首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Body condition‐dependent dispersal strategies are common in nature. Although it is obvious that environmental constraints may induce a positive relationship between body condition and dispersal, it is not clear whether positive body conditional dispersal strategies may evolve as a strategy in metapopulations. We have developed an individual‐based simulation model to investigate how body condition–dispersal reaction norms evolve in metapopulations that are characterized by different levels of environmental stochasticity and dispersal mortality. In the model, body condition is related to fecundity and determined either by environmental conditions during juvenile development (adult dispersal) or by those experienced by the mother (natal dispersal). Evolutionarily stable reaction norms strongly depend on metapopulation conditions: positive body condition dependency of dispersal evolved in metapopulation conditions with low levels of dispersal mortality and high levels of environmental stochasticity. Negative body condition‐dependent dispersal evolved in metapopulations with high dispersal mortality and low environmental stochasticity. The latter strategy is responsible for higher dispersal rates under kin competition when dispersal decisions are based on body condition reached at the adult life stage. The evolution of both positive and negative body condition‐dependent dispersal strategies is consequently likely in metapopulations and depends on the prevalent environmental conditions.  相似文献   

2.
Unraveling the relationship between demographic declines and genetic changes over time is of critical importance to predict the persistence of at‐risk populations and to propose efficient conservation plans. This is particularly relevant in spatially structured populations (i.e. metapopulations) in which the spatial arrangement of local populations can modulate both demographic and genetic changes. We used ten‐year demo‐genetic monitoring to test 1) whether demographic declines were associated with genetic diversity declines and 2) whether the spatial structure of a metapopulation can weaken or reinforce these demographic and genetic temporal trends. We continuously surveyed, over time and across their entire range, two metapopulations of an endemic freshwater fish species Leuciscus burdigalensis: one metapopulation that had experienced a recent demographic decline and a second metapopulation that was stable over time. In the declining metapopulation, the number of alleles rapidly decreased, the inbreeding coefficient increased, and a genetic bottleneck emerged over time. In contrast, genetic indices were constant over time in the stable metapopulation. We further show that, in the declining metapopulation, demographic and genetic declines were not homogeneously distributed across the metapopulation. We notably identify one local population situated downstream as a ‘reservoir’ of individuals and genetic variability that dampens both the demographic and genetic declines measured at the metapopulation level. We demonstrate the usefulness of long‐term monitoring that combines both genetic and demographic parameters to understand and predict temporal population fluctuations of at‐risk species living in a metapopulation context.  相似文献   

3.
Parasite‐mediated selection varying across time and space in metapopulations is expected to result in host local adaptation and the maintenance of genetic diversity in disease‐related traits. However, nonadaptive processes like migration and extinction‐(re)colonization dynamics might interfere with adaptive evolution. Understanding how adaptive and nonadaptive processes interact to shape genetic variability in life‐history and disease‐related traits can provide important insights into their evolution in subdivided populations. Here we investigate signatures of spatially fluctuating, parasite‐mediated selection in a natural metapopulation of Daphnia magna. Host genotypes from infected and uninfected populations were genotyped at microsatellite markers, and phenotyped for life‐history and disease traits in common garden experiments. Combining phenotypic and genotypic data a QSTFST‐like analysis was conducted to test for signatures of parasite mediated selection. We observed high variation within and among populations for phenotypic traits, but neither an indication of host local adaptation nor a cost of resistance. Infected populations have a higher gene diversity (Hs) than uninfected populations and Hs is strongly positively correlated with fitness. These results suggest a strong parasite effect on reducing population level inbreeding. We discuss how stochastic processes related to frequent extinction‐(re)colonization dynamics as well as host and parasite migration impede the evolution of resistance in the infected populations. We suggest that the genetic and phenotypic patterns of variation are a product of dynamic changes in the host gene pool caused by the interaction of colonization bottlenecks, inbreeding, immigration, hybrid vigor, rare host genotype advantage and parasitism. Our study highlights the effect of the parasite in ameliorating the negative fitness consequences caused by the high drift load in this metapopulation.  相似文献   

