首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Summary Mice inoculated with both L1210 murine tumour vaccine and pyran copolymer were more resistant to L1210 than those inoculated with either of these agents alone. Rabbit anti-mouse thymocyte globulin and silica reduced the augmented resistance of these mice, suggesting the involvement of activated anti-tumour T cells and macrophages in the augmented resistance. We studied the activation of these two cells separately and examined the possible contribution of pyran copolymer-induced peritoneal cells to the augmented resistance to an inoculation of live tumour. Pyran copolymer-induced peritoneal cells endowed the tumour vaccine-primed mice, but not unprimed mice, with resistance to implanted L1210 and, among those peritoneal cell populations, macrophages but not T cells were responsible for this effect since the activity was associated with a cell population which was (1) adherent to nylon wool columns, (2) sensitive to silica and (3) insensitive to anti-Thy 1.2 antibody plus complement. The pyran copolymer-induced peritoneal cells had very little antiproliferative activity when tested against L1210 in vitro and mice inoculated with these peritoneal cells did not survive a challenge of live L1210 cells much longer (<1 day) than L1210 inoculated control mice. Furthermore, the survival of L1210 vaccine-primed mice inoculated with one-tenth the amount of live L1210 (102) was still much shorter than that of mice primed with L1210 vaccine plus pyran copolymer and challenged with ten times as many (103) live L1210 cells. Therefore, direct tumouricidal activity was probably not a major factor in the in vivo immunological augmenting activity of the pyran copolymer-induced macrophages.  相似文献   

2.
When a murine leukemia L1210-specific Lyt-2+ T cell clone, K7L, was injected i.p. into CD2F1 mice together with L1210, the normal growth of L1210 in the peritoneal cavity of the mice at the early stage (days 0 to 5) was strongly inhibited, but L1210 grew progressively at the middle-stage (days 5 to 10), and then was rejected at the late stage (days 10 to 20). The mice thus survived for long times (more than 60 days), whereas the normal control injected with L1210 alone died within 14 days. The L1210 that grew at the middle stage in mice initially inoculated with L1210 together with K7L was a K7L-insensitive (K7L-) variant. All of eight tumor clones established from L1210-K7L- by limiting dilution was insensitive to the antitumor activity of K7L, and this property of tumor clones was stable after repeated in vitro passage. The initial depression of the L1210 growth by K7L followed by growth and rejection of the variant L1210-K7L- by the host T cell activity was then found to prepare a strong, long-lasting (more than 3 mo) immunity to protect mice against the high-dose (10(7) cells per mouse) challenge of original L1210. Corresponding to this result, definite tumor (L1210)-specific cytotoxic T lymphocyte (CTL) activity against both variant and original L1210 targets was developed by antigen (L1210) restimulation in the culture of spleen cells from these mice, but was not increased to a detectable level before L1210-K7L- variant started to grow. It was suggested that the 1210-K7L- variant and the original L1210 should have the common tumor-specific antigen that was independent of the K7L-reactive antigen, and that original L1210, whose growth was retarded by K7L, primed the host with the common antigen to be enormously boosted by the subsequently growing L1210-K7L- variant.  相似文献   

3.
Reduced thiols (e.g., cysteine) are important in the maintenance of lymphocyte cell viability and growth. L1210 monocytic leukaemia cells were known to have a limited ability to uptake cystine, and they require cysteine for cell growth. L1210 cells underwent apoptosis when cultured without thiol-bearing and dithiol-cleaving compounds, adding thiols suppressed the apoptosis and promoted cell growth. A specific inhibitor of interleukin-1 -converting enzyme (ICE)-like and CPP32-like proteases could suppress L1210 cell apoptosis induced by thiol deprivation. The cell lysates of apoptotic L1210 cells exhibited protease activity that could cleave DEVD-AMC, but not YVAD-AMC, and so CPP32-like proteases, but not ICE-like proteases, were activated and participated in apoptosis. The addition of thiols could suppress CPP32-like protease activation. Although the cell death-suppressor bcl-2-family proteins (bcl-2 and bcl-XL) were recently found to suppress the activation of CPP32-like proteases, the expression levels of death-suppressor bcl-2-family proteins did not change when thiols were added. These results suggest that reduced thiols maintain L1210 cell survival by inhibiting the activation of CPP32-like proteases without changing the anti-apoptotic bcl-2-family protein expression.  相似文献   

