首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
Mature adipocyte-derived dedifferentiated fat cells (DFAT) have a potential to be useful as new cell-source for cell-based therapy for spinal cord injury (SCI), but the mechanisms remain unclear. The objective of this study was to examine whether DFAT-induced functional recovery is achieved through remyelination and/or glial scar reduction in a mice model of SCI. To accomplish this we subjected adult female mice (n = 22) to SCI. On the 8th day post-injury locomotor tests were performed, and the mice were randomly divided into two groups (control and DFAT). The DFAT group received stereotaxic injection of DFAT, while the controls received DMEM medium. Functional tests were conducted at repeated intervals, until the 36th day, and immunohistochemistry or staining was performed on the spinal cord sections. DFAT transplantation significantly improved locomotor function of their hindlimbs, and promoted remyelination and glial scar reduction, when compared to the controls. There were significant and positive correlations between promotion of remyelination or/and reduction of glial scar, and recovery of locomotor function. Furthermore, transplanted DFAT expressed markers for neuron, astrocyte, and oligodendrocyte, along with neurotrophic factors, within the injured spinal cord. In conclusion, DFAT-induced functional recovery in mice after SCI is probably mediated by both cell-autonomous and cell-non-autonomous effects on remyelination of the injured spinal cord.  相似文献   

2.
骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)已被广泛应用于治疗脊髓损伤,但目前对其治疗机制了解甚少。BMSCs被移植至脊髓钳夹损伤模型大鼠,以研究其保护作用。通过LFB(Luxol fast blue)染色、锇酸染色、TUNEL(Td T-mediated d UTP nick-end labeling)染色和透射电镜对白质有髓神经纤维进行观察。免疫印迹检测BMSCs移植对脑源性神经营养因子(Brain derived neurotrophic factor,BDNF)和caspase 3蛋白表达的影响。通过脊髓损伤后1、7、14 d三个时间点移植BMSCs并进行后肢运动评分(Basso,beattie and bresnahan;BBB评分)和CNPase(2′,3′-cyclic-nucleotide 3′-phosphodiesterase)、髓鞘碱性蛋白(Myelin basic protein,MBP)、caspase 3蛋白水平的检测。免疫荧光观察BMSCs移植到受损脊髓后分化情况及CNPase-caspase 3~+共表达情况。骨髓间充质干细胞移植7 d后,部分移植的BMSCs可表达神经元和少突胶质细胞标记物,大鼠后肢运动能力和髓鞘超微结构特征均明显改善。骨髓间充质干细胞移植后BDNF蛋白表达水平增加,caspase 3蛋白表达水平则降低。相对于脊髓损伤后1 d和14 d,7 d移植BMSCs后MBP和CNPase蛋白表达水平最高;caspase 3蛋白表达水平则最低。骨髓间充质干细胞移植后CNPase-caspase 3~+细胞散在分布于脊髓白质。结果表明,急性脊髓损伤后,BMSCs移植到受损脊髓有分化为神经元和少突胶质细胞的倾向,并促进BDNF的分泌介导抗少突胶质细胞凋亡而对神经脱髓鞘病变有保护作用,且最佳移植时间为脊髓损伤后7 d。  相似文献   

3.
Spinal cord injury (SCI) remains a formidable challenge in the clinic. In the current study, we examined the effects of the TLX gene on the proliferation and neuronal differentiation of dermal multipotent stem cells (DMSCs) in vitro and the potential of these cells to improve SCI in rats in vivo. DMSCs were stably transfected with TLX-expressing plasmid (TLX/DMSCs). Cell proliferation was examined using the MTT assay, and neuronal differentiation was characterized by morphological observation combined with immunocytochemical/immunofluorescent staining. The in vivo functions of these cells were evaluated by transplantation into rats with SCI, followed by analysis of hindlimb locomotion and post-mortem histology. Compared to parental DMSCs, TLX/DMSCs showed enhanced proliferation and preferential differentiation into NF200-positive neurons in contrast to GFAP-positive astrocytes. When the undifferentiated cells were transplanted into rats with SCI injury, TLX/DMSCs led to significant improvement in locomotor recovery and healing of SCI, as evidenced by reduction in scar tissues and cavities, increase in continuous nerve fibers/axons and enrichment of NF200-positive neurons on the histological level. In conclusion, TLX promotes the proliferation and neuronal differentiation of DMSCs and thus, may serve as a promising therapy for SCI in the clinic.  相似文献   

