首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open‐canopy grassy woodlands) remains limited. To incorporate grasslands into large‐scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved – frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human‐caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species‐diverse plant communities, including endemic species, are slow to recover. Complicating plant‐community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re‐establish. To guide restoration decisions, we draw on the old‐growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old‐growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old‐growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.  相似文献   

2.
The ecological role of historical land use has rarely been explored in the context of grassland restoration. We conducted a 4‐year field experiment in a steppe and an old field in Inner Mongolia in northern China to examine the influence of historical land use and water availability on ecosystem restoration. Species richness, evenness, and plant cover were higher in the steppe than in the old field. The steppe was more temporally stable compared with the old field in terms of species richness, evenness, plant density, and cover. Water addition increased peak aboveground biomass, belowground net primary productivity, species richness, plant density, and cover in both the steppe and the old field. Water addition also enhanced the stability of ecosystems and the restoration of grassland. Our findings suggested that historical land use determines community structure and influences the process of grassland restoration. Converting grasslands to farmland in semiarid areas can cause the long‐term loss of biodiversity and instability of ecosystem with consequent impacts on ecosystem services. The amendment of limited resources is an effective practice to increase the success of ecosystem restoration.  相似文献   

3.
Urbanization is one of the most severe threats to biodiversity, so why should not we use green space in cities to counteract the biodiversity loss as much as possible? Urban grasslands provide a large number of social, financial, recreational, and environmental ecosystem services but can also support high biodiversity. In this article, I describe the importance of urban grasslands for (local) biodiversity and recommend strengthening restoration ecological research and efforts to optimize these novel ecosystems for conservation purposes. The management intensity of a high proportion of urban grasslands decreased over the last decades. However, species richness of these grasslands is still low, although there is now a great potential for higher plant, but also animal diversity. While communal authorities are interested in cost‐efficient but at the same time biodiversity‐friendly management of urban grasslands, a well‐founded scientific basis for the restoration of urban grassland is still missing. I argue that besides all challenges associated with the restoration of urban habitats we should urgently proceed in the development of appropriate and effective restoration approaches and communicate knowledge gained to urban planners and stakeholders. Widening the scope of restoration ecological research to novel ecosystems such as urban grasslands is one of the most important recent challenges for biodiversity restoration and it gives urban habitats the significance they deserve .  相似文献   

4.
Recent global commitments have placed forest and landscape restoration at the forefront of countries' efforts to recover ecosystem services, conserve biodiversity, and mitigate the effects of climate change. However, it needs to be asked if current native tree seedling supply meets an increase in demand for forest restoration? This study assessed the current configuration, distribution, and production capacity of forest nurseries producing native trees in Brazil. Brazil provides an interesting example of how global agreements aligned with national policies can lead to the proliferation of native seedling nurseries, and the challenges faced to restore species‐rich native forest ecosystems. We found that the nurseries in the Atlantic Forest region can still meet an increase in demand—both in terms of seedling quantity and diversity—because most of their production capacity is not currently used. However, not all Brazilian biomes have sufficient nurseries to meet restoration demands, thus there is a risk of using native species from a few biogeographical regions in a much spatially wider and ecologically diverse area. In addition, lack of seed supply and qualified labor can hamper the growth of the market. Barriers to seed supply may also lead to low levels of genetic variability and floristic representation in the populations and ecosystems to be restored. We conclude that restoration of high‐diversity forest ecosystems requires policies and supportive programs, with emphasis on private nurseries, to guarantee adequate supply of native tree seedlings and provide the necessary incentives to develop the emergent economy of forest restoration.  相似文献   

5.
A comprehensive understanding of the relationship between land cover, climate change and disturbance dynamics is needed to inform scenarios of vegetation change on the African continent. Although significant advances have been made, large uncertainties exist in projections of future biodiversity and ecosystem change for the world's largest tropical landmass. To better illustrate the effects of climate–disturbance–ecosystem interactions on continental-scale vegetation change, we apply a novel statistical multivariate envelope approach to subfossil pollen data and climate model outputs (TraCE-21ka). We target paleoenvironmental records across continental Africa, from the African Humid Period (AHP: ca 14 700–5500 yr BP) – an interval of spatially and temporally variable hydroclimatic conditions – until recent times, to improve our understanding of overarching vegetation trends and to compare changes between forest and grassy biomes (savanna and grassland). Our results suggest that although climate variability was the dominant driver of change, forest and grassy biomes responded asymmetrically: 1) the climatic envelope of grassy biomes expanded, or persisted in increasingly diverse climatic conditions, during the second half of the AHP whilst that of forest did not; 2) forest retreat occurred much more slowly during the mid to late Holocene compared to the early AHP forest expansion; and 3) as forest and grassy biomes diverged during the second half of the AHP, their ecological relationship (envelope overlap) fundamentally changed. Based on these asymmetries and associated changes in human land use, we propose and discuss three hypotheses about the influence of anthropogenic disturbance on continental-scale vegetation change.  相似文献   