4.
The growth stimulating effect of a copper-specific chelator, 2,9-dimethyl-4,7-diphenyl-1,10-phenonthroline-sulfonic acid on mouse lymphoma L1210 cells in vitro has been studied. Since they are defective in cystine transport, these cells require cysteine for their growth in vitro. However, addition of cysteine does not greatly enhance cell growth because it is rapidly oxidized to cystine. We have observed that the copper chelator potently inhibited oxidation of cysteine in culture medium and that simultaneous addition of cysteine and the chelator greatly enhanced cell growth. The chelator alone stimulated cell growth slightly by stabilizing a small amount of cysteine effluxed from the cells to the medium. The chelator also enhanced the growth promoting activity of 2-mercaptoethanol by stabilizing cysteine produced in the medium during culture. These results suggest that the chelator stimulates cell growth by inhibiting copper mediated oxidation of cysteine in culture medium.  相似文献   

5.
Suspensions of rat spleen lymphocyte, murine L1210 lymphoma and HeLa cells were partially depleted of glutathione (GSH) with diethyl maleate and allowed to utilize either [35S]methionine, [35S]cystine or [35S]-cysteine for GSH synthesis. Lymphocytes preferentially utilized cysteine, compared to cystine, at a ratio of about 30 to 1, which was not related to differences in the extent of amino acid uptake. Only HeLa cells displayed a slight utilization of methionine via the cystathionine pathway for cysteine and GSH biosynthesis. HeLa and L1210 cells readily utilized either cystine or cysteine for GSH synthesis. The three cell types accumulated detectable levels of intracellular cysteine glutathione mixed disulfide when incubated in a medium containing a high concentration of cystine. Various enzyme activities were measured including gamma-glutamyl transpeptidase, GSH S-transferase and gamma-cystathionase. These results support the concept of a dynamic interorgan relationship of GSH to plasma cyst(e)ine that may have importance for growth of various cell types in vivo.  相似文献   

6.
Summary The ability of monocytes from patients with gastrointestinal cancer to inhibit tumour cell growth and suppress PHA-induced lymphocyte response in vitro was assessed. Isolated monocytes, i.e., adherent Fc+ cells from mononuclear cell suspension, were cytostatic but not cytolytic for both K562 line and L1210 lymphoma cells. Monocytes from the patients showed an increased ability to inhibit the growth of L1210 but not K562 line cells. The increased cytostatic activity of monocytes was associated with their suppressor activity. This suggests that suppressor monocytes are also able to arrest tumour cell growth in vitro.  相似文献   