4.
Chondroitin sulfate proteoglycans (CSPGs) are glial scar-associated molecules considered axonal regeneration inhibitors and can be digested by chondroitinase ABC (ChABC) to promote axonal regeneration after spinal cord injury (SCI). We previously demonstrated that intrathecal delivery of low-dose ChABC (1 U) in the acute stage of SCI promoted axonal regrowth and functional recovery. In this study, high-dose ChABC (50 U) introduced via intrathecal delivery induced subarachnoid hemorrhage and death within 48 h. However, most SCI patients are treated in the sub-acute or chronic stages, when the dense glial scar has formed and is minimally digested by intrathecal delivery of ChABC at the injury site. The present study investigated whether intraparenchymal delivery of ChABC in the sub-acute stage of complete spinal cord transection would promote axonal outgrowth and improve functional recovery. We observed no functional recovery following the low-dose ChABC (1 U or 5 U) treatments. Furthermore, animals treated with high-dose ChABC (50 U or 100 U) showed decreased CSPGs levels. The extent and area of the lesion were also dramatically decreased after ChABC treatment. The outgrowth of the regenerating axons was significantly increased, and some partially crossed the lesion site in the ChABC-treated groups. In addition, retrograde Fluoro-Gold (FG) labeling showed that the outgrowing axons could cross the lesion site and reach several brain stem nuclei involved in sensory and motor functions. The Basso, Beattie and Bresnahan (BBB) open field locomotor scores revealed that the ChABC treatment significantly improved functional recovery compared to the control group at eight weeks after treatment. Our study demonstrates that high-dose ChABC treatment in the sub-acute stage of SCI effectively improves glial scar digestion by reducing the lesion size and increasing axonal regrowth to the related functional nuclei, which promotes locomotor recovery. Thus, our results will aid in the treatment of spinal cord injury.  相似文献   

5.
Neurogenin2 (Ngn2) is a proneural gene that directs neuronal differentiation of progenitor cells during development. This study aimed to investigate whether the use of adipose-derived stem cells (ADSCs) over-expressing the Ngn2 transgene (Ngn2–ADSCs) could display the characteristics of neurogenic cells and improve functional recovery in an experimental rat model of SCI. ADSCs from rats were cultured and purified in vitro, followed by genetically modified with the Ngn2 gene. Forty-eight adult female Sprague–Dawley rats were randomly assigned to three groups: the control, ADSCs, and Ngn2–ADSCs groups. The hind-limb motor function of all rats was recorded using the Basso, Beattie, and Bresnahan locomotor rating scale for 8 weeks. Moreover, hematoxylineosin staining and immunohistochemistry were also performed. After neural induction, positive expression rate of NeuN in Ngn2–ADSCs group was upon 90 %. Following transplantation, a great number of ADSCs was found around the center of the injury spinal cord at 1 and 4 weeks, which improved retention of tissue at the lesion site. Ngn2–ADSCs differentiated into neurons, indicated by the expression of neuronal markers, NeuN and Tuj1. Additionally, transplantation of Ngn2–ADSCs upregulated the trophic factors (brain-derived neurotrophic factor and vascular endothelial growth factor), and inhibited the glial scar formation, which was indicated by immunohistochemistry with glial fibrillary acidic protein. Finally, Ngn2–ADSCs-treated animals showed the highest functional recovery among the three groups. These findings suggest that transplantation of Ngn2-overexpressed ADSCs promote the functional recovery from SCI, and improve the local microenvironment of injured cord in a more efficient way than that with ADSCs alone.  相似文献   

6.
Background aimsSeveral studies have reported functional improvement after transplantation of in vivo-derived neural progenitor cells (NPC) into injured spinal cord. However, the potential of human embryonic stem cell-derived NPC (hESC-NPC) as a tool for cell replacement of spinal cord injury (SCI) should be considered.MethodsWe report on the generation of NPC as neural-like tubes in adherent and feeder-free hESC using a defined media supplemented with growth factors, and their transplantation in collagen scaffolds in adult rats subjected to midline lateral hemisection SCI.ResultshESC-NPC were highly expressed molecular features of NPC such as Nestin, Sox1 and Pax6. Furthermore, these cells exhibited the multipotential characteristic of differentiating into neurons and glials in vitro. Implantation of xenografted hESC-NPC into the spinal cord with collagen scaffold improved the recovery of hindlimb locomotor function and sensory responses in an adult rat model of SCI. Analysis of transplanted cells showed migration toward the spinal cord and both neural and glial differentiation in vivo.ConclusionsThese findings show that transplantation of hESC-NPC in collagen scaffolds into an injured spinal cord may provide a new approach to SCI.  相似文献   

