首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In forests of the humid subtropics of China, chronically elevated nitrogen (N) deposition, predominantly as ammonium (NH4+), causes significant nitrate (NO3?) leaching from well‐drained acid forest soils on hill slopes (HS), whereas significant retention of NO3? occurs in near‐stream environments (groundwater discharge zones, GDZ). To aid our understanding of N transformations on the catchment level, we studied spatial and temporal variabilities of concentration and natural abundance (δ15N and δ18O) of nitrate (NO3?) in soil pore water along a hydrological continuum in the N‐saturated Tieshanping (TSP) catchment, southwest China. Our data show that effective removal of atmogenic NH4+ and production of NO3? in soils on HS were associated with a significant decrease in δ15N‐NO3?, suggesting efficient nitrification despite low soil pH. The concentration of NO3? declined sharply along the hydrological flow path in the GDZ. This decline was associated with a significant increase in both δ15N and δ18O of residual NO3?, providing evidence that the GDZ acts as an N sink due to denitrification. The observed apparent 15N enrichment factor (ε) of NO3? of about ?5‰ in the GDZ is similar to values previously reported for efficient denitrification in riparian and groundwater systems. Episode studies in the summers of 2009, 2010 and 2013 revealed that the spatial pattern of δ15N and δ18O‐NO3? in soil water was remarkably similar from year to year. The importance of denitrification as a major N sink was also seen at the catchment scale, as largest δ15N‐NO3? values in stream water were observed at lowest discharge, confirming the importance of the relatively small GDZ for N removal under base flow conditions. This study, explicitly recognizing hydrologically connected landscape elements, reveals an overlooked but robust N sink in N‐saturated, subtropical forests with important implications for regional N budgets.  相似文献   

2.
The ability to use δ18O values of nitrous oxide (N2O) to apportion environmental emissions is currently hindered by a poor understanding of the controls on δ18O–N2O from nitrification (hydroxylamine oxidation to N2O and nitrite reduction to N2O). In this study fertilized agricultural soils and unfertilized temperate forest soils were aerobically incubated with different 18O/16O waters, and conceptual and mathematical models were developed to systematically explain the δ18O–N2O formed by nitrification. Modeling exercises used a set of defined input parameters to emulate the measured soil δ18O–N2O data (Monte Carlo approach). The Monte Carlo simulations implied that abiotic oxygen (O) exchange between nitrite (NO2?) and H2O is important in all soils, but that biological, enzyme‐controlled O‐exchange does not occur during the reduction of NO2? to N2O (nitrifier‐denitrification). Similarly, the results of the model simulations indicated that N2O consumption is not characteristic of aerobic N2O formation. The results of this study and a synthesis of the published literature data indicate that δ18O–N2O formed in aerobic environments is constrained between +13‰ and +35‰ relative to Vienna Standard Mean Ocean Water (VSMOW). N2O formed via hydroxylamine oxidation and nitrifier‐denitrification cannot be separated using δ18O unless 18O tracers are employed. The natural range of nitrifier δ18O–N2O is discussed and explained in terms of our conceptual model, and the major and minor controls that define aerobically produced δ18O–N2O are identified. Despite the highly complex nature of δ18O–N2O produced by nitrification this δ18O range is narrow. As a result, in many situations δ18O values may be used in conjunction with δ15N–N2O data to apportion nitrifier‐ and denitrifier‐derived N2O. However, when biological O‐exchange during denitrification is high and N2O consumption is low, there may be too much overlap in δ18O values to distinguish N2O formed by these pathways.  相似文献   