6.
青藏高原高寒草地生物多样性与生态系统功能的关系   总被引:7,自引:0,他引:7  
生物多样性和生态系统功能(BEF)之间的关系是目前陆地生态系统生态学研究的热点, 对于生态系统的高效利用与管理意义重大, 而且对于退化生态系统功能的恢复及生物多样性的保护有重要的指导作用。高寒草地是青藏高原生态系统的主体, 近年来, 在气候变化与人为干扰等因素的驱动下, 高寒草地生态系统功能严重衰退。为此, 本文在综述物种多样性和生态系统功能及其相互关系研究进展的基础上, 首先从地下生态学过程研究、全球变化对生态系统多功能性的影响等方面解析了目前关于草地生物多样性和生态系统功能研究中存在的问题。继而, 从不同草地类型、草地退化程度、放牧、模拟气候变化、刈割、施肥、封育和补播等干扰利用方式对高寒草地物种多样性与生态系统功能的影响进行了全面的评述。并指出了高寒草地BEF研究中存在的不足, 今后应基于物种功能多样性开展高寒草地BEF研究, 全面且综合地考虑非生物因子(养分资源、外界干扰、环境波动等)对生物多样性与生态系统功能之间关系的影响, 关注尺度效应和要素耦合在全球气候变化对高寒草地BEF研究中的作用。最后, 以高寒草地BEF研究进展和结论为支撑依据, 综合提出了高寒草地资源利用和生物多样性保护的措施与建议: 加强放牧管理, 保护生物多样性; 治理退化草地, 维持生物多样性功能; 加强创新保护理念, 增强生态系统功能。  相似文献   

7.
Disturbance regimes are changing in forests across the world in response to global climate change. Despite the profound impacts of disturbances on ecosystem services and biodiversity, assessments of disturbances at the global scale remain scarce. Here, we analyzed natural disturbances in boreal and temperate forest ecosystems for the period 2001–2014, aiming to 1) quantify their within- and between-biome variation and 2) compare the climate sensitivity of disturbances across biomes. We studied 103 unmanaged forest landscapes with a total land area of 28.2 × 106 ha, distributed across five continents. A consistent and comprehensive quantification of disturbances was derived by combining satellite-based disturbance maps with local expert knowledge of disturbance agents. We used Gaussian finite mixture models to identify clusters of landscapes with similar disturbance activity as indicated by the percent forest area disturbed as well as the size, edge density and perimeter–area-ratio of disturbed patches. The climate sensitivity of disturbances was analyzed using Bayesian generalized linear mixed effect models and a globally consistent climate dataset. Within-biome variation in natural disturbances was high in both boreal and temperate biomes, and disturbance patterns did not vary systematically with latitude or biome. The emergent clusters of disturbance activity in the boreal zone were similar to those in the temperate zone, but boreal landscapes were more likely to experience high disturbance activity than their temperate counterparts. Across both biomes high disturbance activity was particularly associated with wildfire, and was consistently linked to years with warmer and drier than average conditions. Natural disturbances are a key driver of variability in boreal and temperate forest ecosystems, with high similarity in the disturbance patterns between both biomes. The universally high climate sensitivity of disturbances across boreal and temperate ecosystems indicates that future climate change could substantially increase disturbance activity.  相似文献   

8.
Many small‐scale projects in Australia suggest that ground‐layer elements of ecosystems can be restored, but scaling up of grassland and grassy understorey restoration has not occurred to date. Paul Gibson‐Roy recently travelled through the USA, where well‐developed markets for restoration have created a large, financially viable native‐herbaceous seed production and restoration sector. Here, he shares his observations, which show how much about the USA situation can be a model and inspiration for Australian grassy ecosystem restoration.  相似文献   

