent studies demonstrated that circRNAs could serve as potential biomarkers of disease diagnosis. Genome‐wide circRNAs expression in seven CS patients and three healthy controls was initially detected. Bioinformatics analysis was conducted to explore the potential pathological pathway of CS. Quantitative PCR (qPCR) was performed to validate the selected circRNAs in the replication cohort with 32 CS patients and 30 healthy controls. Logistic regression controlling for gender was conducted to compare the expression difference. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value. Twenty‐two differentially expressed circRNAs were filtered from genome‐wide circRNA sequencing. Seven circRNAs were validated by qPCR. Only hsa_circ_0006719 was confirmed to have a higher expression level in the CS group than the healthy control group (P = 0.036). Receiver operating characteristic curve also suggested that hsa_circ_0006719 had significant diagnostic value for CS (AUC = 0.739, P = 0.001). We described the first study of circRNAs in CS and validated hsa_circ_0006719 as a potential novel diagnostic biomarker of CS.  相似文献   

11.
The field of extracellular vesicle (EV) research has rapidly expanded in recent years, with particular interest in their potential as circulating biomarkers. Proteomic analysis of EVs from clinical samples is complicated by the low abundance of EV proteins relative to highly abundant circulating proteins such as albumin and apolipoproteins. To overcome this, size exclusion chromatography (SEC) has been proposed as a method to enrich EVs whilst depleting protein contaminants; however, the optimal SEC parameters for EV proteomics have not been thoroughly investigated. Here, quantitative evaluation and optimization of SEC are reported for separating EVs from contaminating proteins. Using a synthetic model system followed by cell line‐derived EVs, it is found that a 10 mL Sepharose 4B column in PBS produces optimal resolution of EVs from background protein. By spiking‐in cancer cell‐derived EVs to healthy plasma, it is shown that some cancer EV‐associated proteins are detectable by nano‐LC‐MS/MS when as little as 1% of the total plasma EV number are derived from a cancer cell line. These results suggest that an optimized SEC and nanoLC‐MS/MS workflow may be sufficiently sensitive for disease EV protein biomarker discovery from patient‐derived clinical samples.  相似文献   

12.
Despite the controversy in mechanism, rodent and clinical studies have demonstrated beneficial effects of stem/progenitor cell therapy after myocardial infarction (MI). In a rat ischaemic reperfusion MI model, we investigated the effects of immunomodification of CD 34+ cells on heart function and myocardial conduction. Bispecific antibody (BiAb), consisting of an anti‐myosin light chain antibody and anti‐CD45 antibody, injected intravenously was used to direct human CD34+ cells to injured myocardium. Results were compared to echocardiography guided intramyocardial (IM) injection of CD34+ cells and PBS injected intravenously. Treatment was administered 2 days post MI. Echocardiography was performed at 5 weeks and 3 months which demonstrated LV dilatation prevention and fractional shortening improvement in both the BiAb and IM injection approaches, with BiAb achieving better results. Histological analyses demonstrated a decrease in infarct size and increase in arteriogenesis in both BiAb and IM injection. Electrophysiological properties were studied 5 weeks after treatments by optical mapping. Conduction velocity (CV), action potential duration (APD) and rise time were significantly altered in the MI area. The BiAb treated group demonstrated a more normalized activation pattern of conduction and normalization of CV at shorter pacing cycle lengths. The ventricular tachycardia inducibility was lowest in the BiAb treatment group. Intravenous administration of BiAb offers an effective means of stem cell delivery for myocardial repair post‐acute MI. Such non‐invasive approach was shown to offer a distinct advantage to more invasive direct IM delivery.  相似文献   

13.
Patients with high-grade gliomas and glioblastomas (GBMs) have poor survival despite optimal surgical and drug therapy. Minimally invasive diagnostic biomarkers would enable early diagnosis and tumor-specific treatments for ‘personalized targeted’ therapy, and would create the basis for response tracking in patients with GBM. Extracellular vesicles (EVs) isolated from cerebrospinal fluid and blood contain glioma-specific molecules, including tumor-derived EV RNAs that are detectable in small copy numbers in these biofluids. EV RNA mutations or expression changes are also detectable, the analysis of which gives rise to ‘liquid biopsy’ tumor profiling.  相似文献   