3.
Increasing nitrogen (N) deposition in subtropical forests in south China causes N saturation, associated with significant nitrate (NO3?) leaching. Strong N attenuation may occur in groundwater discharge zones hydrologically connected to well‐drained hillslopes, as has been shown for the subtropical headwater catchment “TieShanPing”, where dual NO3? isotopes indicated that groundwater discharge zones act as an important N sink and hotspot for denitrification. Here, we present a regional study reporting inorganic N fluxes over two years together with dual NO3? isotope signatures obtained in two summer campaigns from seven forested catchments in China, representing a gradient in climate and atmospheric N input. In all catchments, fluxes of dissolved inorganic N indicated efficient conversion of NH4+ to NO3? on well‐drained hillslopes, and subsequent interflow of NO3? over the argic B‐horizons to groundwater discharge zones. Depletion of 15N‐ and 18O–NO3? on hillslopes suggested nitrification as the main source of NO3?. In all catchments, except one of the northern sites, which had low N deposition rates, NO3? attenuation by denitrification occurred in groundwater discharge zones, as indicated by simultaneous 15N and 18O enrichment in residual NO3?. By contrast to the southern sites, the northern catchments lack continuous and well‐developed groundwater discharge zones, explaining less efficient N removal. Using a model based on 15NO3? signatures, we estimated denitrification fluxes from 2.4 to 21.7 kg N ha?1 year?1 for the southern sites, accounting for more than half of the observed N removal. Across the southern catchments, estimated denitrification scaled proportionally with N deposition. Together, this indicates that N removal by denitrification is an important component of the N budget of southern Chinese forests and that natural NO3? attenuation may increase with increasing N input, thus partly counteracting further aggravation of N contamination of surface waters in the region.  相似文献   

4.
Anthropogenic activities, and in particular the use of synthetic nitrogen (N) fertilizer, have doubled global annual reactive N inputs in the past 50–100 years, causing deleterious effects on the environment through increased N leaching and nitrous oxide (N2O) and ammonia (NH3) emissions. Leaching and gaseous losses of N are greatly controlled by the net rate of microbial nitrification. Extensive experiments have been conducted to develop ways to inhibit this process through use of nitrification inhibitors (NI) in combination with fertilizers. Yet, no study has comprehensively assessed how inhibiting nitrification affects both hydrologic and gaseous losses of N and plant nitrogen use efficiency. We synthesized the results of 62 NI field studies and evaluated how NI application altered N cycle and ecosystem services in N‐enriched systems. Our results showed that inhibiting nitrification by NI application increased NH3 emission (mean: 20%, 95% confidential interval: 33–67%), but reduced dissolved inorganic N leaching (?48%, ?56% to ?38%), N2O emission (?44%, ?48% to ?39%) and NO emission (?24%, ?38% to ?8%). This amounted to a net reduction of 16.5% in the total N release to the environment. Inhibiting nitrification also increased plant N recovery (58%, 34–93%) and productivity of grain (9%, 6–13%), straw (15%, 12–18%), vegetable (5%, 0–10%) and pasture hay (14%, 8–20%). The cost and benefit analysis showed that the economic benefit of reducing N's environmental impacts offsets the cost of NI application. Applying NI along with N fertilizer could bring additional revenues of $163 ha?1 yr?1 for a maize farm, equivalent to 8.95% increase in revenues. Our findings showed that NIs could create a win‐win scenario that reduces the negative impact of N leaching and greenhouse gas production, while increases the agricultural output. However, NI's potential negative impacts, such as increase in NH3 emission and the risk of NI contamination, should be fully considered before large‐scale application.  相似文献   

5.
Altered freeze‐thaw cycle (FTC) patterns due to global climate change may affect nitrogen (N) cycling in terrestrial ecosystems. However, the general responses of soil N pools and fluxes to different FTC patterns are still poorly understood. Here, we compiled data of 1519 observations from 63 studies and conducted a meta‐analysis of the responses of 17 variables involved in terrestrial N pools and fluxes to FTC. Results showed that under FTC treatment, soil NH4+, NO3?, NO3? leaching, and N2O emission significantly increased by 18.5%, 18.3%, 66.9%, and 144.9%, respectively; and soil total N (TN) and microbial biomass N (MBN) significantly decreased by 26.2% and 4.7%, respectively; while net N mineralization or nitrification rates did not change. Temperate and cropland ecosystems with relatively high soil nutrient contents were more responsive to FTC than alpine and arctic tundra ecosystems with rapid microbial acclimation. Therefore, altered FTC patterns (such as increased duration of FTC, temperature of freeze, amplitude of freeze, and frequency of FTC) due to global climate warming would enhance the release of inorganic N and the losses of N via leaching and N2O emissions. Results of this meta‐analysis help better understand the responses of N cycling to FTC and the relationships between FTC patterns and N pools and N fluxes.  相似文献   

