首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Metagenomics has a great potential to discover previously unattainable information about microbial communities. An important prerequisite for such discoveries is to accurately estimate the composition of microbial communities. Most of prevalent homology-based approaches utilize solely the results of an alignment tool such as BLAST, limiting their estimation accuracy to high ranks of the taxonomy tree.

Results

We developed a new homology-based approach called Taxonomic Analysis by Elimination and Correction (TAEC), which utilizes the similarity in the genomic sequence in addition to the result of an alignment tool. The proposed method is comprehensively tested on various simulated benchmark datasets of diverse complexity of microbial structure. Compared with other available methods designed for estimating taxonomic composition at a relatively low taxonomic rank, TAEC demonstrates greater accuracy in quantification of genomes in a given microbial sample. We also applied TAEC on two real metagenomic datasets, oral cavity dataset and Crohn’s disease dataset. Our results, while agreeing with previous findings at higher ranks of the taxonomy tree, provide accurate estimation of taxonomic compositions at the species/strain level, narrowing down which species/strains need more attention in the study of oral cavity and the Crohn’s disease.

Conclusions

By taking account of the similarity in the genomic sequence TAEC outperforms other available tools in estimating taxonomic composition at a very low rank, especially when closely related species/strains exist in a metagenomic sample.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-242) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

With the advances in the next-generation sequencing technologies, researchers can now rapidly examine the composition of samples from humans and their surroundings. To enhance the accuracy of taxonomy assignments in metagenomic samples, we developed a method that allows multiple mismatch probabilities from different genomes.

Results

We extended the algorithm of taxonomic assignment of metagenomic sequence reads (TAMER) by developing an improved method that can set a different mismatch probability for each genome rather than imposing a single parameter for all genomes, thereby obtaining a greater degree of accuracy. This method, which we call TADIP (Taxonomic Assignment of metagenomics based on DIfferent Probabilities), was comprehensively tested in simulated and real datasets. The results support that TADIP improved the performance of TAMER especially in large sample size datasets with high complexity.

Conclusions

TADIP was developed as a statistical model to improve the estimate accuracy of taxonomy assignments. Based on its varying mismatch probability setting and correlated variance matrix setting, its performance was enhanced for high complexity samples when compared with TAMER.
  相似文献   

3.
Kraken is an ultrafast and highly accurate program for assigning taxonomic labels to metagenomic DNA sequences. Previous programs designed for this task have been relatively slow and computationally expensive, forcing researchers to use faster abundance estimation programs, which only classify small subsets of metagenomic data. Using exact alignment of k-mers, Kraken achieves classification accuracy comparable to the fastest BLAST program. In its fastest mode, Kraken classifies 100 base pair reads at a rate of over 4.1 million reads per minute, 909 times faster than Megablast and 11 times faster than the abundance estimation program MetaPhlAn. Kraken is available at http://ccb.jhu.edu/software/kraken/.  相似文献   

4.
MetaSim: a sequencing simulator for genomics and metagenomics   总被引:1,自引:0,他引:1  
Richter DC  Ott F  Auch AF  Schmid R  Huson DH 《PloS one》2008,3(10):e3373

Background

The new research field of metagenomics is providing exciting insights into various, previously unclassified ecological systems. Next-generation sequencing technologies are producing a rapid increase of environmental data in public databases. There is great need for specialized software solutions and statistical methods for dealing with complex metagenome data sets.

Methodology/Principal Findings

To facilitate the development and improvement of metagenomic tools and the planning of metagenomic projects, we introduce a sequencing simulator called MetaSim. Our software can be used to generate collections of synthetic reads that reflect the diverse taxonomical composition of typical metagenome data sets. Based on a database of given genomes, the program allows the user to design a metagenome by specifying the number of genomes present at different levels of the NCBI taxonomy, and then to collect reads from the metagenome using a simulation of a number of different sequencing technologies. A population sampler optionally produces evolved sequences based on source genomes and a given evolutionary tree.

