首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Earth's atmospheric composition has changed significantly over geologic time. Many redox active atmospheric constituents have left evidence of their presence, while inert constituents such as dinitrogen gas (N2) are more elusive. In this study, we examine two potential biological indicators of atmospheric N2: the morphological and isotopic signatures of heterocystous cyanobacteria. Biological nitrogen fixation constitutes the primary source of fixed nitrogen to the global biosphere and is catalyzed by the oxygen‐sensitive enzyme nitrogenase. To protect this enzyme, some filamentous cyanobacteria restrict nitrogen fixation to microoxic cells (heterocysts) while carrying out oxygenic photosynthesis in vegetative cells. Heterocysts terminally differentiate in a pattern that is maintained as the filaments grow, and nitrogen fixation imparts a measurable isotope effect, creating two biosignatures that have previously been interrogated under modern N2 partial pressure (pN2) conditions. Here, we examine the effect of variable pN2 on these biosignatures for two species of the filamentous cyanobacterium Anabaena. We provide the first in vivo estimate of the intrinsic isotope fractionation factor of Mo‐nitrogenase (εfix = ?2.71 ± 0.09‰) and show that, with decreasing pN2, the net nitrogen isotope fractionation decreases for both species, while the heterocyst spacing decreases for Anabaena cylindrica and remains unchanged for Anabaena variabilis. These results are consistent with the nitrogen fixation mechanisms available in the two species. Application of these quantifiable effects to the geologic record may lead to new paleobarometric measurements for pN2, ultimately contributing to a better understanding of Earth's atmospheric evolution.  相似文献   

2.
Biological nitrogen fixation (BNF) in woody plants is often investigated using foliar measurements of δ15N and is of particular interest in ecosystems experiencing increases in BNF due to woody plant encroachment. We sampled δ15N along the entire N uptake pathway including soil solution, xylem sap and foliage to (1) test assumptions inherent to the use of foliar δ15N as a proxy for BNF; (2) determine whether seasonal divergences occur between δ15Nxylem sap and δ15Nsoil inorganic N that could be used to infer variation in BNF; and (3) assess patterns of δ15N with tree age as indicators of shifting BNF or N cycling. Measurements of woody N‐fixing Prosopis glandulosa and paired reference non‐fixing Zanthoxylum fagara at three seasonal time points showed that δ15Nsoil inorganic N varied temporally and spatially between species. Fractionation between xylem and foliar δ15N was consistently opposite in direction between species and varied on average by 2.4‰. Accounting for these sources of variation caused percent nitrogen derived from fixation values for Prosopis to vary by up to ~70%. Soil–xylem δ15N separation varied temporally and increased with Prosopis age, suggesting seasonal variation in N cycling and BNF and potential long‐term increases in BNF not apparent through foliar sampling alone.  相似文献   

3.

Background and Aim

Nitrogen (N) and carbon (C) isotopic signatures (δ15N and δ13C) serve as powerful tools for understanding temporal changes in ecosystem processes, but how these signatures change across boreal forest chronosequences is poorly understood.

Methods

The δ15N, δ13C, and C/N ratio of foliage of eight dominant plant species, including trees, understory shrubs, and a moss, as well as humus, were examined across a 361 years fire-driven chronosequence in boreal forest in northern Sweden.

Results

The δ13C and C/N ratio of plants and humus increased along the chronosequence, suggesting increasing plant stress through N limitation. Despite increasing biological N fixation by cyanobacteria associated with feather mosses, δ15N showed an overall decline, and δ15N of the feather moss and associated vascular plants diverged over time from that of atmospheric N2.

Conclusions

Across this chronosequence the N fixed by cyanobacteria is unlikely to be used by mosses and vascular plants without first undergoing mineralization and mycorrhizal transport, which would cause a change in δ15N signature due to isotopic fractionation. The decreasing trend of δ15N suggests that as the chronosequence proceeds, the plants may become more dependent on N transferred from mycorrhizal fungi or from N deposition.  相似文献   