9.
Confronting a biome crisis: global disparities of habitat loss and protection   总被引:11,自引:1,他引:11  
Human impacts on the natural environment have reached such proportions that in addition to an ‘extinction crisis’, we now also face a broader ‘biome crisis’. Here we identify the world's terrestrial biomes and, at a finer spatial scale, ecoregions in which biodiversity and ecological function are at greatest risk because of extensive habitat conversion and limited habitat protection. Habitat conversion exceeds habitat protection by a ratio of 8 : 1 in temperate grasslands and Mediterranean biomes, and 10 : 1 in more than 140 ecoregions. These regions include some of the most biologically distinctive, species rich ecosystems on Earth, as well as the last home of many threatened and endangered species. Confronting the biome crisis requires a concerted and comprehensive response aimed at protecting not only species, but the variety of landscapes, ecological interactions, and evolutionary pressures that sustain biodiversity, generate ecosystem services, and evolve new species in the future.  相似文献   

10.
Assessments of restoration are usually made through vegetation community surveys, leaving much of the ecosystem underexamined. Invertebrates, and ants in particular, are good candidates for restoration evaluation because they are sensitive to environmental change and are particularly important in ecosystem functioning. The considerable resources currently employed in restoring calcareous grassland on ex‐arable land mean that it is important to gather as much information as possible on how ecosystems change through restoration. We compared ant communities from 40 ex‐arable sites where some form of restoration work had been implemented between 2 and 60 years previously, with 40 paired reference sites of good quality calcareous grassland with no history of improvement or cultivation. A total of 11 ant species were found, but only two of these were found to be significantly different in abundance between restoration and reference sites: Myrmica sabuleti was more likely to be present in reference sites, whereas Lasius niger was more likely to be found in restoration sites. Myrmica sabuleti abundance was significantly positively correlated with age of restoration sites. The potential number of ant species found in temperate grasslands is small, limiting the information their assemblages can provide about ecosystem change. However, M. sabuleti is a good indicator species for calcareous grassland restoration success and, alongside information from the plant community, could increase the confidence with which restoration success is judged. We found the survey to be quick and simple to carry out and recommend its use.  相似文献   

11.
Tropical grassy biomes have been widely neglected for conservation and, after unplanned land use conversion, ecological restoration becomes urgent. The majority of interventions have been based on the misapplication of forest restoration techniques, because there are no validated techniques to restore the species‐rich ground layer. In search for innovative techniques to restore the herbaceous layer of the cerrado vegetation, we carried out an experiment based upon topsoil and hay transfer, in the state of São Paulo, Brazil. The restoration treatments were: (1) transfer of topsoil collected at the end of the dry season; (2) topsoil collected at the end of the rainy season; (3) transfer of hay collected at the end of the dry season; (4) topsoil + hay collected at the end of the dry season; and (5) control. We used an old‐growth grassland as source of material and as reference ecosystem to assess the efficacy of the restoration techniques applied to an area severely degraded after invasion by African grasses. After 211 days, hay transfer apparently inhibited germination and did not contribute to grassland vegetation recovery. Topsoil transfer, however, was effective at reintroducing herbaceous plants, including target species. The season of topsoil collection mattered: material collected at the end of the rainy season provided better results in terms of density and richness of the restored community than that from the dry season. The remaining challenge is to find sources of topsoil not invaded by exotic grasses in large enough amounts to support restoration initiatives without jeopardizing the source ecosystems.  相似文献   