7.
Spodoptera frugiperda (Sf9) insect cells proliferate in a cystine-free medium, with the same growth rate, reaching the same final cell density, as in a cystine-containing medium, provided that the inoculum is taken from a pre-culture sufficiently early, at 47–53 h. With an inoculum from a 103 h culture an extended lag phase accompanied by cell death was observed during the first 50 h of cystine-free culture, even though the culture had been adapted to cystine-free conditions for 10 passages. Cystine-free cultures seeded with a 103 h inoculum had lower growth rates and reached lower final cell densities than corresponding cystine-supplied cultures. Cysteine biosynthesis occurs from methionine via the β-cystathionine pathway. More methionine was consumed by the cells in cystine-free media, and cystathionine was secreted when methionine and cystine were supplied in excess. The data suggest that cysteine biosynthesis is up-regulated in proliferating cells but down-regulated when the cells enter the stationary phase. In cultures supplied with cystine (10–100 mg 1-1), the specific uptake rate and total consumption of cystine, as well as the uptake of glutamate, glutamine and glucose increased with increasing cystine concentrations. These results are interpreted in view of system x c , a concentration dependent amino acid transporter. Similarly, the consumption of amino acids transported by system L (ile, leu, val, tyr) was enhanced in cystine-containing cultures, as compared to cystine-free cultures. Uptake of cystine, methionine and system L amino acids ceases abruptly in all cultures, even before growth ceased. The specific growth rate starts to decline early during the growth phase, but this growth behaviour could not be correlated to the depletion of nutrients. We therefore propose that the observed growth pattern is a result of (auto)regulatory events that control both proliferation and metabolism. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
UDPgalactose inhibits the growth of mouse leukemic L1210 cells. In calf serum supplemented Dulbecco's medium (CS-DMEM), 1.2 mM UDPgalactose (UDPgal) inhibited cell growth by 50% (IC50), and 5 mM UDPgalactose inhibited cell growth by 92%. Other nucleotide sugars as well as galactose, glucose, and galactose-1-phosphate had little or no effect on cell growth. Uridine nucleotides, which inhibit galactosyltransferase activity, protected L1210 cells from the growth inhibitory effect of UDPgalactose when both were added simultaneously to culture media. Unlike mouse 3T12 cells, in which no inhibition of cell growth was observed with heat-inactivated calf serum (HICS)-DMEM, 5 mM UDPgalactose inhibited L1210 cell growth in HICS-DMEM to the same degree as that observed in CS-DMEM. In contrast to 3T12 cells, L1210 cells secrete significant galactosyltransferase activity into the media. Complete inhibition of 3T12 cell growth by UDPgal was observed if HICS-DMEM medium was first conditioned by L1210 cells for 48 hours. No difference in cell growth or [3H]thymidine uptake was detected after 6 hours of exposure to UDPgalactose, but both were significantly decreased at 24 and 48 hours. Flow cytometric analysis of UDPgalactose effects on L1210 cells revealed no differences in the distribution of cells in G1, S, or G2-M of the cell cycle after 6 hours of incubation, but after 16 hours of UDPgalactose treatment, L1210 cells were arrested in early S phase. These cells were completely viable and morphologically similar to control L1210 cells. Normal growth was resumed when UDPgal was removed. The data suggest that UDPgalactose inhibition of cell growth requires extracellular galactosyltransferase activity and that the effect is mediated via the cell membrane.  相似文献   

9.
Summary L1210 leukemia cells were treated in vitro with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and reovirus to determine their interactive effects on rejection of these tumor cells by mice. The cells were treated with BCNU at concentrations of 0, 3, or 10 M, incubated for 48 h, then treated with reovirus at a multiplicity of infection of 0, 10, 30, or 100 for 2, 6, or 12 h. The survival of mice injected with cells treated with any amount of reovirus, regardless of BCNU treatment, was greater than that of mice injected with untreated cells. Exposure of the cells to reovirus for 6 or 12 h increased the survival of mice injected with these cells as compared with that of mice injected with cells exposed to reovirus for 2 h. Of the survivors, 76% were resistant to subsequent challenge with untreated L1210 cells. These results suggest that activities associated with reovirus replication may cause modifications of L1210 cells that enable them to induce an immune response, thus facilitating their rejection. A lack of correlation between differences in DNA synthesis (measured by 3H-thymidine uptake) by treated cells and the ability of those cells to kill recipient mice indicates that rejection of cells treated with reovirus or BCNU is not due to a decrease in their ability to proliferate or, presumably, to generate lethal tumors. The survival of mice injected with treated L1210 cell preparations containing as few as 2.9% reovirus-infected cells was enhanced to the same degree as that of mice injected with those containing as many as 14.6% infected cells, indicating that modification of only a minor component of the tumor cell population is sufficient to alter the ability of the cells to generate a lethal tumor.This work was supported by a research grant from the Miami University Faculty Research Committee and a Sigma Xi Grant-in-Aid of Research  相似文献   