6.
The influx of atmospheric nitrogen to soils and surfaces in arid environments is of growing concern due to increased N emissions and N usage associated with urbanization. Atmospheric nitrogen inputs to the critical zone can occur as wet (rain or snow) or dry (dust or aerosols) deposition, and can lead to eutrophication, soil acidification, and groundwater contamination through leaching of excess nitrate. The objective of this research was to use the δ15N, δ18O, and Δ17O values of atmospheric nitrate (NO3 ?) (precipitation and aerosols) and NO3 ? in runoff to assess the importance of N deposition and turnover in semi-arid urban watersheds. Data show that the fractions of atmospheric NO3 ? exported from all the urban catchments, throughout the study period, were substantially higher than in nearly all other ecosystems studied with mean atmospheric contributions of 38% (min 0% and max 82%). These results suggest that catchment and stream channel imperviousness enhance atmospheric NO3 ? export due to inefficient N cycling and retention. In contrast, catchment and stream channel perviousness allow for enhanced N processing and therefore reduced atmospheric NO3 ? export. Overall high fractions of atmospheric NO3 ? were primarily attributed to slow N turn over in arid/semi-arid ecosystems. A relatively high fraction of nitrification NO3 ? (~30%) was found in runoff from a nearly completely impervious watershed (91%). This was attributed to nitrification of atmospheric NH4 + in dry-deposited dust, suggesting that N nitrifiers have adapted to urban micro niches. Gross nitrification rates based on NO3 ? Δ17O values ranged from a low 3.04 ± 2 kg NO3-N km?2 day?1 in highly impervious catchments to a high of 10.15 ± 1 kg NO3-N km?2 day?1 in the low density urban catchment. These low gross nitrification rates were attributed to low soil C:N ratios that control gross autotrophic nitrification by regulating gross NH4 + production rates.  相似文献   

7.
Abstract Most experimental additions of nitrogen to forest ecosystems apply the N to the forest floor, bypassing important processes taking place in the canopy, including canopy retention of N and/or conversion of N from one form to another. To quantify these processes, we carried out a large-scale experiment and determined the fate of nitrogen applied directly to a mature coniferous forest canopy in central Maine (18–20 kg N ha−1 y−1 as NH4NO3 applied as a mist using a helicopter). In 2003 and 2004 we measured NO3 , NH4 +, and total dissolved N (TDN) in canopy throughfall (TF) and stemflow (SF) events after each of two growing season applications. Dissolved organic N (DON) was greater than 80% of the TDN under ambient inputs; however NO3 accounted for more than 50% of TF N in the treated plots, followed by NH4 + (35%) and DON (15%). Although NO3 was slightly more efficiently retained by the canopy under ambient inputs, canopy retention of NH4 +as a percent of inputs increased markedly under fertilization. Recovery of less than 30% of the fertilizer N in TF suggested that the forest canopy retained more than 70% of the applied N (>80% when corrected for N which bypassed tree surfaces at the time of fertilizer addition). Results from plots receiving 15N enriched NO3 and NH4 + confirmed bulk N estimations that more NO3 than NH4 + was washed from the canopy by wet deposition. The isotope data did not show evidence of canopy nitrification, as has been reported in other spruce forests receiving much higher N inputs. Conversions of fertilizer-N to DON were observed in TF for both 15NH4 + and 15NO3 additions, and occurred within days of the application. Subsequent rain events were not significantly enriched in 15N, suggesting that canopy DON formation was a rapid process related to recent N inputs to the canopy. We speculate that DON may arise from lichen and/or microbial N cycling rather than assimilation and re-release by tree tissues in this forest. Canopy retention of experimentally added N may meet and exceed calculated annual forest tree demand, although we do not know what fraction of retained N was actually physiologically assimilated by the plants. The observed retention and transformation of DIN within the canopy demonstrate that the fate and ecosystem consequences of N inputs from atmospheric deposition are likely influenced by forest canopy processes, which should be considered in N addition studies. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Nitrification inhibitors show promise in decreasing nitrous oxide (N2O) emission from agricultural systems worldwide, but they may be much less effective than previously thought when both direct and indirect emissions are taken into account. Whilst nitrification inhibitors are effective at decreasing direct N2O emission and nitrate (NO3) leaching, limited studies suggest that they may increase ammonia (NH3) volatilization and, subsequently, indirect N2O emission. These dual effects are typically not considered when evaluating the inhibitors as a climate change mitigation tool. Here, we collate results from the literature that simultaneously examined the effects of nitrification inhibitors on N2O and NH3 emissions. We found that nitrification inhibitors decreased direct N2O emission by 0.2–4.5 kg N2O‐N ha?1 (8–57%), but generally increased NH3 emission by 0.2–18.7 kg NH3‐N ha?1 (3–65%). Taking into account the estimated indirect N2O emission from deposited NH3, the overall impact of nitrification inhibitors ranged from ?4.5 (reduction) to +0.5 (increase) kg N2O‐N ha?1. Our results suggest that the beneficial effect of nitrification inhibitors in decreasing direct N2O emission can be undermined or even outweighed by an increase in NH3 volatilization.  相似文献   