4.
Studies of the variation in δ15N values for plants from a fire-prone Banksia woodland in South West Australia showed that pioneer herbaceous, non-mycorrhizal species which were active in nitrate reduction and storage, had the highest values (1.81%c). A detailed study of one such species Ptilotus polystachus demonstrated a close correspondence between the δ15N values of soil nitrate, xylem nitrate and leaf total nitrogen, suggesting an exclusive reliance on nitrate ions as nitrogen source. These pioneer species also showed a preponderance of the chloroplastic isoform of glutamine synthetase while woody species generally had higher activity associated with the cytosolic isoform. The group comprising monocotyledonous hemicryptophytes and geophytes contained species with slightly positive δ15N values and moderately active in nitrate reduction and storage. Nitrogen-fixing species had the lowest δ15N values (–0.36‰), irrespective of their apparent utilisation of nitrate. However, woody resprouter species which had low levels of nitrate reduction and storage had δ15N values which fell within the range of values obtained for the miscellaneous assemblage of N2-fixing species. Consequently, 15N abundance values failed to distinguish N2 fixing from non-fixing woody species, and therefore, could not be used in the ecosystem to determine the dependence of putative nitrogen fixing species on N2 fixation. The study demonstrated complex patterns of nitrogen utilization in the ecosystem in which exploitation of different nitrogen resources related to plant life form and the physiological attributes of nitrogen assimilation by component species.  相似文献   

5.
Marine nitrogen‐fixing cyanobacteria play a central role in the open‐ocean microbial community by providing fixed nitrogen (N) to the ocean from atmospheric dinitrogen (N2) gas. Once thought to be dominated by one genus of cyanobacteria, Trichodesmium, it is now clear that marine N2‐fixing cyanobacteria in the open ocean are more diverse, include several previously unknown symbionts, and are geographically more widespread than expected. The next challenge is to understand the ecological implications of this genetic and phenotypic diversity for global oceanic N cycling. One intriguing aspect of the cyanobacterial N2 fixers ecology is the range of cellular interactions they engage in, either with cells of their own species or with photosynthetic protists. From organelle‐like integration with the host cell to a free‐living existence, N2‐fixing cyanobacteria represent the range of types of interactions that occur among microbes in the open ocean. Here, we review what is known about the cellular interactions carried out by marine N2‐fixing cyanobacteria and where future work can help. Discoveries related to the functional roles of these specialized cells in food webs and the microbial community will improve how we interpret their distribution and abundance patterns and contributions to global N and carbon (C) cycles.  相似文献   

6.
Nitrogen stable isotopes (δ15N) of dissolved inorganic nitrogen (DIN = NH4+ and NO3), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) were measured in Smith Lake, Alaska to assess their usefulness as proxies for the biological nitrogen cycling processes, nutrient concentration, and lake productivity. Large seasonal variations in δ15NH4+, δ15NO3 and δ15NPON occurred in response to different processes of nitrogen transformation that dominated a specific time period of the annual production cycle. In spring, 15N depletion in all three pools was closely related to the occurrences of a N2‐fixing cyanobacterial bloom (Anabaena flos‐aquae). In summer, δ15NPON increased as phytoplankton community shifted to use NH4+ and decreased as a brief N2‐fixing bloom (Aphanizomenon flos‐aquae) occurred in August. In early and mid‐winter, microbial nitrogen processes were dominated by nitrification that resulted in the largest isotope fractionation between NO3 and NH4+ in the annual cycle. This was followed by denitrification that led to the highest 15N enrichment in NO3. A peak of NH4+ assimilation by phytoplankton along with the elevated δ15NPON and Chl a concentration occurred just before the ice break due to increased light penetration. The δ15NDON displayed little temporal and spatial variations. This suggests that the DON pool was not altered by biological transformations of nitrogen as the results of its large size and possibly refractory nature. There was a positive correlation between Chl a concentration and δ15NPON, and a negative correlation between NH4+ and δ15NPON, suggesting that δ15NPON is a useful proxy for nitrogen productivity and ammonium concentration. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The foliar natural abundance of 15N was analysed to compare the potential nitrogen sources of vascular rainforest epiphytes and associated soil-rooted trees. Leaves of epiphytes collected from six rainforest communities in Brazil, Australia and the Solomon Islands were depleted in 15N relative to the trees at each site. Epiphyte δ15N was as low as -6.4%o, while trees were generally enriched in 15N (0.7 to 3.5%o). These results indicate either that epiphytes use nitrogen sources depleted in 15N or that discrimination against 15N is an intrinsic function of epiphyte physiology. At three sites, epiphytes could be grouped into those having both low δ15N and low leaf-nitrogen content and those possessing both high δ15N and high leaf-nitrogen content. The second group had δ15N values in the range sometimes attributable to N2 fixation (-2 to 0%o). There was no correlation between growth form and δ15N. It is concluded that epiphytes may utilize 15N-depleted nitrogen from atmospheric deposition and N2 fixation.  相似文献   