4.
Metapopulation ecology has historically been rich in theory, yet analytical approaches for inferring demographic relationships among local populations have been few. We show how reverse-time multi-state capture-recapture models can be used to estimate the importance of local recruitment and interpopulation dispersal to metapopulation growth. We use 'contribution metrics' to infer demographic connectedness among eight local populations of banner-tailed kangaroo rats, to assess their demographic closure, and to investigate sources of variation in these contributions. Using a 7 year dataset, we show that: (i) local populations are relatively independent demographically, and contributions to local population growth via dispersal within the system decline with distance; (ii) growth contributions via local survival and recruitment are greater for adults than juveniles, while contributions involving dispersal are greater for juveniles; (iii) central populations rely more on local recruitment and survival than peripheral populations; (iv) contributions involving dispersal are not clearly related to overall metapopulation density; and (v) estimated contributions from outside the system are unexpectedly large. Our analytical framework can classify metapopulations on a continuum between demographic independence and panmixia, detect hidden population growth contributions, and make inference about other population linkage forms, including rescue effects and source-sink structures. Finally, we discuss differences between demographic and genetic population linkage patterns for our system.  相似文献   

5.
The question of how dispersal behavior is adaptive and how it responds to changes in selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, “triple-threshold” strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.  相似文献   

6.
The evolutionary consequences of changes in landscape dynamics for the evolution of life history syndromes are studied using a metapopulation model. We consider in turn the long-term effects of a change in the local disturbance rate, in the maximal local population persistence, in habitat productivity, and in habitat fragmentation. We examine the consequences of selective interactions between dispersal and reproductive effort by comparing the outcome of joint evolution to a situation where the species has lost the potential to evolve either its reproductive effort or its dispersal rate. We relax the classical assumption that any occupied site in the metapopulation reaches its carrying capacity immediately after recolonization. Our main conclusions are the following: (1) genetic diversity modifies the range of landscape parameters for which the metapopulation is viable, but it alters very little the qualitative evolutionary trends observed for each trait within this range. Although they are both part of a competition/colonization axis, reproductive effort and dispersal are not substitutable traits: their evolution reflects more directly the change in the landscape dynamics, than a selective interaction among them. (2) no general syndrome of covariation between reproductive effort and dispersal can be predicted: the pattern of association between the two traits depends on the type of change in landscape dynamics and on the saturation level. We review empirical evidence on colonizer syndromes and suggest lines for further empirical work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
We investigate the joint evolution of public goods cooperation and dispersal in a metapopulation model with small local populations. Altruistic cooperation can evolve due to assortment and kin selection, and dispersal can evolve because of demographic stochasticity, catastrophes and kin selection. Metapopulation structures resulting in assortment have been shown to make selection for cooperation possible. But how does dispersal affect cooperation and vice versa, when both are allowed to evolve as continuous traits? We found four qualitatively different evolutionary outcomes. (1) Monomorphic evolution to full defection with positive dispersal. (2) Monomorphic evolution to an evolutionarily stable state with positive cooperation and dispersal. In this case, parameter changes selecting for increased cooperation typically also select for increased dispersal. (3) Evolutionary branching can result in the evolutionarily stable coexistence of defectors and cooperators. Although defectors could be expected to disperse more than cooperators, here we show that the opposite case is also possible: Defectors tend to disperse less than cooperators when the total amount of cooperation in the dimorphic population is low enough. (4) Selection for too low cooperation can cause the extinction of the evolving population. For moderate catastrophe rates dispersal needs to be initially very frequent for evolutionary suicide to occur. Although selection for less dispersal in principle could prevent such evolutionary suicide, in most cases this rescuing effect is not sufficient, because selection in the cooperation trait is typically much stronger. If the catastrophe rate is large enough, a part of the boundary of viability can be evolutionarily attracting with respect to both strategy components, in which case evolutionary suicide is expected from all initial conditions.  相似文献   

8.
Dispersal is a key trait responsible for the spread of individuals and genes among local populations, thereby generating eco‐evolutionary interactions. Especially in heterogeneous metapopulations, a tight coupling between dispersal, population dynamics and the evolution of local adaptation is expected. In this respect, dispersal should counteract ecological specialization by redistributing locally selected phenotypes (i.e. migration load). Habitat choice following an informed dispersal decision, however, can facilitate the evolution of ecological specialization. How such informed decisions influence metapopulation size and variability is yet to be determined. By means of individual‐based modelling, we demonstrate that informed decisions about both departure and settlement decouple the evolution of dispersal and that of generalism, selecting for highly dispersive specialists. Choice at settlement is based on information from the entire dispersal range, and therefore decouples dispersal from ecological specialization more effectively than choice at departure, which is only based on local information. Additionally, habitat choice at departure and settlement reduces local and metapopulation variability because of the maintenance of ecological specialization at all levels of dispersal propensity. Our study illustrates the important role of habitat choice for dynamics of spatially structured populations and thus emphasizes the importance of considering that dispersal is often informed.  相似文献   