14.
Detection of the optimal cell transplantation strategy for myocardial infarction (MI) has attracted a great deal of attention. Commitment of engrafted cells to angiogenesis within damaged myocardium is regarded as one of the major targets in cell‐based cardiac repair. Bone marrow–derived CD34‐positive cells, a well‐characterized population of stem cells, might represent highly functional endothelial progenitor cells and result in the formation of new blood vessels. Recently, physical microenvironment (extracellular matrix stiffness) around the engrafted cells was found to exert an essential impact on their fate. Stem cells are able to feel and respond to the tissue‐like matrix stiffness to commit to a relevant lineage. Notably, the infarct area after MI experiences a time‐dependent stiffness change from flexible to rigid. Our previous observations demonstrated myocardial stiffness‐dependent differentiation of the unselected bone marrow–derived mononuclear cells (BMMNCs) along endothelial lineage cells. Myocardial stiffness (~42 kPa) within the optimal time domain of cell engraftment (at week 1 to 2) after MI provided a more favourable physical microenvironment for cell specification and cell‐based cardiac repair. However, the difference in tissue stiffness‐dependent cell differentiation between the specific cell subsets expressing and no expressing CD34 phenotype remains uncertain. We presumed that CD34‐positive cell subsets facilitated angiogenesis and subsequently resulted in cardiac repair under induction of infarcted myocardium‐like matrix stiffness compared with CD34‐negative cells. If the hypothesis were true, it would contribute greatly to detect the optimal cell subsets for cell therapy and to establish an optimized therapy strategy for cell‐based cardiac repair.  相似文献   

15.
This study aims to explore the predictive noninvasive biomarker for obstructive coronary artery disease (CAD). By using the data set GSE90074, weighted gene co-expression network analysis (WGCNA), and protein–protein interactive network, construction of differentially expressed genes in peripheral blood mononuclear cells was conducted to identify the most significant gene clusters associated with obstructive CAD. Univariate and multivariate stepwise logistic regression analyses and receiver operating characteristic analysis were used to predicate the diagnostic accuracy of biomarker candidates in the detection of obstructive CAD. Furthermore, functional prediction of candidate gene biomarkers was further confirmed in ST-segment elevation myocardial infarction (STEMI) patients or stable CAD patients by using the datasets of GSE62646 and GSE59867. We found that the blue module discriminated by WGCNA contained 13 hub-genes that could be independent risk factors for obstructive CAD (P < .05). Among these 13 hub-genes, a four-gene signature including neutrophil cytosol factor 2 (NCF2, P = .025), myosin-If (MYO1F, P = .001), sphingosine-1-phosphate receptor 4 (S1PR4, P = .015), and ficolin-1 (FCN1, P = .012) alone or combined with two risk factors (male sex and hyperlipidemia) may represent potential diagnostic biomarkers in obstructive CAD. Furthermore, the messenger RNA levels of NCF2, MYO1F, S1PR4, and FCN1 were higher in STEMI patients than that in stable CAD patients, although S1PR4 showed no statistical difference (P > .05). This four-gene signature could also act as a prognostic biomarker to discriminate STEMI patients from stable CAD patients. These findings suggest a four-gene signature (NCF2, MYO1F, S1PR4, and FCN1) alone or combined with two risk factors (male sex and hyperlipidemia) as a promising prognostic biomarker in the diagnosis of STEMI. Well-designed cohort studies should be implemented to warrant the diagnostic value of these genes in clinical purpose.  相似文献   

16.
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis is a chronic disease. Currently, there are no sufficiently validated biomarkers for early diagnosis of TB infection. In this study, a panel of potential serum biomarkers was identified between patients with pulmonary TB and healthy controls by using iTRAQ‐coupled 2D LC‐MS/MS technique. Among 100 differentially expressed proteins screened, 45 proteins were upregulated (>1.25‐fold at p < 0.05) and 55 proteins were downregulated (<0.8‐fold at p < 0.05) in the TB serum. Bioinformatics analysis revealed that the differentially expressed proteins were related to the response to stimulus, the metabolic and immune system processes. The significantly differential expression of apolipoprotein CII (APOCII), CD5 antigen‐like (CD5L), hyaluronan‐binding protein 2 (HABP2), and retinol‐binding protein 4 (RBP4) was further confirmed using immunoblotting and ELISA analysis. By forward stepwise multivariate regression analysis, a panel of serum biomarkers including APOCII, CD5L, and RBP4 was obtained to form the disease diagnostic model. The receiver operation characteristic curve of the diagnostic model was 0.98 (sensitivity = 93.42%, specificity = 92.86%). In conclusion, APOCII, CD5L, HABP2, and RBP4 may be potential protein biomarkers of pulmonary TB. Our research provides useful data for early diagnosis of TB.  相似文献   

17.
Heart failure (HF) following myocardial infarction (MI) is characterized by progressive alterations of left ventricular (LV) structure and function, named LV remodelling. Although several risk factors such as infarct size have been identified, HF remains difficult to predict in clinical practice. Recently, using phosphoproteomic technology, we found that serine208‐phosphorylated troponin T (P‐Ser208‐TnT) decreases in LV of HF rats. Our aim was to determine the performance of P‐Ser208‐TnT as plasma biomarker of HF compared to conventional cardiac biomarkers such as B‐type natriuretic peptide (BNP), cardiac troponin I (cTnI), C‐reactive protein (CRP) or tissue inhibitor of metalloproteinase I (TIMP‐1) measured by x‐MAP technology, as well as its capacity to reflect a pharmacological improvement of HF. We observed a significant increase of BNP, TnT and cTnI levels and a significant decrease of P‐Ser208‐TnT and TIMP‐1 in the plasma of 2‐month‐MI rats compared with control rats with no modulation of CRP level. Circulating levels of P‐Ser208‐TnT were shown to be associated with most of the echocardiographic and haemodynamic parameters of cardiac function. We verified that the decrease of P‐Ser208‐TnT was not because of an excess of phosphatase activity in plasma of HF rats. Two‐month‐MI rats treated with the heart rate reducing agent ivabradine had improved LV function and increased plasma levels of P‐Ser208‐TnT. Thus, circulating phosphorylated troponin T is a highly sensitive biological indicator of cardiac dysfunction and has the potentiality of a new biomarker of HF post‐MI, and of a surrogate marker for the efficacy of a successful treatment of HF.  相似文献   