8.
This study examines the role of tree canopies in processing atmospheric nitrogen (Ndep) for four forests in the United Kingdom subjected to different Ndep: Scots pine and beech stands under high Ndep (HN, 13–19 kg N ha?1 yr?1), compared to Scots pine and beech stands under low Ndep (LN, 9 kg N ha?1 yr?1). Changes of NO3‐N and NH4‐N concentrations in rainfall (RF) and throughfall (TF) together with a quadruple isotope approach, which combines δ18O, Δ17O and δ15N in NO3? and δ15N in NH4+, were used to assess N transformations by the canopies. Generally, HN sites showed higher NH4‐N and NO3‐N concentrations in RF compared to the LN sites. Similar values of δ15N‐NO3? and δ18O in RF suggested similar source of atmospheric NO3? (i.e. local traffic), while more positive values for δ15N‐NH4+ at HN compared to LN likely reflected the contribution of dry NHx deposition from intensive local farming. The isotopic signatures of the N‐forms changed after interacting with tree canopies. Indeed, 15N‐enriched NH4+ in TF compared to RF at all sites suggested that canopies played an important role in buffering dry Ndep also at the low Ndep site. Using two independent methods, based on δ18O and Δ17O, we quantified for the first time the proportion of NO3? in TF, which derived from nitrification occurring in tree canopies at the HN site. Specifically, for Scots pine, all the considered isotope approaches detected biological nitrification. By contrast for the beech, only using the mixing model with Δ17O, we were able to depict the occurrence of nitrification within canopies. Our study suggests that tree canopies play an active role in the N cycling within forest ecosystems. Processing of Ndep within canopies should not be neglected and needs further exploration, with the combination of multiple isotope tracers, with particular reference to Δ17O.  相似文献   

9.
This study was performed to assess the N2-fixing capability of the native actinorhizal species Ochetophila trinervis (sin. Discaria trinervis) and Discaria chacaye (Rhamnaceae) in Northwest Patagonia. We measured the N concentration and 15N natural abundance in leaves and nodules of O. trinervis and D. chacaye, in leaves of associated non-actinorhizal vegetation, and in the soils under each sampled plant. O. trinervis and D. chacaye had foliar N concentrations that were about twice that of non-actinorhizal shrubs growing at the same sites, even though soils varied four-fold in total N across the sites. Leaves of both actinorhizal plants had a similar δ15N at any site and were close to atmospheric values. The foliar δ15N of non-actinorhizal plants and soil δ15N were strongly correlated across the sites. Nodules were depleted in δ15N relative to the foliage of the respective actinorhizal species. In conjunction with the uniformly high foliage N concentration of these actinorhizal plants and the universal presence of vesicles observed in root nodules, these data strongly suggest that O. trinervis and D. chacaye obtain a significant amount of their N from N2 fixation. To calculate the proportion of N derived from atmosphere, theoretical B-values were estimated. In all cases where the δ15N of fixing and reference foliage were significantly different, O. trinervis and D. chacaye obtained almost all of their N from N2 fixation. These results are the first to demonstrate N2 fixation by O. trinervis and D. chacaye in the field and therefore suggest an important role for these actinorhizal plants in the N economy of ecosystems in northwest Patagonia as well as their potential use for restoration of degraded lands in this region.  相似文献   

10.
In this study we used recent (2010) and herbarium material (1980) of six bryophyte species to assess long‐term atmospheric deposition in natural forested areas in northern Spain. For this purpose, tissue nitrogen and carbon content, as well as δ13C and δ15N signatures of samples of Hypnum cupressiforme, Polytrichastrum formosum, Leucobryum juniperoideum, Rhytidiadelphus loreus, Homalothecium lutescens and Diplophyllum albicans were analysed and comparisons made between years and species. In addition, the usefulness of each of the six species was evaluated. The range of values observed was similar to that in other studies carried out in rural areas. Significantly lower values were found in 2010 for N (H. cupressiforme), δ15N (R. loreus and D. albicans), C (R. loreus) and δ13C (all except L. juniperoideum). Our natural areas are thus now less influenced by atmospheric pollutants than they were, most probably due to changes in some traditional local activities. Differences were observed between species for all the four parameters studied, so different species must not be analysed together. Finally, R. loreus and H. lutescens seem to be good bioindicators, sensitive even with a few samples, although further studies are needed to corroborate their usefulness.  相似文献   