9.
Natural selection varies widely among locations of a species’ range, favoring population divergence and adaptation to local environmental conditions. Selection also differs between females and males, favoring the evolution of sexual dimorphism. Both forms of within‐species evolutionary diversification are widely studied, though largely in isolation, and it remains unclear whether environmental variability typically generates similar or distinct patterns of selection on each sex. Studies of sex‐specific local adaptation are also challenging because they must account for genetic correlations between female and male traits, which may lead to correlated patterns of trait divergence between sexes, whether or not local selection patterns are aligned or differ between the sexes. We quantified sex‐specific divergence in five clinally variable traits in Drosophila melanogaster that individually vary in their magnitude of cross‐sex genetic correlation (i.e., from moderate to strongly positive). In all five traits, we observed parallel male and female clines, regardless of the magnitude of their genetic correlation. These patterns imply that parallel spatial divergence of female and male traits is a reflection of sexually concordant directional selection imposed by local environmental conditions. In such contexts, genetic correlations between the sexes promote, rather than constrain, local adaptation to a spatially variable environment.  相似文献   

10.
Differential seed dispersal, in which selfed and outcrossed seeds possess different dispersal propensities, represents a potentially important individual‐level association. A variety of traits can mediate differential seed dispersal, including inflorescence and seed size variation. However, how natural selection shapes such associations is poorly known. Here, we developed theoretical models for the evolution of mating system and differential seed dispersal in metapopulations, incorporating heterogeneous pollination, dispersal cost, cost of outcrossing and environment‐dependent inbreeding depression. We considered three models. In the ‘fixed dispersal model’, only selfing rate is allowed to evolve. In the ‘fixed selfing model’, in which selfing is fixed but differential seed dispersal can evolve, we showed that natural selection favours a higher, equal or lower dispersal rate for selfed seeds to that for outcrossed seeds. However, in the ‘joint evolution model’, in which selfing and dispersal can evolve together, evolution necessarily leads to higher or equal dispersal rate for selfed seeds compared to that for outcrossed. Further comparison revealed that outcrossed seed dispersal is selected against by the evolution of mixed mating or selfing, whereas the evolution of selfed seed dispersal undergoes independent processes. We discuss the adaptive significance and constraints for mating system/dispersal association.  相似文献   

11.
In most metapopulation models dispersal is assumed to be a fixed species-specific trait, but in reality dispersal abilities are highly sensitive to various selective pressures. Strict isolation of a metapopulation, which precludes any influx of immigrants (and their genes) from outside and makes it impossible for emigrants to reach other localities with suitable habitat, thus reducing fitness benefits of long-distance dispersal to zero, may be expected to impose strong selection against dispersal. We tested the above prediction by comparing dispersal parameters derived with the Virtual Migration model for isolated and non-isolated metapopulations of two species of large blue Maculinea (= Phengaris) butterflies, surveyed with intensive mark-recapture. Mortality during dispersal was found to be twice (in M. teleius) to five times higher (in M. arion) in isolated metapopulations. Isolation also resulted in significantly reduced dispersal distances in isolated metapopulations, with the effect being particularly strong in M. arion females. Apart from its evolutionary and ecological consequences, dispersal depression in isolated butterfly metapopulations implied by our results has serious conservation implications. It provides a clear argument against using parameter values obtained in a different environmental setting in modelling applications, e.g., Population Viability Analyses or environmental impact assessment. Furthermore, it underlines the importance of establishing well-connected networks of suitable habitats prior to species release in areas where reintroductions are planned.  相似文献   

12.
Earlier models on the evolution of dispersal have suggested that evolutionarily stable dispersal rates should increase with the frequency of local extinctions. Most metapopulation models assume site saturation (i.e., no local population dynamics), yet the majority of species distributed as metapopulations rarely attain carrying capacity in all occupied patches. In this article, we relax this assumption and examine the evolutionarily stable dispersal rate under nonsaturated but still competitive demographic conditions. Contrary to previous predictions, we show that increasing local extinction rates may allow decreasing dispersal rates to evolve.  相似文献   