Conclusions/Significance

MetaSim allows the user to simulate individual read datasets that can be used as standardized test scenarios for planning sequencing projects or for benchmarking metagenomic software.  相似文献   

5.
Metagenomics has transformed our understanding of the microbial world, allowing researchers to bypass the need to isolate and culture individual taxa and to directly characterize both the taxonomic and gene compositions of environmental samples. However, associating the genes found in a metagenomic sample with the specific taxa of origin remains a critical challenge. Existing binning methods, based on nucleotide composition or alignment to reference genomes allow only a coarse-grained classification and rely heavily on the availability of sequenced genomes from closely related taxa. Here, we introduce a novel computational framework, integrating variation in gene abundances across multiple samples with taxonomic abundance data to deconvolve metagenomic samples into taxa-specific gene profiles and to reconstruct the genomic content of community members. This assembly-free method is not bounded by various factors limiting previously described methods of metagenomic binning or metagenomic assembly and represents a fundamentally different approach to metagenomic-based genome reconstruction. An implementation of this framework is available at http://elbo.gs.washington.edu/software.html. We first describe the mathematical foundations of our framework and discuss considerations for implementing its various components. We demonstrate the ability of this framework to accurately deconvolve a set of metagenomic samples and to recover the gene content of individual taxa using synthetic metagenomic samples. We specifically characterize determinants of prediction accuracy and examine the impact of annotation errors on the reconstructed genomes. We finally apply metagenomic deconvolution to samples from the Human Microbiome Project, successfully reconstructing genus-level genomic content of various microbial genera, based solely on variation in gene count. These reconstructed genera are shown to correctly capture genus-specific properties. With the accumulation of metagenomic data, this deconvolution framework provides an essential tool for characterizing microbial taxa never before seen, laying the foundation for addressing fundamental questions concerning the taxa comprising diverse microbial communities.  相似文献   

6.

Background

Understanding the taxonomic composition of a sample, whether from patient, food or environment, is important to several types of studies including pathogen diagnostics, epidemiological studies, biodiversity analysis and food quality regulation. With the decreasing costs of sequencing, metagenomic data is quickly becoming the preferred typed of data for such analysis.

Results

Rapidly defining the taxonomic composition (both taxonomic profile and relative frequency) in a metagenomic sequence dataset is challenging because the task of mapping millions of sequence reads from a metagenomic study to a non-redundant nucleotide database such as the NCBI non-redundant nucleotide database (nt) is a computationally intensive task. We have developed a robust subsampling-based algorithm implemented in a tool called CensuScope meant to take a ‘sneak peak’ into the population distribution and estimate taxonomic composition as if a census was taken of the metagenomic landscape. CensuScope is a rapid and accurate metagenome taxonomic profiling tool that randomly extracts a small number of reads (based on user input) and maps them to NCBI’s nt database. This process is repeated multiple times to ascertain the taxonomic composition that is found in majority of the iterations, thereby providing a robust estimate of the population and measures of the accuracy for the results.

Conclusion

CensuScope can be run on a laptop or on a high-performance computer. Based on our analysis we are able to provide some recommendations in terms of the number of sequence reads to analyze and the number of iterations to use. For example, to quantify taxonomic groups present in the sample at a level of 1% or higher a subsampling size of 250 random reads with 50 iterations yields a statistical power of >99%. Windows and UNIX versions of CensuScope are available for download at https://hive.biochemistry.gwu.edu/dna.cgi?cmd=censuscope. CensuScope is also available through the High-performance Integrated Virtual Environment (HIVE) and can be used in conjunction with other HIVE analysis and visualization tools.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-918) contains supplementary material, which is available to authorized users.  相似文献   