11.
Unicellular cyanobacteria are now recognized as important to the marine N and C cycles in open ocean gyres, yet there are few direct in situ measurements of their activities. Using a high‐resolution nanometer scale secondary ion mass spectrometer (nanoSIMS), single cell N2 and C fixation rates were estimated for unicellular cyanobacteria resembling N2 fixer Crocosphaera watsonii. Crocosphaera watsonii‐like cells were observed in the subtropical North Pacific gyre (22°45′ N, 158°0′ W) as 2 different phenotypes: colonial and free‐living. Colonies containing 3–242 cells per colony were observed and cell density in colonies increased with incubation time. Estimated C fixation rates were similarly high in both phenotypes and unexpectedly for unicellular cyanobacteria 85% of the colonial cells incubated during midday were also enriched in 15N above natural abundance. Highest 15N enrichment and N2 fixation rates were found in cells incubated overnight where up to 64% of the total daily fixed N in the upper surface waters was attributed to both phenotypes. The colonial cells retained newly fixed C in a sulfur‐rich matrix surrounding the cells and often cells of both phenotypes possessed areas (<1 nm) of enriched 15N and 13C resembling storage granules. The nanoSIMS imaging of the colonial cells also showed evidence for a division of N2 and C fixation activity across the colony where few individual cells (<34%) in a given colony were enriched in both 15N and 13C above the colony average. Our results provide new insights into the ecophysiology of unicellular cyanobacteria.  相似文献   

12.
13.
14.
1. Adult Pacific salmon (Oncorhynchus spp.) transport marine nutrients to fresh waters and disturb sediments during spawning. The relative importance of nutrient fertilisation and benthic disturbance by salmon spawners can be modulated by environmental conditions (e.g. biological, chemical and physical conditions in the catchment, including human land use). 2. To determine the importance of the environmental context in modifying the uptake and incorporation of salmon‐derived material into stream biota, we measured the nitrogen (δ15N) and carbon (δ13C) isotopic composition of benthic algae (i.e. epilithon) and juvenile coho salmon (Oncorhynchus kisutch) in seven streams across a timber‐harvest gradient (8–69% catchment area harvested), both before and during the salmon run. Conditional bootstrap modelling simulations were used to assess variability in the response of epilithon and juvenile coho salmon to spawning salmon. 3. In response to spawning salmon, epilithon exhibited enrichment in both δ15N (mean: 1.5‰) and δ13C (2.3‰). Juvenile coho were also enriched in both δ15N (0.7‰) and δ13C (1.4‰). Conditional bootstrap models indicate decreased variation in data as spatial replication increases, suggesting that the number of study sites can influence the results of Pacific salmon isotope studies. 4. Epilithon isotopic enrichment was predicted by environmental conditions, with δ15N enrichment predicted by stream temperature and timber harvest (R2 = 0.87) and δ13C enrichment by discharge, sediment size, timber harvest and spawner density (R2 = 0.96). Furthermore, we found evidence for a legacy effect of salmon spawners, with pre‐spawner δ15N and δ13C of both epilithon and juvenile coho predicted by salmon run size in the previous year. 5. Our results show that the degree of incorporation of salmon‐derived nitrogen and carbon differs among streams. Furthermore, the environmental context, including putative legacy effects of spawning salmon, can influence background isotopic concentrations and utilisation of salmon‐derived materials in southeast Alaska salmon streams. Future studies should consider the variation in isotopic composition of stream biota when deciding on the number of study sites and samples needed to generate meaningful results.  相似文献   