12.
Aim Grasslands and savannas, which make up > 75% of Madagascar’s land area, have long been viewed as anthropogenically derived after people settled on the island c. 2 ka. We investigated this hypothesis and an alternative – that the grasslands are an insular example of the post‐Miocene spread of C4 grassy biomes world‐wide. Location Madagascar, southern Africa, East Africa. Methods We compared the number of C4 grass genera in Madagascar with that in southern and south‐central African floras. If the grasslands are recent we would expect to find fewer species and genera in Madagascar relative to Africa and for these species and genera to have very wide distribution ranges in Madagascar. Secondly, we searched Madagascan floras for the presence of endemic plant species or genera restricted to grasslands. We also searched for evidence of a grassland specialist fauna with species endemic to Madagascar. Plant and animal species endemic to C4 grassy biomes would not be expected if these are of recent origin. Results Madagascar has c. 88 C4 grass genera, including six endemic genera. Excluding African genera with only one or two species, Madagascar has 86.6% of southern Africa’s and 89.4% of south‐central Africa’s grass genera. C4 grass species make up c. 4% of the flora of both Madagascar and southern Africa and species : genus ratios are similar (4.3 and 5.1, respectively). Turnover of grasses along geographical gradients follows similar patterns to those in South Africa, with Andropogoneae dominating in mesic biomes and Chlorideae in semi‐arid grassy biomes. At least 16 monocot genera have grassland members, many of which are endemic to Madagascar. Woody species in frequently burnt savannas include both Madagascan endemics and African species. A different woody flora, mostly endemic, occurs in less frequently burnt grasslands in the central highlands, filling a similar successional niche to montane C4 grasslands in Africa. Diverse vertebrate and invertebrate lineages have grassland specialists, including many endemic to Madagascar (e.g. termites, ants, lizards, snakes, birds and mammals). Grassland use of the extinct fauna is poorly known but carbon isotope analysis indicates that a hippo, two giant tortoises and one extinct lemur ate C4 or CAM (crassulacean acid metabolism) plants. Main conclusions The diversity of C4 grass lineages in Madagascar relative to that in Africa, and the presence of plant and animal species endemic to Madagascan grassy biomes, does not fit the view that these grasslands are anthropogenically derived. We suggest that grasslands invaded Madagascar after the late Miocene, part of the world‐wide expansion of C4 grassy biomes. Madagascar provides an interesting test case for biogeographical analysis of how these novel biomes assembled, and the sources of the flora and fauna that now occupy them. A necessary part of such an analysis would be to establish the pre‐settlement extent of the C4 grassy biomes. Carbon isotope analysis of soil organic matter would be a feasible method for doing this.  相似文献   

13.
Terrestrial ecosystems are playing important roles in global carbon cycling. However, the information is still limited with regard to the semi-arid sandland or desert area, compared with the thorough studies on forest and grassland. We here estimated the biomass carbon storage, net primary production (NPP) and rain use efficiency (RUE) of Hunshandake Sandland, a semi-arid sandy region in Inner Mongolia covered with vegetation of Siberian elm (Ulmus pumila L.) sparse forest grassland. Five main habitats, i.e. fixed dunes, semi-fixed dunes, shifting dunes, lowland, and wetland, were compared to analyze the patterns of carbon storage and NPP distribution. The average biomass (9.19 Mg C ha?1) and NPP (4.79 Mg C ha?1 yr?1) of the sparse forest grassland were respectively 82% and 54% higher than the mean level of the surrounding temperate grassland. Governed by the same climate, sparse forest grassland ecosystem had RUE almost twice that of surrounding grassland. The ratio of below to aboveground biomass was 3.5: 1 in the sandland, indicating that most of the vegetational carbon was stored in belowground pool. Although trees were functionally critical in maintaining the integrity of sparse forest grassland, they accounted for only 10.6% and 1.2% of the biomass and NPP, respectively. The sparse forest grassland in Hunshandake Sandland should be recognized as a temperate savanna ecosystem which is distinctively different from typical temperate grassland in the same region as evidenced by the higher NPP and vegetation carbon storage. Well designed management and restoration efforts can potentially sustain ecosystem services in both forage production and carbon sequestration.  相似文献   

14.
Climate warming will affect terrestrial ecosystems in many ways, and warming‐induced changes in terrestrial carbon (C) cycling could accelerate or slow future warming. So far, warming experiments have shown a wide range of C flux responses, across and within biome types. However, past meta‐analyses of C flux responses have lacked sufficient sample size to discern relative responses for a given biome type. For instance grasslands contribute greatly to global terrestrial C fluxes, and to date grassland warming experiments provide the opportunity to evaluate concurrent responses of both plant and soil C fluxes. Here, we compiled data from 70 sites (in total 622 observations) to evaluate the response of C fluxes to experimental warming across three grassland types (cold, temperate, and semi‐arid), warming methods, and short (≤3 years) and longer‐term (>3 years) experiment lengths. Overall, our meta‐analysis revealed that experimental warming stimulated C fluxes in grassland ecosystems with regard to both plant production (e.g., net primary productivity (NPP) 15.4%; aboveground NPP (ANPP) by 7.6%, belowground NPP (BNPP) by 11.6%) and soil respiration (Rs) (9.5%). However, the magnitude of C flux stimulation varied significantly across cold, temperate and semi‐arid grasslands, in that responses for most C fluxes were larger in cold than temperate or semi‐arid ecosystems. In semi‐arid and temperate grasslands, ecosystem respiration (Reco) was more sensitive to warming than gross primary productivity (GPP), while the opposite was observed for cold grasslands, where warming produced a net increase in whole‐ecosystem C storage. However, the stimulatory effect of warming on ANPP and Rs observed in short‐term studies (≤3 years) in both cold and temperate grasslands disappeared in longer‐term experiments (>3 years). These results highlight the importance of conducting long‐term warming experiments, and in examining responses across a wide range of climate.  相似文献   