7.
Protein sequences predicted from metagenomic datasets are annotated by identifying their homologs via sequence comparisons with reference or curated proteins. However, a majority of metagenomic protein sequences are partial-length, arising as a result of identifying genes on sequencing reads or on assembled nucleotide contigs, which themselves are often very fragmented. The fragmented nature of metagenomic protein predictions adversely impacts homology detection and, therefore, the quality of the overall annotation of the dataset. Here we present a novel algorithm called GRASP that accurately identifies the homologs of a given reference protein sequence from a database consisting of partial-length metagenomic proteins. Our homology detection strategy is guided by the reference sequence, and involves the simultaneous search and assembly of overlapping database sequences. GRASP was compared to three commonly used protein sequence search programs (BLASTP, PSI-BLAST and FASTM). Our evaluations using several simulated and real datasets show that GRASP has a significantly higher sensitivity than these programs while maintaining a very high specificity. GRASP can be a very useful program for detecting and quantifying taxonomic and protein family abundances in metagenomic datasets. GRASP is implemented in GNU C++, and is freely available at http://sourceforge.net/projects/grasp-release.  相似文献   

8.
Taxonomic and phylogenetic fingerprinting based on sequence analysis of gene fragments from the large-subunit rRNA (LSU) gene or the internal transcribed spacer (ITS) region is becoming an integral part of fungal classification. The lack of an accurate and robust classification tool trained by a validated sequence database for taxonomic placement of fungal LSU genes is a severe limitation in taxonomic analysis of fungal isolates or large data sets obtained from environmental surveys. Using a hand-curated set of 8,506 fungal LSU gene fragments, we determined the performance characteristics of a naïve Bayesian classifier across multiple taxonomic levels and compared the classifier performance to that of a sequence similarity-based (BLASTN) approach. The naïve Bayesian classifier was computationally more rapid (>460-fold with our system) than the BLASTN approach, and it provided equal or superior classification accuracy. Classifier accuracies were compared using sequence fragments of 100 bp and 400 bp and two different PCR primer anchor points to mimic sequence read lengths commonly obtained using current high-throughput sequencing technologies. Accuracy was higher with 400-bp sequence reads than with 100-bp reads. It was also significantly affected by sequence location across the 1,400-bp test region. The highest accuracy was obtained across either the D1 or D2 variable region. The naïve Bayesian classifier provides an effective and rapid means to classify fungal LSU sequences from large environmental surveys. The training set and tool are publicly available through the Ribosomal Database Project (http://rdp.cme.msu.edu/classifier/classifier.jsp).  相似文献   

9.
Oligonucleotide signatures, especially tetranucleotide signatures, have been used as method for homology binning by exploiting an organism’s inherent biases towards the use of specific oligonucleotide words. Tetranucleotide signatures have been especially useful in environmental metagenomics samples as many of these samples contain organisms from poorly classified phyla which cannot be easily identified using traditional homology methods, including NCBI BLAST. This study examines oligonucleotide signatures across 1,424 completed genomes from across the tree of life, substantially expanding upon previous work. A comprehensive analysis of mononucleotide through nonanucleotide word lengths suggests that longer word lengths substantially improve the classification of DNA fragments across a range of sizes of relevance to high throughput sequencing. We find that, at present, heptanucleotide signatures represent an optimal balance between prediction accuracy and computational time for resolving taxonomy using both genomic and metagenomic fragments. We directly compare the ability of tetranucleotide and heptanucleotide world lengths (tetranucleotide signatures are the current standard for oligonucleotide word usage analyses) for taxonomic binning of metagenome reads. We present evidence that heptanucleotide word lengths consistently provide more taxonomic resolving power, particularly in distinguishing between closely related organisms that are often present in metagenomic samples. This implies that longer oligonucleotide word lengths should replace tetranucleotide signatures for most analyses. Finally, we show that the application of longer word lengths to metagenomic datasets leads to more accurate taxonomic binning of DNA scaffolds and have the potential to substantially improve taxonomic assignment and assembly of metagenomic data.  相似文献   