15.
Dissolved organic nitrogen (DON) potentially plays a major role in sustaining the high productivity and biological diversity of coral reefs. However, data are scarce regarding sources and sinks of DON. This study, for the first time, determined the 15N isotopic composition of total dissolved nitrogen (δ15NTDN), reflecting the isotopic signature of DON, in the water column over a coral reef. The uniformity in δ15NTDN during high tide (3.2 ± 0.3 ‰) indicated that the DON was mainly derived from offshore waters. In contrast, higher spatial heterogeneity of δ15NTDN (3.1 ± 0.9 ‰) and DON concentrations during low tide indicated the existence of local DON sources patchily distributed over the reef. Low δ15NTDN values located mid-reef were indicative of DON release from organisms that obtained their N via N2 fixation, whereas high δ15NTDN appeared to reflect localized release of DON by organisms exposed to dissolved inorganic nitrogen with elevated 15N, such as from terrestrial and offshore inputs. Collectively, the results highlight the importance of spatial patterns in DON release from reef communities in the N cycling of coral reefs.  相似文献   

16.
Ecologists use stable isotopes to infer diets and trophic levels of animals in food webs, yet some assumptions underlying these inferences have not been thoroughly tested. We used laboratory‐reared colonies of Solenopsis invicta Buren (Hymenoptera: Formicidae: Solenopsidini) to test the effects of metamorphosis, diet, and lipid storage on carbon and nitrogen stable isotope ratios. Effects of metamorphosis were examined in ant colonies maintained on a control diet of domestic crickets and sucrose solution. Effects of a diet shift were evaluated by adding a tuna supplement to select colonies. Effects of lipid content on stable isotopes were tested by treating worker ants with polar and non‐polar solvents. δ13C and δ15N values of larvae, pupae, and workers were measured by mass spectrometry on whole‐animal preparations. We found a significant effect of colony age on δ13C, but not δ15N; larvae, pupae, and workers collected at 75 days were slightly depleted in 13C relative to collections at 15 days (Δδ13C = ?0.27‰). Metamorphosis had a significant effect on δ15N, but not δ13C; tissues of each successive developmental stage were increasingly enriched in 15N (pupae, +0.5‰; workers, +1.4‰). Availability of tuna resulted in further shifts of about +0.6‰ in isotope ratios for all developmental stages. Removing fat with organic solvents had no effect on δ13C, but treatment with a non‐polar solvent resulted in enriched δ15N values of +0.37‰. Identifying regular patterns of isotopic enrichment as described here should improve the utility of stable isotopes in diet studies of insects. Our study suggests that researchers using 15N enrichment to assess trophic levels of an organism at different sites need to take care not to standardize with immature insect herbivores or predators at one site and mature ones at another. Similar problems may also exist when standardizing with holometabolous insects at one site and spiders or hemimetabolous insects at another site.  相似文献   

17.
Whether nitrogen (N) availability will limit plant growth and removal of atmospheric CO2 by the terrestrial biosphere this century is controversial. Studies have suggested that N could progressively limit plant growth, as trees and soils accumulate N in slowly cycling biomass pools in response to increases in carbon sequestration. However, a question remains over whether longer-term (decadal to century) feedbacks between climate, CO2 and plant N uptake could emerge to reduce ecosystem-level N limitations. The symbioses between plants and microbes can help plants to acquire N from the soil or from the atmosphere via biological N2 fixation—the pathway through which N can be rapidly brought into ecosystems and thereby partially or completely alleviate N limitation on plant productivity. Here we present measurements of plant N isotope composition (δ15N) in a peat core that dates to 15,000 cal. year BP to ascertain ecosystem-level N cycling responses to rising atmospheric CO2 concentrations. We find that pre-industrial increases in global atmospheric CO2 concentrations corresponded with a decrease in the δ15N of both Sphagnum moss and Ericaceae when constrained for climatic factors. A modern experiment demonstrates that the δ15N of Sphagnum decreases with increasing N2-fixation rates. These findings suggest that plant-microbe symbioses that facilitate N acquisition are, over the long term, enhanced under rising atmospheric CO2 concentrations, highlighting an ecosystem-level feedback mechanism whereby N constraints on terrestrial carbon storage can be overcome.  相似文献   