10.
An L1210 cell line (JT-1), which can grow in medium supplemented with 1 nM folate, has been isolated. These cells exhibit a slower growth rate than folate-replete parental cells and have a lower ability to transport folate or methotrexate via the reduced folate transport system. Measurements at nanomolar concentrations of folate revealed that the adapted cells have acquired a high-affinity folate-binding protein. Binding to this component at 37 degrees C was rapid and reached a maximum value after 30 min which corresponded in amount to 0.23 +/- 0.3 pmol/mg protein, and excess unlabeled folate added 30 min subsequent to the [3H]folate led to a rapid release of the bound substrate. Radioactivity bound to or released from the cells after 30 min at 37 degrees C remained as unmetabolized folic acid. Binding was also rapid at 0 degrees C but uptake at the plateau was only one-half the value obtained at 37 degrees C. Half-maximal saturation of the binding component (KD) occurred at a folate concentration of 0.065 nM at pH 7.4, while the affinity for folate decreased 30-fold when the pH was reduced to 6.2 (KD = 2.0 nM). 5-Methyltetrahydrofolate was also bound by this component (Ki = 13 nM at pH 7.4) but with a much lower affinity than for folate, while progressively weaker interactions were observed with 5-formyltetrahydrofolate (Ki = 45 nM) and methotrexate (Ki = 325 nM). When the same adaptation procedure was performed with limiting amounts of 5-formyltetrahydrofolate, two additional cell lines, JT-2 and JT-3, were isolated which expressed elevated levels of the folate-binding protein. The binding activity of the latter cells was 0.46 and 1.4 pmol/mg protein, respectively. When the level of binding protein was compared in cells grown at different concentrations of folate, an increase in medium folate from 1 to 500 nM caused a sevenfold reduction in binding activity in the JT-3 cell line, while these same growth conditions had no effect on binding by the other cells. These results indicate that L1210 cells adapted to low concentrations of folate or 5-formyltetrahydrofolate contain elevated levels of a high-affinity binding protein and that this protein is able to mediate the intracellular accumulation of folate compounds. L1210 cells thus appear to have two potential uptake routes for folate compounds, the previously characterized anion-exchange system and a second route mediated by a high-affinity binding protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
1-Amino-oxy-3-aminopropane (AOAP) was reported to inhibit several mammalian polyamine-biosynthetic enzymes in vitro, including ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) [Khomutov, Hyvönen, Karvonen, Kauppinen, Paalanen, Paulin, Eloranta, Pajula, Andersson & Pösö (1985) Biochem. Biophys. Res. Commun. 130, 596-602]. In order to clarify its mechanism of action in intact cells, the inhibitory properties of AOAP on the growth and polyamine metabolism of L1210 cells were compared with those seen in a variant subline (D-R cells) which overproduces ODC. As little as 20 microM-AOAP completely blocked proliferation of L1210 cells, and this effect was reversed by the concomitant addition of exogenous putrescine or spermidine. Growth of D-R cells was not affected by AOAP at concentrations up to 0.5 mM. There was no difference in the uptake of AOAP between the L1210 and the D-R cells. Exposure of L1210 or D-R cells to AOAP greatly decreased ODC activity in undialysed cell extracts, but did not decrease AdoMetDC. Activities of both enzymes were increased severalfold by AOAP treatment when activity was measured in dialysed extracts. Treatment with AOAP depleted intracellular putrescine and spermidine contents of L1210 cells, while inducing a massive accumulation of decarboxylated AdoMet. The 8-fold higher putrescine pool present in untreated D-R cells was depleted in a dose-dependent manner by AOAP, but a significant decrease in spermidine and accumulation of decarboxylated AdoMet required 10 times higher drug concentrations, and the changes were much less dramatic than in L1210 cells. These results indicate that in L1210 cells AOAP behaves primarily as a reversible inhibitor of ODC.  相似文献   

12.
Summary The serum of mice hyperimmune to L1210 leukemia was cytotoxic to L1210 cells and, to a much lesser extent, to P388 cells in the presence of complement. However, it did not suppress in vitro growth of L1210 cells, nor did it endow a recipient mouse with immunity to inoculated L1210 cells. This indicates that the serum did not play a significant role, if any, in immune protection of hyperimmune mice.Spleen and peritoneal exudate cells of hyperimmune mice suppressed the in vitro growth of L1210 but not of P388 cells. This is consistent with the fact that hyperimmune mice did not survive the inoculation of P388 cells. The immunocytes failed to suppress the in vitro growth of L1210 cells when preincubated with anti-Thy-1.2 antisera and complement. This, together with the finding that cell populations not adherent to a plastic dish suppressed in vitro growth of L1210 cells, indicates that T cells of immune spleen and peritoneal exudate cell populations were the effectors that suppressed in vitro growth of L1210 cells. Hyperimmune mice lost their immune protection in vivo following the administration of anti-thymocyte antisera, but not with carrageenan or silica, which resulted in the lethal growth of the inoculated L1210 cells. This indicates that T cells were in vivo effectors in immune protection.Hyperimmune spleen T cells endowed a recipient with immunity to L1210 leukemia when transferred in vivo. This confirmed the above results and suggests the applicability of immune cells in an adoptive immunotherapy approach.  相似文献   