9.
This study aimed to estimate trophic discrimination factors (TDFs) and metabolic turnover rates of nitrogen and carbon stable isotopes in blood and muscle of the smallnose fanskate Sympterygia bonapartii by feeding six adult individuals, maintained in captivity, with a constant diet for 365 days. TDFs were estimated as the difference between δ13C or δ15N values of the food and the tissues of S. bonapartii after they had reached equilibrium with their diet. The duration of the experiment was enough to reach the equilibrium condition in blood for both elements (estimated time to reach 95% of turnover: C t95%blood = 150 days, N t95%blood = 290 days), whilst turnover rates could not be estimated for muscle because of variation among samples. Estimates of Δ13C and Δ15N values in blood and muscle using all individuals were Δ13Cblood = 1·7‰, Δ13Cmuscle = 1·3‰, Δ15Nblood = 2·5‰ and Δ15Nmuscle = 1·5‰, but there was evidence of differences of c.0·4‰ in the Δ13C values between sexes. The present values for TDFs and turnover rates constitute the first evidence for dietary switching in batoids based on long‐term controlled feeding experiments. Overall, the results showed that S. bonapartii has relatively low turnover rates and isotopic measurements would not track seasonal movements adequately. The estimated Δ13C values in S. bonapartii blood and muscle were similar to previous estimations for elasmobranchs and to generally accepted values in bony fishes (Δ13C = 1·5‰). For Δ15N, the results were similar to published reports for blood but smaller than reports for muscle and notably smaller than the typical values used to estimate trophic position (Δ15N c. 3·4‰). Thus, trophic position estimations for elasmobranchs based on typical Δ15N values could lead to underestimates of actual trophic positions. Finally, the evidence of differences in TDFs between sexes reveals a need for more targeted research.  相似文献   