7.
Atrophy of upper motor neurons hampers axonal regeneration and functional recovery following spinal cord injury (SCI). Apart from the severity of primary injury, a series of secondary pathological damages including spinal cord edema and glial scar formation affect the fate of injured upper motor neurons. The aquaporin-4 (AQP4) water channel plays a critical role in water homeostasis and migration of astrocytes in the central nervous system, probably offering a new therapeutic target for protecting against upper motor neuron degeneration after SCI. To test this hypothesis, we examined the effect of AQP4 deficiency on atrophy of rubrospinal neurons after unilateral rubrospinal tract transection at the fourth cervical level in mice. AQP4 gene knockout (AQP4?/?) mice exhibited high extent of spinal cord edema at 72 h after lesion compared with wild-type littermates. AQP4?/? mice showed impairments in astrocyte migration toward the transected site with a greater lesion volume at 1 week after surgery and glial scar formation with a larger cyst volume at 6 weeks. More severe atrophy and loss of axotomized rubrospinal neurons as well as axonal degeneration in the rubrospinal tract rostral to the lesion were observed in AQP4?/? mice at 6 weeks after SCI. AQP4 expression was downregulated at the lesioned spinal segment at 3 days and 1 week after injury, but upregulated at 6 weeks. These results demonstrated that AQP4 not only mitigates spinal cord damage but also ameliorates retrograde degeneration of rubrospinal neurons by promoting edema clearance and glial scar formation after laceration SCI. This finding supports the notion that AQP4 may be a promising therapeutic target for SCI.  相似文献   

8.
Background aimsCombining biologic matrices is becoming a better choice to advance stem cell-based therapies. Platelet-rich plasma (PRP) is a biologic product of concentrated platelets and has been used to promote regeneration of peripheral nerves after injury. We examined whether PRP could induce rat bone marrow stromal cells (BMSCs) differentiation in vitro and whether a combination of BMSCs, PRP and brain-derived neurotrophic factor (BDNF) could provide additive therapeutic benefits in vivo after spinal cord injury (SCI).MethodsBMSCs and BDNF-secreting BMSCs (BDNF-BMSCs) were cultured with PRP for 7 days and 21 days, respectively, and neurofilament (NF)-200, glial fibrillary acidic protein (GFAP), microtubule-associated protein 2 (MAP2) and ribosomal protein S6 kinase (p70S6K) gene levels were assessed. After T10 hemi-section in 102 rats, 15-μL scaffolds (PRP alone, BMSCs, PRP/BMSCs, BDNF-BMSCs or PRP/BDNF-BMSCs) were transplanted into the lesion area, and real-time polymerase chain reaction, Western blot, immunohistochemistry and ultrastructural studies were performed.ResultsThe messenger RNA expression of NF-200, GFAP, MAP2 and p70S6K was promoted in BMSCs and BDNF-BMSCs after culture with PRP in vitro. BDNF levels were significantly higher in the injured spinal cord after implantation of BDNF-BMSCs. In the PRP/BDNF-BMSCs group at 8 weeks postoperatively, more GFAP was observed, with less accumulation of astrocytes at the graft-host interface. Rats that received PRP and BDNF-BMSC implants showed enhanced hind limb locomotor performance at 8 weeks postoperatively compared with control animals, with more axonal remyelination.ConclusionsA combined treatment comprising PRP and BDNF-overexpressing BMSCs produced beneficial effects in rats with regard to functional recovery after SCI through enhancing migration of astrocytes into the transplants and axonal remyelination.  相似文献   

9.
Presently, few treatments for spinal cord injury (SCI) are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm), a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm2 weight for 1 min at thoracic vertebra (Th) 9 segment. Mice that received an intraperitoneal (i.p.) injection of Agm (100 mg/kg/day) within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs) are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST) demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following SCI.  相似文献   