15.
山水林田湖草系统保护与修复工程实施的重要目标是维护和提升区域生态系统服务。从乌梁素海流域山水林田湖草的生态现状与功能出发,对乌梁素海流域水土流失、土地沙化等生态敏感性及土壤保持、水源涵养、生物多样性等生态功能重要性进行系统评价,形成基于生态敏感性和生态功能重要性相结合的空间格局评价结果。以维护和提升人类福祉所需的重要生态系统服务为目标,以乌梁素海流域生态敏感性和生态功能重要性相结合的空间格局评价结果为基础,制定了“一中心、二重点、六要素、七工程”的乌梁素海山水林田湖草生态保护与修复体系,并基于此将乌梁素海流域生态保护修复分为6个主要治理区域,形成“四区、一带、一网”的生态安全格局,通过具体工程实施,流域生态环境质量和生态服务能力将取得明显提升,防风固沙能力有效增强,生物多样性持续改善,水环境质量稳定达标,生态系统的稳定性明显加强。通过乌梁素海流域的分析案例为流域山水林田湖草生态保护与修复关键区域的识别提供了定量分析方法,为流域尺度构建生态安全格局、实现山水林田湖草系统保护和修复提供思路和途径。  相似文献   

16.
Li G  Jiang G M  Li Y G  Liu M Z 《农业工程》2011,31(4):217-224
Terrestrial ecosystems are playing important roles in global carbon cycling. However, the information is still limited with regard to the semi-arid sandland or desert area, compared with the thorough studies on forest and grassland. We here estimated the biomass carbon storage, net primary production (NPP) and rain use efficiency (RUE) of Hunshandake Sandland, a semi-arid sandy region in Inner Mongolia covered with vegetation of Siberian elm (Ulmus pumila L.) sparse forest grassland. Five main habitats, i.e. fixed dunes, semi-fixed dunes, shifting dunes, lowland, and wetland, were compared to analyze the patterns of carbon storage and NPP distribution. The average biomass (9.19 Mg C ha?1) and NPP (4.79 Mg C ha?1 yr?1) of the sparse forest grassland were respectively 82% and 54% higher than the mean level of the surrounding temperate grassland. Governed by the same climate, sparse forest grassland ecosystem had RUE almost twice that of surrounding grassland. The ratio of below to aboveground biomass was 3.5: 1 in the sandland, indicating that most of the vegetational carbon was stored in belowground pool. Although trees were functionally critical in maintaining the integrity of sparse forest grassland, they accounted for only 10.6% and 1.2% of the biomass and NPP, respectively. The sparse forest grassland in Hunshandake Sandland should be recognized as a temperate savanna ecosystem which is distinctively different from typical temperate grassland in the same region as evidenced by the higher NPP and vegetation carbon storage. Well designed management and restoration efforts can potentially sustain ecosystem services in both forage production and carbon sequestration.  相似文献   

17.
A global ecological restoration agenda has led to ambitious programs in environmental policy to mitigate declines in biodiversity and ecosystem services. Current restoration programs can incompletely return desired ecosystem service levels, while resilience of restored ecosystems to future threats is unknown. It is therefore essential to advance understanding and better utilize knowledge from ecological literature in restoration approaches. We identified an incomplete linkage between global change ecology, ecosystem function research, and restoration ecology. This gap impedes a full understanding of the interactive effects of changing environmental factors on the long‐term provision of ecosystem functions and a quantification of trade‐offs and synergies among multiple services. Approaches that account for the effects of multiple changing factors on the composition of plant traits and their direct and indirect impact on the provision of ecosystem functions and services can close this gap. However, studies on this multilayered relationship are currently missing. We therefore propose an integrated restoration agenda complementing trait‐based empirical studies with simulation modeling. We introduce an ongoing case study to demonstrate how this framework could allow systematic assessment of the impacts of interacting environmental factors on long‐term service provisioning. Our proposed agenda will benefit restoration programs by suggesting plant species compositions with specific traits that maximize the supply of multiple ecosystem services in the long term. Once the suggested compositions have been implemented in actual restoration projects, these assemblages should be monitored to assess whether they are resilient as well as to improve model parameterization. Additionally, the integration of empirical and simulation modeling research can improve global outcomes by raising the awareness of which restoration goals can be achieved, due to the quantification of trade‐offs and synergies among ecosystem services under a wide range of environmental conditions.  相似文献   