10.
Nitrogen stable isotopes (δ15N) of dissolved inorganic nitrogen (DIN = NH4+ and NO3), dissolved organic nitrogen (DON), and particulate organic nitrogen (PON) were measured in Smith Lake, Alaska to assess their usefulness as proxies for the biological nitrogen cycling processes, nutrient concentration, and lake productivity. Large seasonal variations in δ15NH4+, δ15NO3 and δ15NPON occurred in response to different processes of nitrogen transformation that dominated a specific time period of the annual production cycle. In spring, 15N depletion in all three pools was closely related to the occurrences of a N2‐fixing cyanobacterial bloom (Anabaena flos‐aquae). In summer, δ15NPON increased as phytoplankton community shifted to use NH4+ and decreased as a brief N2‐fixing bloom (Aphanizomenon flos‐aquae) occurred in August. In early and mid‐winter, microbial nitrogen processes were dominated by nitrification that resulted in the largest isotope fractionation between NO3 and NH4+ in the annual cycle. This was followed by denitrification that led to the highest 15N enrichment in NO3. A peak of NH4+ assimilation by phytoplankton along with the elevated δ15NPON and Chl a concentration occurred just before the ice break due to increased light penetration. The δ15NDON displayed little temporal and spatial variations. This suggests that the DON pool was not altered by biological transformations of nitrogen as the results of its large size and possibly refractory nature. There was a positive correlation between Chl a concentration and δ15NPON, and a negative correlation between NH4+ and δ15NPON, suggesting that δ15NPON is a useful proxy for nitrogen productivity and ammonium concentration. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Elevated nitrogen deposition has increased tree growth, the storage of soil organic matter, and nitrate leaching in many European forests, but little is known about the effect of tree species and nitrogen deposition on nitrous oxide emission. Here we report soil N2O emission from European beech, Scots pine and Norway spruce forests in two study areas of Germany with distinct climate, N deposition and soils. N2O emissions and throughfall input of nitrate and ammonium were measured biweekly during growing season and monthly during dormant season over a 28 months period. Annual N2O emission rates ranged between 0.4 and 1.3 kg N ha?1 year?1 among the stands and were higher in 1998 than in 1999 due to higher precipitation during the growing season of 1998. A 2-way-ANOVA revealed that N2O fluxes were significantly higher (p<0.001) at Solling than at Unterlüß while tree species had no effect on N2O emissions. Soil texture and the amount of throughfall explained together 94% of the variance among the stands, indicating that increasing portions of silt and clay may promote the formation of N2O in wet forest soils. Moreover, cumulative N2O fluxes were significantly correlated (r2 = 0.60, p<0.001) with cumulative NO 3 ? fluxes at 10 cm depth as an indicator of N saturation, however, the slope of the regression curve indicates a rather weak effect of NO 3 ? fluxes on N2O emissions. N input by throughfall was not correlated with N2O emissions and only 1.6–3.2% of N input was released as N2O to the atmosphere. Our results suggest that elevated N inputs have little effect on N2O emissions in beech, spruce and pine forests.  相似文献   

12.
The photocatalytic reduction of nitrogen (N2) with water (H2O) as the reducing agent holds great promise as a sustainable future technology for the synthesis of ammonia (NH3). Herein, the effect of oxygen vacancies and electron‐rich Cuδ+ on the performance of zinc‐aluminium layered double hydroxide (ZnAl‐LDH) nanosheet photocatalysts for N2 reduction to NH3 under UV–vis excitation is systematically explored. Results show that a 0.5%‐ZnAl‐LDH nanosheet photocatalyst (containing 0.5 mol% Cu by metal basis) affords a remarkable NH3 production rate of 110 µmol g?1 h?1 and excellent stability in pure water. The X‐ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory calculations reveal that Cu addition imparts oxygen vacancies and coordinatively unsaturated Cuδ+ (δ < 2) with electron‐rich property in the ZnAl‐LDH nanosheets, both of which readily contribute to efficient separation and transfer of photogenerated electrons and holes and promote N2 adsorption, thereby both activating N2 and facilitating its multielectrons reduction to NH3.  相似文献   

13.
Increases in atmospheric nitrogen deposition (Ndep) can strongly affect the greenhouse gas (GHG; CO2, CH4, and N2O) sink capacity of grasslands as well as other terrestrial ecosystems. Robust predictions of the net GHG sink strength of grasslands depend on how experimental N loads compare to projected Ndep rates, and how accurately the relationship between GHG fluxes and Ndep is characterized. A literature review revealed that the vast majority of experimental N loads were higher than levels these ecosystems are predicted to experience in the future. Using a process‐based biogeochemical model, we predicted that low levels of Ndep either enhanced or reduced the net GHG sink strength of most grasslands, but as experimental N loads continued to increase, grasslands transitioned to a N saturation‐decline stage, where the sensitivity of GHG exchange to further increases in Ndep declined. Most published studies represented treatments well into the N saturation‐decline stage. Our model results predict that the responses of GHG fluxes to N are highly nonlinear and that the N saturation thresholds for GHGs varied greatly among grasslands and with fire management. We predict that during the 21st century some grasslands will be in the N limitation stage where others will transition into the N saturation‐decline stage. The linear relationship between GHG sink strength and N load assumed by most studies can overestimate or underestimate predictions of the net GHG sink strength of grasslands depending on their N baseline status. The next generation of global change experiments should be designed at multiple N loads consistent with future Ndep rates to improve our empirical understanding and predictive ability.  相似文献   