18.
There is a need for epidemiological and medical researchers to identify new biomarkers (biological markers) that are useful in determining exposure levels and/or for the purposes of disease detection. Often this process is stunted by high testing costs associated with evaluating new biomarkers. Traditionally, biomarker assessments are individually tested within a target population. Pooling has been proposed to help alleviate the testing costs, where pools are formed by combining several individual specimens. Methods for using pooled biomarker assessments to estimate discriminatory ability have been developed. However, all these procedures have failed to acknowledge confounding factors. In this paper, we propose a regression methodology based on pooled biomarker measurements that allow the assessment of the discriminatory ability of a biomarker of interest. In particular, we develop covariate‐adjusted estimators of the receiver‐operating characteristic curve, the area under the curve, and Youden's index. We establish the asymptotic properties of these estimators and develop inferential techniques that allow one to assess whether a biomarker is a good discriminator between cases and controls, while controlling for confounders. The finite sample performance of the proposed methodology is illustrated through simulation. We apply our methods to analyze myocardial infarction (MI) data, with the goal of determining whether the pro‐inflammatory cytokine interleukin‐6 is a good predictor of MI after controlling for the subjects' cholesterol levels.  相似文献   

19.
We compared the influence of aerobic and resistance exercise on cardiac remodelling, physical capacity and skeletal muscle oxidative stress in rats with MI‐induced heart failure. Three months after MI induction, Wistar rats were divided into four groups: Sham; sedentary MI (S‐MI); aerobic exercised MI (A‐MI); and resistance exercised MI (R‐MI). Exercised rats trained three times a week for 12 weeks on a treadmill or ladder. Statistical analysis was performed by ANOVA or Kruskal‐Wallis test. Functional aerobic capacity was greater in A‐MI and strength gain higher in R‐MI. Echocardiographic parameters did not differ between infarct groups. Reactive oxygen species production, evaluated by fluorescence, was higher in S‐MI than Sham, and lipid hydroperoxide concentration was lower in A‐MI than the other groups. Glutathione peroxidase activity was higher in A‐MI than S‐MI and R‐MI. Superoxide dismutase was lower in S‐MI than Sham and R‐MI. Gastrocnemius cross‐sectional area, satellite cell activation and expression of the ubiquitin‐proteasome system proteins did not differ between groups. In conclusion, aerobic exercise and resistance exercise improve functional capacity and maximum load carrying, respectively, without changing cardiac remodelling in infarcted rats. In the gastrocnemius, infarction increases oxidative stress and changes antioxidant enzyme activities. Aerobic exercise reduces oxidative stress and attenuates superoxide dismutase and glutathione peroxidase changes.  相似文献   

20.
There is currently a lack of biomarkers to assist the diagnosis and prediction of primary gouty arthritis (PG). Therefore, we evaluated the clinical value of programmed cell death protein 1 (PD‐1) mRNA expression in peripheral blood mononuclear cells (PBMCs) of patients with PG. This study included 36 patients with acute phase PG (APPG), 48 with non‐acute phase PG (NAPPG), 42 with asymptomatic hyperuricemia (AH) and 79 normal controls (NCs). PD‐1 mRNA expression levels were detected by qRT‐PCR. PD‐1 mRNA expression was statistically analysed by ANOVA or t tests, while correlations between PD‐1 mRNA and clinical variables were assessed using Pearson correlation tests. Receiver operator characteristic (ROC) curve analysis was used to evaluate the diagnostic value of PD‐1 in different PG stages. PD‐1 mRNA expression was significantly lower in patients with APPG than that in NAPPG, AH and NCs (P < 0.01). Correlation analysis revealed that PD‐1 mRNA levels correlated negatively with T‐score (r = ?0.209, P < 0.01). ROC curve analysis showed that serum uric acid (SUA), PD‐1 mRNA and both combined displayed higher diagnostic value in patients with PG, NAPPG and APPG compared to that in NCs and patients with non‐PG arthritis (NPG). Moreover, ROC curve analysis showed that SUA and PD‐1 mRNA had good diagnostic value in APPG, with the greatest diagnostic power when combined. PD‐1 mRNA could be a clinical auxiliary diagnostic biomarker for APPG, and the combined use of PD‐1 mRNA and SUA is better than that of SUA alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号