18.
李潇  吴克宁  刘亚男  冯喆  谢家麟 《生态学报》2019,39(23):8806-8816
开展山水林田湖草生态保护修复是生态文明建设的重要内容,将生态系统服务评价成果与山水林田湖草生态保护修复工程相结合,以国家第三批山水林田湖草生态保护修复试点-河南省南太行地区鹤山区为例,探究生态系统服务评价成果在区域山水林田湖草生态保护修复中的应用。结果表明,近年来鹤山区生态系统服务价值整体呈下降趋势且生态环境破坏严重。其中,2014-2017年鹤山区各土地类型二级服务ESV减少了303.95万元。研究期内,水资源供给、气体调节功能、气候调节、净化环境、水文调节、土壤保持、生物多样性和美学景观等8项生态服务价值都出现不同程度的下降;在鹤山区生态保护修复工作中需要重点关注生态系统的水文调节、净化环境、土壤保持和生物多样性等服务功能,相应的生态保护修复工程应集中在河道生态修复与湿地保护、矿山生态环境修复与土地整治、森林及生物多样性保护修复;鹤山区山水林田湖草生态保护修复工程能够提升区域生态服务价值。其中,工程实施后的生态系统服务价值总量预计能达到36407.95万元,比2017年增加7741.96万元,增长率为27%且各项生态服务价值均有提升。研究结果对鹤山区山水林田湖草生态保护修复工程的实施有一定的指导性作用。  相似文献   

19.
2000—2010年我国重点生态功能区生态系统变化状况   总被引:3,自引:1,他引:2  
黄麟  曹巍  吴丹  巩国丽  赵国松 《生态学杂志》2015,26(9):2758-2766
分析了2000—2010年我国水源涵养型、水土保持型、防风固沙型、生物多样性维护型重点生态功能区的生态系统结构、质量与核心服务的变化.结果表明: 近11年来,水源涵养型重点生态功能区的森林、草地面积减少,水体与湿的面积增加,森林、草地、湿地生态系统水源涵养总量增加了2.9%,该类区域需要遏制森林、草地的减少趋势.水土保持型重点生态功能区的农田面积减少,而森林、草地、水体与湿地的面积增加,土壤侵蚀总量减少了28.2%,生态系统土壤保持总量增加了38.1%.防风固沙型重点生态功能区的农田、森林面积增加,草地、水体与湿地的面积减少,单位面积土壤风蚀量下降,单位面积防风固沙服务量有所提升,该类区域多位于干旱半干旱区,需要减少农田面积,优先保护原有生态系统.生物多样性维护型重点生态功能区的草地、荒漠面积减少,其他类型的面积有所增加,人类扰动呈现微弱的上升趋势,该类区域需要减少人类干扰.重点生态功能区应该针对核心服务和保护目标,分类分区开展生态系统保护、改善及其效果的定量综合评估.  相似文献   

20.
Forested ecosystems of south‐eastern Australia now differ physically, compositionally and functionally from their condition prior to European settlement. Understanding these changes, and how native species and entire ecosystems have responded, is crucial for biodiversity conservation and ecosystem management. Here I argue that a combination of limited historical information and a knowledge base biased towards modern ecological studies has resulted in a distorted perception of ecosystem condition, hindering the instigation of effective biodiversity conservation measures. This argument is based on recently obtained information about changes to the non‐volant mammal community, which reveals relatively recent but underreported ecological changes, including major declines in species distribution and abundance, shifts in niche utilization and associated disruption of ecosystem functions. Ultimately, many mammal species are being denied the capacity to function to the extent they did historically. Following this re‐assessment, it is evident that current forest management does not adequately address contemporary conservation dilemmas posed by detrimental ecosystem changes. This is especially salient when most of the factors responsible for causing changes to the mammal community are still active and include forest management and utilization activities. Therefore, additional conservation measures are essential to meet forest stewardship and biodiversity conservation obligations. For the health, functionality and sustainability of forested ecosystems, native mammal species must be capable of functioning to their ecological potential and occupy their original niche. This will be facilitated by the suppression of threatening processes (primarily exotic species), ensuring ecologically sensitive fire regimes and the reintroduction/translocation of missing species. The recovery or restoration of forest functionality based on mammal conservation should have wide‐scale benefits for biodiversity conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号