14.
The effect of ectomycorrhizal association of Pinus pinaster with Hebeloma cylindrosporum was investigated in relation to the nitrogen source supplied as mineral (NH4+ or NO3?) or organic N (L ‐glutamate) and at 5 mol m?3. Plants were grown for 14 and 16 weeks with mineral and organic N, respectively, and samples were collected during the last 6 weeks of culture. Total fungal biomass was estimated using glucosamine amount and its viability was assessed using the glucosamine to ergosterol ratio. Non‐mycorrhizal plants grew better with NH4+ than with NO3? and grew very slowly when supplied with L ‐glutamate. The presence of the fungus decreased the growth of the host plant with mineral N whereas it increased it with L ‐glutamate. Whatever the N source, most of the living fungal biomass was associated with the roots, whereas the main part of the total biomass was assayed outside the root. The form of mineral N did not significantly affect N accumulation rates over the 42 d in control plants. In mycorrhizal plants grown on either N source, the fungal tissues developing outside of the root were always the main N sink. The ectomycorrhizal association did not change 15NH4+ uptake rate by roots, suggesting that the growth decrease of the host‐plant was related to the carbon cost for fungal growth and N assimilation rather than to a direct effect on NH4+ acquisition. In contrast, in NO3?‐grown plants, in addition to draining carbon for NO3? reduction the fungus competed with the root for NO3? uptake. With NH4+ or NO3? feeding, although mycorrhizal association improved N accumulation in shoots, we concluded that it was unlikely that the fungus had supplied the plant with N. In L ‐glutamate‐grown plants, the presence of the fungus increased the proportion of glutamine in the xylem sap and improved both N nutrition and the growth rate of the host plant.  相似文献   

15.
Nitrogen retention in soil organic matter (SOM) is a key process influencing the accumulation and loss of N in forest ecosystems, but the rates and mechanisms of inorganic N retention in soils are not well understood. The primary objectives of this study were to compare ammonium (NH4+), nitrite (NO2?), and nitrate (NO3?) immobilization among soils developed under different tree species in the Catskill Mountains of New York State, and to determine the relative roles of biotic or abiotic processes in soil N retention. A laboratory experiment was performed, where 15N was added as NH4+, NO2?, or NO3? to live and mercury‐treated O horizon soils from three tree species (American beech, northern red oak, sugar maple), and 15N recoveries were determined in the SOM pool. Mercuric chloride was used to treat soils as this chemical inhibits microbial metabolism without significantly altering the chemistry of SOM. The recovery of 15N in SOM was almost always greater for NH4+ (mean 20%) and NO2? (47%) than for NO3? (10%). Ammonium immobilization occurred primarily by biotic processes, with mean recoveries in live soils increasing from 9% at 15 min to 53% after 28 days of incubation. The incorporation of NO2? into SOM occurred rapidly (<15 min) via abiotic processes. Abiotic immobilization of NO2? (mean recovery 58%) was significantly greater than abiotic immobilization of NH4+ (7%) or NO3? (7%). The incorporation of NO2? into SOM did not vary significantly among tree species, so this mechanism likely does not contribute to differences in soil NO3? dynamics among species. As over 30% of the 15NO2? label was recovered in SOM within 15 min in live soils, and the products of NO2? incorporation into SOM remained relatively stable throughout the 28‐day incubation, our results suggest that NO2? incorporation into SOM may be an important mechanism of N retention in forest soils. The importance of NO2? immobilization for N retention in field soils, however, will depend on the competition between incorporation into SOM and nitrification for transiently available NO2?. Further research is required to determine the importance of this process in field environments.  相似文献   