10.
BACKGROUNDThe development of regenerative therapy for human spinal cord injury (SCI) is dramatically restricted by two main challenges: the need for a safe source of functionally active and reproducible neural stem cells and the need of adequate animal models for preclinical testing. Direct reprogramming of somatic cells into neuronal and glial precursors might be a promising solution to the first challenge. The use of non-human primates for preclinical studies exploring new treatment paradigms in SCI results in data with more translational relevance to human SCI.AIMTo investigate the safety and efficacy of intraspinal transplantation of directly reprogrammed neural precursor cells (drNPCs).METHODSSeven non-human primates with verified complete thoracic SCI were divided into two groups: drNPC group (n = 4) was subjected to intraspinal transplantation of 5 million drNPCs rostral and caudal to the lesion site 2 wk post injury, and lesion control (n = 3) was injected identically with the equivalent volume of vehicle.RESULTSFollow-up for 12 wk revealed that animals in the drNPC group demonstrated a significant recovery of the paralyzed hindlimb as well as recovery of somatosensory evoked potential and motor evoked potential of injured pathways. Magnetic resonance diffusion tensor imaging data confirmed the intraspinal transplantation of drNPCs did not adversely affect the morphology of the central nervous system or cerebrospinal fluid circulation. Subsequent immunohistochemical analysis showed that drNPCs maintained SOX2 expression characteristic of multipotency in the transplanted spinal cord for at least 12 wk, migrating to areas of axon growth cones.CONCLUSIONOur data demonstrated that drNPC transplantation was safe and contributed to improvement of spinal cord function after acute SCI, based on neurological status assessment and neurophysiological recovery within 12 wk after transplantation. The functional improvement described was not associated with neuronal differentiation of the allogeneic drNPCs. Instead, directed drNPCs migration to the areas of active growth cone formation may provide exosome and paracrine trophic support, thereby further supporting the regeneration processes.  相似文献   

11.
Background aimsCell therapy is considered a promising option for treatment of spinal cord injury (SCI). The purpose of this study is to use combined therapy of bone marrow stromal cells (BMSCs) and BMSC-derived gamma-aminobutyric acid (GABA)ergic inhibitory neurotransmitter cells (BDGCs) for the contusion model of SCI in rats.MethodsBDGCs were prepared from BMSCs by pre-inducing them with β-mercaptoethanol followed by retinoic acid and then inducing them by creatine. They were immunostained with BMSC, proneuronal, neural and GABA markers. The BDGCs were intraspinally transplanted into the contused rats, whereas the BMSCs were delivered intravenously. The animals were sacrificed after 12 weeks.ResultsThe Basso, Beattie and Bresnahan test showed improvement in the animals with the combined therapy compared with the untreated animals, the animals treated with GABAergic cells only and the animals that received BMSCs. The immunohistochemistry analysis of the tissue sections prepared from the animals receiving the combined therapy showed that the transplanted cells were engrafted and integrated into the injured spinal cord; in addition, a significant reduction was seen in the cavitation.ConclusionsThe study shows that the combination of GABAergic cells with BMSCs can improve SCI.  相似文献   

12.
13.
Background aimsTraumatic injuries of the central nervous system cause damage and degeneration of specific cell populations with subsequent functional loss. Cell transplantation is a strategy to treat such injuries by replacing lost or damaged cell populations. Many kinds of cells are considered candidates for intraspinal transplantation. Human neural precursor cells (hNPC) derived from post-mortem fetal tissue are easy to isolate and expand, and are capable of producing large numbers of neuronal and glial cells. After transplantation into the nervous system, hNPC produce mature neural phenotypes and permit functional improvement in some models of neurodegenerative disease. In this study, we aimed to elucidate the therapeutic effect of different neuronal and glial progenitor populations of hNPC on locomotor and sensory functions of spinal cord-injured (SCI) ratsMethodsDifferent populations of progenitor cells were obtained from hNPC by cell sorting and neural induction, resulting in cell cultures that were NCAM+ A2B5+, NCAM+ A2B5? or A2B5+ NG2+. These different cell populations were then tested for efficacy in repair of the injured spinal cord by transplantation into rats with SCIResultsThe A2B5+ NG2+ population of hNPC significantly improved locomotor and sensory (hindlimb) functional recovery of SCI rats. Importantly, no abnormal pain responses were observed in the forelimbs following transplantationConclusionsThis treatment approach can improve functional recovery after SCI without causing allodynia. Further studies will be conducted to investigate the ability of A2B5+ NG2+ cells to survive, differentiate and integrate in the injured spinal cord.  相似文献   