13.
2-Mercaptoethanol (2-ME) exerts several effects on murine lymphocytes in culture that might explain its ability to enhance survival and growth of these cells. The uptake of the essential amino acid cystine and consequently the maintenance of intracellular glutathione levels are enhanced by 2-ME. Furthermore, 2-ME (even in the disulfide form) causes lymphocytes to release thiols into the culture medium. These effects might protect the cells from oxidative damage. The additional cystine provided by treatment of lymphocyte cultures with 2-ME might also allow adequate protein synthesis to support survival and/or growth. This study was conducted to assess the relative importance of the antioxidant and protein synthesis effects of 2-ME. As expected, 2-ME increased cystine uptake at all concentrations that enhanced growth and survival, but four nonthiol antioxidants that enhanced growth and/or survival either did not substantially affect cystine uptake or decreased it and did not affect the release of cystine or its products. The results presented here demonstrate that antioxidant protection is necessary and sufficient for lymphocyte survival and that cystine uptake in untreated lymphocytes is sufficient to support the protein synthesis needed for survival and limited growth. However, we also noted that concentrations of 2-ME that stimulated maximal growth more than doubled protein synthesis as measured at 8 hr. Thus the portion of the effects of 2-ME not accounted for by antioxidant action could be accounted for by enhanced protein synthesis.  相似文献   

14.
Summary An L1210 cell line (JT-1), which can grow in medium supplemented with 1nm folate, has been isolated. These cells exhibit a slower growth rate than folate-replete parental cells and have a lower ability to transport folate or methotrexate via the reduced folate transport system. Measurements at nanomolar concentrations of folate revealed that the adapted cells have acquired a high-affinity folate-binding protein. Binding to this component at 37°C was rapid and reached a maximum value after 30 min which corresponded in amount to 0.23±0.3 pmol/mg protein, and excess unlabeled folate added 30 min subsequent to the [3H]folate led to a rapid release of the bound substrate. Radioactivity bound to or released from the cells after 30 min at 37°C remained as unmetabolized folic acid. Binding was also rapid at 0°C but uptake at the plateau was only one-half the value obtained at 37°C. Half-maximal saturation of the binding component (K D) occurred at a folate concentration of 0.065nm at pH 7.4, while the affinity for folate decreased 30-fold when the pH was reduced to 6.2 (K D=2.0nm). 5-Methyltetrahydrofolate was also bound by this component (K i=13nm at pH 7.4) but with a much lower affinity than for folate, while progressively weaker interactions were observed with 5-formyltetrahydrofolate (K i=45nm) and methotrexate (K i=325nm). When the same adaptation procedure was performed with limiting amounts of 5-formyltetrahydrofolate, two additional cell lines, JT-2 and JT-3, were isolated which expressed elevated levels of the folate-binding protein. The binding activity of the latter cells was 0.46 and 1.4 pmol/mg protein, respectively. When the level of binding protein was compared in cells grown at different concentrations of folate, an increase in medium folate from 1 to 500nm caused a sevenfold reduction in binding activity in the JT-3 cell line, while these same growth conditions had no effect on binding by the other cells. These results indicate that L1210 cells adapted to low concentrations of folate or 5-formyltetrahydrofolate contain elevated levels of a high-affinity binding protein and that this protein is able to mediate the intracellular accumulation of folate compounds. L1210 cells thus appear to have two potential uptake routes for folate compounds, the previously characterized anion-exchange system and a second route mediated by a high-affinity binding protein. An additional low-affinity, high-capacity transport system for folate that had been proposed previously was not observed under a variety of experimental conditions in either the adapted or parental cells.  相似文献   