18.
Nitrogen (N) nutrition in pristine peatlands relies on the natural input of inorganic N through atmospheric deposition or biological dinitrogen (N2) fixation. However, N2 fixation and its significance for N cycling, plant productivity, and peat buildup are mostly associated with the presence of Sphagnum mosses. Here, we report high nonsymbiotic N2‐fixation rates in two pristine Patagonian bogs with diversified vegetation and natural N deposition. Nonsymbiotic N2 fixation was measured in samples from 0 to 10, 10 to 20, and 40 to 50 cm depth using the 15N2 assay as well as the acetylene reduction assay (ARA). The ARA considerably underestimated N2 fixation and can thus not be recommended for peatland studies. Based on the 15N2 assay, high nonsymbiotic N2‐fixation rates of 0.3–1.4 μmol N2 g?1 day?1 were found down to 50 cm under micro‐oxic conditions (2 vol.%) in samples from plots covered by Sphagnum magellanicum or by vascular cushion plants, latter characterized by dense and deep aerenchyma roots. Peat N concentrations point to greater potential of nonsymbiotic N2 fixation under cushion plants, likely because of the availability of easily decomposable organic compounds and oxic conditions in the rhizosphere. In the Sphagnum plots, high N2 fixation below 10 cm depth rather reflects the potential during dry periods or low water level when oxygen penetrates the top peat layer and triggers peat mineralization. Natural abundance of the 15N isotope of live Sphagnum (5.6 δ‰) from 0 to 10 cm points to solely N uptake from atmospheric deposition and nonsymbiotic N2 fixation. A mean 15N signature of ?0.7 δ‰ of peat from the cushion plant plots indicates additional N supply from N mineralization. Our findings suggest that nonsymbiotic N2 fixation overcomes N deficiency in different vegetation communities and has great significance for N cycling and peat accumulation in pristine peatlands.  相似文献   

19.
Abstract: While atmospheric species of bromeliads have narrow leaves, densely covered with water‐absorbing trichomes throughout their life cycles, many tank bromeliads with broad leaves, forming phytotelmata, go through an atmospheric juvenile phase. The effect of the different habits and the phase change in tank‐forming bromeliads on water and nutrient relations was investigated by analysing the relationship between plant size, C/N ratios and the natural abundance of 13C and 15N in five epiphytic bromeliad species or morphospecies of a humid montane forest in Xalapa, Mexico. The atmospheric species Tillandsia juncea and T. butzii exhibited full crassulacean acid metabolism, with δ13C values (mean ‐ 15.3 ‰ and ‐ 14.7 ‰, respectively) independent of size. In Tillandsia species with C3 photosynthesis, δ13C decreased with increasing plant size, indicating stronger drought stress in juveniles. The increase of the C/N ratio with size suggests that, at least in heteroblastic bromeliads, the availability of water is more limiting during early growth, and that limitations of nitrogen supply become more important later on, when water stored in the tank helps to bridge dry periods, reducing water shortage. δ15N values of the two atmospheric species were very negative (‐ 12.6 ‰ and ‐ 12.2 ‰, respectively) and did not change with plant size. Tank‐forming bromeliads had less negative δ15N values (c ‐ 6 ‰), and, in species with atmospheric juveniles and tank‐forming adults, δ15N values increased significantly with plant size. These differences do not appear to be an effect of the isotopic composition of N sources, but rather reflect N availability and limitation and stress‐induced changes in 15N discrimination.  相似文献   

20.
Stable isotope patterns in lichens are known to vary largely, but effects of substrate on carbon and nitrogen stable isotope signatures of lichens were previously not investigated systematically. N and C contents and stable isotope (δ15N, δ13C) patterns have been measured in 92 lichen specimens of Xanthoria parietina from southern Bavaria growing on different substrates (bark and stone). Photobiont and mycobiont were isolated from selected populations and isotopically analyzed. Molecular investigations of the internal transcribed spacer of the nuclear ribosomal DNA (ITS nrDNA) region have been conducted on a subset of the specimens of X. parietina. Phylogenetic analysis showed no correlation between the symbionts X. parietina and Trebouxia decolorans and the substrate, isotope composition, or geographic origin. Instead specimens grown on organic substrate significantly differ in isotope values from those on minerogenic substrate. This study documents that the lichens growing on bark use additional or different N sources than the lichens growing on stone. δ15N variation of X. parietina apparently is controlled predominantly by the mass fraction of the mycobiont and its nitrogen isotope composition. In contrast with mycobionts, photobionts of X. parietina are much more 15N‐depleted and show less isotopic variability than mycobionts, probably indicating a mycobiont‐independent nitrogen acquisition by uptake of atmospheric ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号