16.
Understanding the ecological patterns of invasive species and their habitats require an understanding of the species’ foraging ecology. Stable carbon (δ13C) and nitrogen (δ15N) isotope values provide useful information into the study of animal ecology and evolution, since the isotope ratios of consumers reflect consumer's dietary patterns. Nevertheless, the lack of species‐ and element‐specific laboratory‐derived turnover rates could limit their application. Using a laboratory‐based dual stable isotope tracer approach (Na15NO3 and NaH13CO3), we evaluated the δ15N and δ13C isotope turnover rates in full‐grown adult invasive Limnomysis benedeni from Lake Constance. We provide δ15N and δ13C turnover rates based on nonlinear least‐squares regression and posterior linear regression models. Model precisions and fit were evaluated using Akaike's information criterion. Within a couple of days, the δ15N and δ13C of mysids began to change. Nevertheless, after about 14 days, L. benedeni did not reach equilibrium with their new isotope values. Since the experiment was conducted on adult subjects, it is evident that turnover was mainly influenced by metabolism (in contrast to growth). Unlike traditional dietary shifts, our laboratory‐based dual stable isotope tracer approach does not shift the experimental organisms into a new diet and avoids dietary effects on isotope values. Results confirm the application of isotopic tracers to label mysid subpopulations and could be used to reflect assimilation and turnover from the labeled dietary sources. Field‐based stable isotope studies often use isotopic mixing models commonly assuming diet‐tissue steady state. Unfortunately, in cases where the isotopic composition of the animal is not in equilibrium with its diet, this can lead to highly misleading conclusions. Thus, our laboratory‐based isotopic incorporation rates assist interpretation of the isotopic values from the field and provide a foundation for future research into using isotopic tracers to investigate invasion ecology.  相似文献   

17.
Subtropical forests receive increasing amounts of atmogenic nitrogen (N), both as ammonium (NH4 +) and nitrate (NO3 ?). Previous long-term studies indicate efficient turnover of atmogenic NH4 + to NO3 ? in weathered, acidic soils of the subtropics, leading to excessive NO3 ? leaching. To clarify the mechanism governing the fate of atmogenic inputs in these soils, we conducted an in situ 15N tracing experiment in the TieShanPing (TSP) forested catchment, SW China. 15NH4NO3, NH 4 15 NO3 and 15N-glutamic acid were applied to an upland hillslope soil and inorganic N, total soil N and nitrous oxide (N2O) were monitored for nine days. Incorporation of 15NO3 ? into soil organic N was negligible and 80% of the applied label was lost from the top soil (0–15 cm) primarily by leaching within 9 days. In contrast, 15NH4 + was largely retained in soil organic N. However, instant production of 15NO3 ? in the 15NH4 + treatment suggested active nitrification. In both the 15NH4 + and 15N-glutamic acid treatments, the 15N enrichment in the NO3 ? pool exceeded that in the NH4 + pool one day after 15N application, suggesting preferential nitrification of added 15NH4 + with subsequent dilution of the NH4 + pool and/or immobilization of 15NH4 + followed by heterotrophic nitrification. The cumulative recovery of 15N in N2O after 9 days ranged from 2.5 to 6.0% in the 15NO3 ? treatment, confirming the previously reported significant response of N2O emission to N deposition. Source partitioning of 15N2O demonstrated a measurable contribution of nitrification to N2O emissions, particularly at low soil moistures. Our study emphasizes the role of a fast-cycling organic N pool (including microbial N) for retention and transformation of atmogenic NH4 + in subtropical, acid forest soils. Thus, it explains the near-quantitative leaching of deposited N (as NO3 ? and NH4 +) common to subtropical forest soils with chronic, elevated atmogenic N inputs by (i) negligible retention of NO3 ? in the soil and (ii) rapid immobilization-mineralization of NH4 + followed by nitrification. Our findings point to a leaky N cycle in N-saturated Chinese subtropical forests with consequences for regional soil acidification, N pollution of fresh waters and N2O emission.  相似文献   