15.
The characteristics of hematin uptake were examined in three malignant cell lines [L1210 leukemia, 745 murine erythroleukemia (MEL) and Walker carcinoma (W256)], a cell line derived from normal rat liver (BRL-3A) and a normal embryonic cell, chick embryo fibroblasts (CEF). Uptake in the normal liver cell line was slight and occurred at a slow rate in contrast to the rapid uptake, which was more rapid and of greater magnitude in the three tumor cell lines, Saturation of the heme uptake mechanism was observed in MEL cells at an extra-cellular hematin concentration of 160 micro M and in L1210 cells at 300 micro M. At saturation L1210 cells achieved a cellular heme concentration nine times as high as MEL cells. Hematin uptake in MEL cells was markedly augmented by pretreatment with DMSO, procaine, detergent or proteolytic enzymes or by increases in the pH of the medium from 8 to 9.5. In contrast to MEL cells where SA inhibits growth by lowering cellular heme, the inhibition of growth of L1210 cells by SA appears to operate by a mechanism independent of heme. In gradual increase in hematin uptake capacity in MEL cells over a period of days. Afer exposure of MEL cells to a high concentration of hematin in the medium, the egress of heme was followed under various conditions. Of the various agents studied, only cyanide produced a loss of heme from MEL cells.  相似文献   

16.
Proliferation dependence of topoisomerase II mediated drug action   总被引:19,自引:0,他引:19  
Topoisomerase II mediated DNA scission induced by both a nonintercalating agent [4'-demethylepipodophyllotoxin 4-(4,6-O-ethylidene-beta-D-glucopyranoside) (VP-16)] and an intercalator [4'-(9-acridinylamino) methanesulfon-m-anisidide (m-AMSA)] was studied as a function of proliferation in Chinese hamster ovary (CHO), HeLa, and mouse leukemia L1210 cell lines. Log-phase CHO cells exhibited dose-dependent drug-induced DNA breaks, while plateau cells were found to be resistant to the effects of VP-16 and m-AMSA. Neither decreased viability nor altered drug uptake accounted for the drug resistance of these confluent cells. In contrast to CHO cells, plateau-phase HeLa and L1210 cells remained sensitive to VP-16 and m-AMSA. Recovery of drug sensitivity by plateau-phase CHO cells was found to reach a maximum approximately 18 h after these cells regained exponential growth and was independent of DNA synthesis. DNA strand break frequency correlated with cytotoxicity in CHO cells; log cells demonstrated an inverse log linear relationship between drug dose (or DNA damage) and colony survival, whereas plateau-derived colony survival was virtually unaffected by increasing drug dose. Topoisomerase II activity, whether determined by decatenation of kinetoplast DNA, by cleavage of pBR322 DNA, or by precipitation of the DNA-topoisomerase II complex, was uniformly severalfold greater in log-phase CHO cells compared to plateau-phase cells.  相似文献   

17.
Activated macrophages inhibit replication of murine lymphoblastic leukemia L1210 cells without lysis. This inhibition of replication is associated with abnormalities of mitochondrial electron transport at the level of NADH dehydrogenase (NADH-DH) and succinate dehydrogenase (SDH). The mechanism of inhibition is unknown, although it has been demonstrated that as NADH-DH and SDH activity is lost, iron is released from cells. Because both NADH-DH and SDH contain numerous iron-sulfur clusters, damage to these structures may be one result of injury by activated macrophages. L1210 cells were labeled with 55Fe and co-cultivated with activated murine peritoneal macrophages (injured L1210 cells). At 48 h, injured L1210 cells had released 83 +/- 8% (mean +/- SEM of 55Fe activity into the media, compared with 25 +/- 4% release from control and 37 +/- 7% from nondividing mitomycin C-treated control cells. All cells were greater than 90% viable. These differences were also reflected in the iron content of the cells. Mitochondria were then separated by centrifugation after cell disruption and 55Fe activity was found to be similarly decreased in both mitochondrial and nonmitochondrial fractions of injured L1210 cells. To further characterize the changes in mitochondrial iron content, mitochondrial proteins from injured and control L1210 cells were separated by IEF and 55Fe activity of gel slices was determined. There was selective loss of 55Fe activity in the area of the gel corresponding to SDH and NADH-DH, suggesting that iron loss from iron-sulfur clusters may occur in L1210 cells injured by activated macrophages. Iron uptake into L1210 cells after removal from macrophages showed a rapid large influx of radioactive iron. L1210 cells in contact with macrophages appear to develop an iron-depleted state, which is dependent on the continued presence of macrophages.  相似文献   