13.
The genetic structure of metapopulations offers insights into the genetic consequences of local extinction and recolonization. We studied allozyme variation in rock pool metapopulations of two species of waterfleas (Daphnia) with the aim to understand how these dynamics influence genetic differentiation. We screened 138 populations of D. magna and 65 populations of D. longispina from an area in the archipelago of southern Finland. The pools from which they were sampled are separated by distances between 1.5 and 4710 m and located on a total of 38 islands. The genetic population structure of the two species was strikingly similar, consistent with their similar metapopulation ecology. The mean F(PT) value (differentiation among pools with respect to the total metapopulation) was 0.55 and a hierarchical analysis showed that genetic differentiation was strong (>0.25) among pools within islands as well as among whole islands. Within islands, pairwise genetic differentiation increased with geographic distance, indicating isolation by distance due to spatially limited dispersal. Previous studies have shown strong founder events occurring during colonization in our metapopulation. We suggest that the genetic population structure in the studied metapopulations is largely explained by three consequences of these founder events: (i) strong drift during colonization, (ii) local inbreeding, which results in hybrid vigour and increased effective migration rates after subsequent immigration, and (iii) effects of selection through hitchhiking of neutral genes with linked loci under selection.  相似文献   

14.
The delimitation of populations, defined as groups of individuals linked by gene flow, is possible by the analysis of genetic markers and also by spatial models based on dispersal probabilities across a landscape. We combined these two complimentary methods to define the spatial pattern of genetic structure among remaining populations of the threatened Florida scrub-jay, a species for which dispersal ability is unusually well-characterized. The range-wide population was intensively censused in the 1990s, and a metapopulation model defined population boundaries based on predicted dispersal-mediated demographic connectivity. We subjected genotypes from more than 1000 individual jays screened at 20 microsatellite loci to two Bayesian clustering methods. We describe a consensus method for identifying common features across many replicated clustering runs. Ten genetically differentiated groups exist across the present-day range of the Florida scrub-jay. These groups are largely consistent with the dispersal-defined metapopulations, which assume very limited dispersal ability. Some genetic groups comprise more than one metapopulation, likely because these genetically similar metapopulations were sundered only recently by habitat alteration. The combined reconstructions of population structure based on genetics and dispersal-mediated demographic connectivity provide a robust depiction of the current genetic and demographic organization of this species, reflecting past and present levels of dispersal among occupied habitat patches. The differentiation of populations into 10 genetic groups adds urgency to management efforts aimed at preserving what remains of genetic variation in this dwindling species, by maintaining viable populations of all genetically differentiated and geographically isolated populations.  相似文献   

15.
Coevolving populations of hosts and parasites are often subdivided into a set of patches connected by dispersal. Higher relative rates of parasite compared with host dispersal are expected to lead to parasite local adaptation. However, we know of no studies that have considered the implications of higher relative rates of parasite dispersal for other aspects of the coevolutionary process, such as the rate of coevolution and extent of evolutionary escalation of resistance and infectivity traits. We investigated the effect of phage dispersal on coevolution in experimental metapopulations of the bacterium Pseudomonas fluorescens SBW25 and its viral parasite, phage SBW25Phi2. Both the rate of coevolution and the breadth of evolved infectivity and resistance ranges peaked at intermediate rates of parasite dispersal. These results suggest that parasite dispersal can enhance the evolutionary potential of parasites through provision of novel genetic variation, but that high rates of parasite dispersal can impede the evolution of parasites by homogenizing genetic variation between patches, thereby constraining coevolution.  相似文献   

16.
The frequent transition from outcrossing to selfing in flowering plants is often accompanied by changes in multiple aspects of floral morphology, termed the “selfing syndrome.” While the repeated evolution of these changes suggests a role for natural selection, genetic drift may also be responsible. To determine whether selection or drift shaped different aspects of the pollination syndrome and mating system in the highly selfing morning glory Ipomoea lacunosa, we performed multivariate and univariate Qst‐Fst comparisons using a wide sample of populations of I. lacunosa and its mixed‐mating sister species Ipomoea cordatotriloba. The two species differ in early growth, floral display, inflorescence traits, corolla size, nectar, and pollen number. Our analyses support a role for natural selection driving trait divergence, specifically in corolla size and nectar traits, but not in early growth, display size, inflorescence length, or pollen traits. We also find evidence of selection for reduced herkogamy in I. lacunosa, consistent with selection driving both the transition in mating system and the correlated floral changes. Our research demonstrates that while some aspects of the selfing syndrome evolved in response to selection, others likely evolved due to drift or correlated selection, and the balance between these forces may vary across selfing species.  相似文献   