14.
The adult spinal cord harbours a population of multipotent neural precursor cells (NPCs) with the ability to replace oligodendrocytes. However, despite this capacity, proliferation and endogenous remyelination is severely limited after spinal cord injury (SCI). In the post-traumatic microenvironment following SCI, endogenous spinal NPCs mainly differentiate into astrocytes which could contribute to astrogliosis that exacerbate the outcomes of SCI. These findings emphasize a key role for the post-SCI niche in modulating the behaviour of spinal NPCs after SCI. We recently reported that chondroitin sulphate proteoglycans (CSPGs) in the glial scar restrict the outcomes of NPC transplantation in SCI by reducing the survival, migration and integration of engrafted NPCs within the injured spinal cord. These inhibitory effects were attenuated by administration of chondroitinase (ChABC) prior to NPC transplantation. Here, in a rat model of compressive SCI, we show that perturbing CSPGs by ChABC in combination with sustained infusion of growth factors (EGF, bFGF and PDGF-AA) optimize the activation and oligodendroglial differentiation of spinal NPCs after injury. Four days following SCI, we intrathecally delivered ChABC and/or GFs for seven days. We performed BrdU incorporation to label proliferating cells during the treatment period after SCI. This strategy increased the proliferation of spinal NPCs, reduced the generation of new astrocytes and promoted their differentiation along an oligodendroglial lineage, a prerequisite for remyelination. Furthermore, ChABC and GF treatments enhanced the response of non-neural cells by increasing the generation of new vascular endothelial cells and decreasing the number of proliferating macrophages/microglia after SCI. In conclusions, our data strongly suggest that optimization of the behaviour of endogenous spinal NPCs after SCI is critical not only to promote endogenous oligodendrocyte replacement, but also to reverse the otherwise detrimental effects of their activation into astrocytes which could negatively influence the repair process after SCI.  相似文献   

15.

Background

Motor neuron loss is characteristic of cervical spinal cord injury (SCI) and contributes to functional deficit.

Methodology/Principal Findings

In order to investigate the amenability of the injured adult spinal cord to motor neuron differentiation, we transplanted spinal cord injured animals with a high purity population of human motor neuron progenitors (hMNP) derived from human embryonic stem cells (hESCs). In vitro, hMNPs displayed characteristic motor neuron-specific markers, a typical electrophysiological profile, functionally innervated human or rodent muscle, and secreted physiologically active growth factors that caused neurite branching and neuronal survival. hMNP transplantation into cervical SCI sites in adult rats resulted in suppression of intracellular signaling pathways associated with SCI pathogenesis, which correlated with greater endogenous neuronal survival and neurite branching. These neurotrophic effects were accompanied by significantly enhanced performance on all parameters of the balance beam task, as compared to controls. Interestingly, hMNP transplantation resulted in survival, differentiation, and site-specific integration of hMNPs distal to the SCI site within ventral horns, but hMNPs near the SCI site reverted to a neuronal progenitor state, suggesting an environmental deficiency for neuronal maturation associated with SCI.

Conclusions/Significance

These findings underscore the barriers imposed on neuronal differentiation of transplanted cells by the gliogenic nature of the injured spinal cord, and the physiological relevance of transplant-derived neurotrophic support to functional recovery.  相似文献   

16.
Spinal cord injury triggers irreversible loss of motor and sensory functions. Numerous strategies aiming at repairing the injured spinal cord have been studied. Among them, the use of bone marrow-derived mesenchymal stem cells (BMSCs) is promising. Indeed, these cells possess interesting properties to modulate CNS environment and allow axon regeneration and functional recovery. Unfortunately, BMSC survival and differentiation within the host spinal cord remain poor, and these cells have been found to have various adverse effects when grafted in other pathological contexts. Moreover, paracrine-mediated actions have been proposed to explain the beneficial effects of BMSC transplantation after spinal cord injury. We thus decided to deliver BMSC-released factors to spinal cord injured rats and to study, in parallel, their properties in vitro. We show that, in vitro, BMSC-conditioned medium (BMSC-CM) protects neurons from apoptosis, activates macrophages and is pro-angiogenic. In vivo, BMSC-CM administered after spinal cord contusion improves motor recovery. Histological analysis confirms the pro-angiogenic action of BMSC-CM, as well as a tissue protection effect. Finally, the characterization of BMSC-CM by cytokine array and ELISA identified trophic factors as well as cytokines likely involved in the beneficial observed effects. In conclusion, our results support the paracrine-mediated mode of action of BMSCs and raise the possibility to develop a cell-free therapeutic approach.  相似文献   