18.
The murine leukemia cell lines L1210 and WEHI-3B show a very different sensitivity to the cholera toxin (CT).Thein vitro growth of L1210 is completely inhibited by 10–8 M CT, while WEHI-3B growth shows the same inhibition at 10–11 M.The analysis of membrane ganglioside pattern of the two cell lines shows that in L1210 cells the major component is the GM1a ganglioside while the monosialoganglioside fraction from WEHI-3B is entirely composed of gangliosides of the b series among which GM1b is the more represented. The total cholera toxin binding capacity of the ganglioside extract from L1210 cells is more than hundred fold higher than that of WEHI-3B and this difference is also confirmed by the number of CT receptors/cell and by the binding of FITC-B subunit of CT on the cells. These surprising data are in conflict with the poor sensitivity to CT evidenced by L1210 compared to WEHI-3B cells.In order to clarify this discrepancy we investigated the cAMP accumulation, the cell viability and the clonogenicity of these two leukemia cell lines following the treatment with CT and forskolin (FRSK).The treatment of WEHI-3B cells with CT induces a dramatic increase of intracellular cAMP which highly correlates with cell death and the decrease of clonogenicity and this result is partially obtained by the treatment with FRSK, L1210 cells do not evidence significant cAMP accumulation neither with CT nor with FRSK treatment.These data suggest that the different inhibiting effect of CT on WEHI-3B and L1210 cells does not correlate with their different pattern of gangliosides and the related toxin binding capacity. Further they indicate that the growth inhibition of WEHI-3B cells is closely related with a cAMP-dependent cell killing mechanism, while the inhibition of L1210 growth (produced by high concentration of CT) is mediated by a cAMP independent mechanism.  相似文献   

19.
A selenocystine-resistant carrot cell line, C-1, was isolated from a haploid carrot (Daucus carota) cell culture, HA. The C-1 variant takes up cystine, but not cysteine, more slowly than does HA. The selenocystine resistance is maintained in culture in the absence of selection and is expressed in regenerated plants. Results based on chromatographic separation of sulfur metabolites from cells fed with [35S]cystine suggest a block either in the uptake or reduction of cystine in the variant. Both lines can grow on cystine as sole sulfur source. Growth of the HA line on cystine suppressed the development of sulfate uptake capacity (Furner, Sung 1982 Proc Natl Acad Sci USA 79: 1149-1153), while cystine-grown C-1 cells have high levels of sulfate uptake capacity.

We suggest that the C-1 line, grown on cystine, accumulates an insufficient quantity of some sulfur metabolite, which is involved in the control of sulfate uptake, to suppress the uptake. C-1 grown on cystine is more sensitive than HA to growth inhibition by the sulfate analog selenate.

  相似文献   

20.
Uptake of polyamines has been investigated extensively in many cells, but not in placenta, where the polyamine– polyamine oxidase system is supposed to have an immunoregulatory function in pregnancy. Due to the importance of the transfer in this tissue, we have started this study. JAR human placental choriocarcinoma cells in monolayer at confluency were used as a model for measuring the key enzymes of polyamine synthesis and interconversion, rate of uptake and efflux, and the polyamine content. Polyamines were taken up by JAR cells and released by an independent mechanism. Ornithine decarboxylase and spermidine acetyltransferase activities and the rate of transport in and out of the cell were much higher than in other cells, such as L1210 cells. However the systems used for uptake and release appear in many respects to be similar to those observed in L1210 cells, but different from others. The uptake appears to be regulated by an inhibitory protein. Moreover, protein kinase C appears to be involved in the process. The efflux also is regulated as in L1210 cells, through control of H+ and Ca2+ concentration. In conclusion, this study shows that, in JAR cells, ornithine decarboxylase and spermidine acetyltransferase activities were much higher than in other cells, and so was the rate of transport in and out of the cells. As a result, a much higher polyamine content was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号