17.
Effects of cognitive abilities on metapopulation connectivity   总被引:1,自引:0,他引:1  
Connectivity among demes in a metapopulation depends on both the landscape's and the focal organism's properties (including its mobility and cognitive abilities). Using individual‐based simulations, we contrast the consequences of three different cognitive strategies on several measures of metapopulation connectivity. Model animals search suitable habitat patches while dispersing through a model landscape made of cells varying in size, shape, attractiveness and friction. In the blind strategy, the next cell is chosen randomly among the adjacent ones. In the near‐sighted strategy, the choice depends on the relative attractiveness of these adjacent cells. In the far‐ sighted strategy, animals may additionally target suitable patches that appear within their perceptual range. Simulations show that the blind strategy provides the best overall connectivity, and results in balanced dispersal. The near‐sighted strategy traps animals into corridors that reduce the number of potential targets, thereby fragmenting metapopulations in several local clusters of demes, and inducing sink–source dynamics. This sort of local trapping is somewhat prevented in the far‐sighted strategy. The colonization success of strategies depends highly on initial energy reserves: blind does best when energy is high, near‐sighted wins at intermediate levels, and far‐sighted outcompetes its rivals at low energy reserves. We also expect strong effects in terms of metapopulation genetics: the blind strategy generates a migrant‐pool mode of dispersal that should erase local structures. By contrast, near‐ and far‐sighted strategies generate a propagule‐pool mode of dispersal and source–sink behavior that should boost structures (high genetic variance among‐ and low variance within local clusters of demes), particularly if metapopulation dynamics is also affected by extinction–colonization processes. Our results thus point to important effects of the cognitive ability of dispersers on the connectivity, dynamics and genetics of metapopulations.  相似文献   

18.
Disruptions in metapopulation connectivity due to demographic pressure can leave genetically isolated subpopulations susceptible to genetic drift, accumulation of deleterious alleles, and inbreeding depression. Such a scenario may be playing out within Allegheny woodrat (Neotoma magister) metapopulations as a series of synergistic extrinsic pressures have contributed to the rangewide decline of the species over the last 40 years. Our goal was to elucidate the effects of demographic collapse on metapopulation function by using 11 microsatellites markers to quantify differences in patterns of connectivity and genetic diversity between a demographically stable metapopulation and one in severe demographic decline. The demographically diminished metapopulation had lower levels of genetic diversity than the stable metapopulation at all levels evaluated (metapopulation-, subpopulation-, and individual-scales). In contrast to patterns of connectivity observed within the stable metapopulation, peripheral subpopulations in the diminished metapopulation had become completely isolated and were drifting toward genetic fixation, likely as a result of the extirpation of stepping-stone subpopulations. The declining genetic parameters observed within these isolated peripheral subpopulations suggest that inbreeding depression may be contributing significantly to their demographic decline. Allegheny woodrats readily express the genetic consequences of metapopulation decline due to the low effective population sizes of subpopulations and the species’ limited dispersal capacity. Differences in genetic parameters observed between demographically stable and diminished Allegheny woodrat metapopulations emphasize the risks posed to metapopulation function and associated genetic processes introduced with demographic decline.  相似文献   

19.
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.  相似文献   

20.
Amphibians are frequently characterized as having limited dispersal abilities, strong site fidelity and spatially disjunct breeding habitat. As such, pond‐breeding species are often alleged to form metapopulations. Amphibian species worldwide appear to be suffering population level declines caused, at least in part, by the degradation and fragmentation of habitat and the intervening areas between habitat patches. If the simplification of amphibians occupying metapopulations is accurate, then a regionally based conservation strategy, informed by metapopulation theory, is a powerful tool to estimate the isolation and extinction risk of ponds or populations. However, to date no attempt to assess the class‐wide generalization of amphibian populations as metapopulations has been made. We reviewed the literature on amphibians as metapopulations (53 journal articles or theses) and amphibian dispersal (166 journal articles or theses for 53 anuran species and 37 salamander species) to evaluate whether the conditions for metapopulation structure had been tested, whether pond isolation was based only on the assumption of limited dispersal, and whether amphibian dispersal was uniformly limited. We found that in the majority of cases (74%) the assumptions of the metapopulation paradigm were not tested. Breeding patch isolation via limited dispersal and/or strong site fidelity was the most frequently implicated or tested metapopulation condition, however we found strong evidence that amphibian dispersal is not as uniformly limited as is often thought. The frequency distribution of maximum movements for anurans and salamanders was well described by an inverse power law. This relationship predicts that distances beneath 11–13 and 8–9 km, respectively, are in a range that they may receive one emigrating individual. Populations isolated by distances approaching this range are perhaps more likely to exhibit metapopulation structure than less isolated populations. Those studies that covered larger areas also tended to report longer maximum movement distances – a pattern with implications for the design of mark‐recapture studies. Caution should be exercised in the application of the metapopulation approach to amphibian population conservation. Some amphibian populations are structured as metapopulations – but not all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号