17.
18.
Implanted neural stem cells (NSC) could improve neurological functions following spinal cord injury (SCI), but the optimal conditions for NSC transplantation are largely unknown, especially in transected spinal cord. This study investigated the effect and fate of NSC engrafted into spinal cords at different locations and time points following T9 spinal cord transection. Engrafted NSC could survive and migrate in host spinal cords. Significant improvement in hindlimb locomotor functions associated with NSC survival was found in rats receiving NSC transplantation in the spinal cords rostral to the transection site at the subacute stage (7 days post operation), compared with those caudal to the transection site at the acute stage (at the time of injury). At 4 weeks post operation, CD68 immunohistochemical staining confirmed that macrophages were less in rostrally transplanted sites and in subacute groups than seen in caudal and acute transplanted rats. The present findings indicated that NSC transplantation into spinal cords rostral to transection site at the subacute stage is an optimal strategy for engrafted NSC survival and host behavioral improvement. It therefore would be available to the usage of NSC for the treatment of SCI in the future clinic trial.  相似文献   

19.
Omega-3 fatty acids and neurological injury   总被引:1,自引:0,他引:1  
Studies with omega-3 polyunsaturated fatty acids (PUFA) have shown that these compounds have therapeutic potential in several indications in neurology and psychiatry. Acute spinal cord injury (SCI) is an event with devastating consequences, and no satisfactory treatment is available at present. The pathogenetic mechanisms associated with SCI include excitotoxicity, increased oxidation and inflammation. We review here our recent studies, which suggest that omega-3 PUFA have significant neuroprotective potential in spinal cord trauma. In a first study, we administered an intravenous bolus of alpha-linolenic acid (LNA) or docosahexaenoic acid (DHA) 30 min after spinal cord hemisection injury in adult rats. The omega-3 PUFA led to increased neuronal and glial survival, and a significantly improved neurological outcome. In subsequent studies, we tested DHA in a more severe compression model of SCI. We also explored a combined acute and chronic treatment regime using DHA. Saline or DHA was administered intravenously 30 min after compression of the spinal cord. After injury, the saline group received a standard control diet, whereas DHA-injected animals received either a control or a DHA-enriched diet for 6 weeks following injury. We assessed locomotor recovery and analysed markers for cell survival and axonal damage, and we also investigated the effects of the treatment on the inflammatory reaction and the oxidative stress that follow SCI. We showed that the acute DHA treatment is neuroprotective after compression SCI, even if the treatment is delayed up to an hour after injury. The DHA injection led to an increased neuronal and glial cell survival, and the effect of the DHA injection was amplified by addition of DHA to the diet. Rats treated with a DHA injection and a DHA-enriched diet performed significantly better at 6 weeks in terms of neurological outcome. The analysis of the tissue after DHA administration showed that the fatty acid significantly reduced lipid peroxidation, protein oxidation and RNA/DNA oxidation, and the induction of COX-2. Parallel studies in a facial nerve injury model in mice also showed pro-regenerative effects of chronic dietary administration of DHA after nerve lesion. These observations suggest that treatment with omega-3 PUFA could represent a promising therapeutic approach in the management of neurological injury.  相似文献   

20.
脊髓损伤后胶质瘢痕的形成是阻碍神经恢复的关键原因之一。碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)具有良好的神经保护及促进脊髓损伤的修复作用,然而其对于胶质瘢痕的影响及其机制仍不清楚。本研究通过采用血管动脉夹(30 g)夹闭雌性SD大鼠脊髓2 min造成急性脊髓损伤模型并予以每天皮下注射bFGF(80 μg/kg),探讨bFGF促进脊髓损伤的恢复作用是否涉及到胶质瘢痕调控和Nogo-A/NgR信号的相关机制。通过检测损伤后28 d,各组BBB评分和斜板试验,发现bFGF显著促进脊髓损伤后大鼠运动功能的恢复。HE及尼氏染色显示,bFGF处理组相对于生理盐水处理组,其神经元明显增多,空洞面积减少。同时,星形胶质细胞标记物GFAP免疫荧光结果表明,bFGF减少胶质瘢痕形成,抑制星形胶质细胞过度激活。同样,通过Western 印迹检测发现,bFGF处理后,胶质瘢痕相关蛋白(如GFAP, neurocan)以及神经突生长抑制蛋白(Nogo-A)信号通路相关蛋白质表达量下降。上述结果表明,bFGF可能通过抑制Nogo-A信号蛋白的表达,从而抑制胶质瘢痕的形成,促进脊髓损伤的恢复。此机制研究为脊髓损伤的治疗和恢复提供全新的思路和药物靶点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号