18.
Overviewing the European carbon (C), greenhouse gas (GHG), and non‐GHG fluxes, gross primary productivity (GPP) is about 9.3 Pg yr?1, and fossil fuel imports are 1.6 Pg yr?1. GPP is about 1.25% of solar radiation, containing about 360 × 1018 J energy – five times the energy content of annual fossil fuel use. Net primary production (NPP) is 50%, terrestrial net biome productivity, NBP, 3%, and the net GHG balance, NGB, 0.3% of GPP. Human harvest uses 20% of NPP or 10% of GPP, or alternatively 1‰ of solar radiation after accounting for the inherent cost of agriculture and forestry, for production of pesticides and fertilizer, the return of organic fertilizer, and for the C equivalent cost of GHG emissions. C equivalents are defined on a global warming potential with a 100‐year time horizon. The equivalent of about 2.4% of the mineral fertilizer input is emitted as N2O. Agricultural emissions to the atmosphere are about 40% of total methane, 60% of total NO‐N, 70% of total N2O‐N, and 95% of total NH3‐N emissions of Europe. European soils are a net C sink (114 Tg yr?1), but considering the emissions of GHGs, soils are a source of about 26 Tg CO2 C‐equivalent yr?1. Forest, grassland and sediment C sinks are offset by GHG emissions from croplands, peatlands and inland waters. Non‐GHGs (NH3, NOx) interact significantly with the GHG and the C cycle through ammonium nitrate aerosols and dry deposition. Wet deposition of nitrogen (N) supports about 50% of forest timber growth. Land use change is regionally important. The absolute flux values total about 50 Tg C yr?1. Nevertheless, for the European trace‐gas balance, land‐use intensity is more important than land‐use change. This study shows that emissions of GHGs and non‐GHGs significantly distort the C cycle and eliminate apparent C sinks.  相似文献   

19.
Atmospheric nitrogen (N) deposition (Ndep), an important component of the global N cycle, has increased sharply in recent decades in China. Although there were already some studies on Ndep on a national scale, there were some gaps on the magnitude and the spatial patterns of Ndep. In this study, a national-scale Ndep pattern was constructed based on 139 published papers from 2003 to 2014 and the effects of precipitation (P), energy consumption (E) and N fertilizer use (FN) on spatial patterns of Ndep were analyzed. The wet deposition flux of NH4+-N, NO3--N and total Ndep was 6.83, 5.35 and 12.18 kg ha-1 a-1, respectively. Ndep exhibited a decreasing gradient from southeast to northwest of China. Through accuracy assessment of the spatial Ndep distribution and comparisons with other studies, the spatial Ndep distribution by Lu and Tian and this study both gained high accuracy. A strong exponential function was found between P and Ndep, FN and Ndep and E and Ndep, and P and FN had higher contribution than E on the spatial variation of Ndep. Fossil fuel combustion was the main contributor for NO3--N (86.0%) and biomass burning contributed 5.4% on the deposition of NO3--N. The ion of NH4+ was mainly from agricultural activities (85.9%) and fossil fuel combustion (6.0%). Overall, Ndep in China might be considerably affected by the high emissions of NOx and NH3 from fossil fuel combustion and agricultural activities.  相似文献   

20.
Canopy exchanges of H^+ and N (NH4^+-N, NO3^--N) and other major ions were evaluated and quantified In twolayer canopies based on throughfall measurements in Shaoshan Forest during the period 2000-2002, central-south China, The collected annual rainfall, throughfall, and sub-throughfall were 1 401, 1 191, and 1 084 mm/year, respectively. Fifteen percent and 8% of rainfall (or 9% of throughfall) were intercepted by the top canopy and sub-canopy layers, respectively, The foliar leaching of base cations from the top canopy was significantly higher than that from the sub-canopy, and the latter accounted for 25% of the former. The uptake of H^+ and NH4^+ was significantly higher in the top canopy than in the sub-canopy, indicating that the canopy buffering capacity in the top canopy was stronger than the sub-canopy; Mg^2+ can be absorbed from water flux on the sub-canopy foliar surfaces to compensate for the Mg deficit in the forest soil during the growing season,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号