10.
Microbial community profiling identifies and quantifies organisms in metagenomic sequencing data using either reference based or unsupervised approaches. However, current reference based profiling methods only report the presence and abundance of single reference genomes that are available in databases. Since only a small fraction of environmental genomes is represented in genomic databases, these approaches entail the risk of false identifications and often suggest a higher precision than justified by the data. Therefore, we developed MicrobeGPS, a novel metagenomic profiling approach that overcomes these limitations. MicrobeGPS is the first method that identifies microbiota in the sample and estimates their genomic distances to known reference genomes. With this strategy, MicrobeGPS identifies organisms down to the strain level and highlights possibly inaccurate identifications when the correct reference genome is missing. We demonstrate on three metagenomic datasets with different origin that our approach successfully avoids misleading interpretation of results and additionally provides more accurate results than current profiling methods. Our results indicate that MicrobeGPS can enable reference based taxonomic profiling of complex and less characterized microbial communities. MicrobeGPS is open source and available from https://sourceforge.net/projects/microbegps/ as source code and binary distribution for Windows and Linux operating systems.  相似文献   

11.
With the decreasing cost of next-generation sequencing, deep sequencing of clinical samples provides unique opportunities to understand host-associated microbial communities. Among the primary challenges of clinical metagenomic sequencing is the rapid filtering of human reads to survey for pathogens with high specificity and sensitivity. Metagenomes are inherently variable due to different microbes in the samples and their relative abundance, the size and architecture of genomes, and factors such as target DNA amounts in tissue samples (i.e. human DNA versus pathogen DNA concentration). This variation in metagenomes typically manifests in sequencing datasets as low pathogen abundance, a high number of host reads, and the presence of close relatives and complex microbial communities. In addition to these challenges posed by the composition of metagenomes, high numbers of reads generated from high-throughput deep sequencing pose immense computational challenges. Accurate identification of pathogens is confounded by individual reads mapping to multiple different reference genomes due to gene similarity in different taxa present in the community or close relatives in the reference database. Available global and local sequence aligners also vary in sensitivity, specificity, and speed of detection. The efficiency of detection of pathogens in clinical samples is largely dependent on the desired taxonomic resolution of the organisms. We have developed an efficient strategy that identifies “all against all” relationships between sequencing reads and reference genomes. Our approach allows for scaling to large reference databases and then genome reconstruction by aggregating global and local alignments, thus allowing genetic characterization of pathogens at higher taxonomic resolution. These results were consistent with strain level SNP genotyping and bacterial identification from laboratory culture.  相似文献   

12.
Profiling microbial community function from metagenomic sequencing data remains a computationally challenging problem. Mapping millions of DNA reads from such samples to reference protein databases requires long run-times, and short read lengths can result in spurious hits to unrelated proteins (loss of specificity). We developed ShortBRED (Short, Better Representative Extract Dataset) to address these challenges, facilitating fast, accurate functional profiling of metagenomic samples. ShortBRED consists of two components: (i) a method that reduces reference proteins of interest to short, highly representative amino acid sequences (“markers”) and (ii) a search step that maps reads to these markers to quantify the relative abundance of their associated proteins. After evaluating ShortBRED on synthetic data, we applied it to profile antibiotic resistance protein families in the gut microbiomes of individuals from the United States, China, Malawi, and Venezuela. Our results support antibiotic resistance as a core function in the human gut microbiome, with tetracycline-resistant ribosomal protection proteins and Class A beta-lactamases being the most widely distributed resistance mechanisms worldwide. ShortBRED markers are applicable to other homology-based search tasks, which we demonstrate here by identifying phylogenetic signatures of antibiotic resistance across more than 3,000 microbial isolate genomes. ShortBRED can be applied to profile a wide variety of protein families of interest; the software, source code, and documentation are available for download at http://huttenhower.sph.harvard.edu/shortbred  相似文献   

13.
14.

Background

An important task in a metagenomic analysis is the assignment of taxonomic labels to sequences in a sample. Most widely used methods for taxonomy assignment compare a sequence in the sample to a database of known sequences. Many approaches use the best BLAST hit(s) to assign the taxonomic label. However, it is known that the best BLAST hit may not always correspond to the best taxonomic match. An alternative approach involves phylogenetic methods, which take into account alignments and a model of evolution in order to more accurately define the taxonomic origin of sequences. Similarity-search based methods typically run faster than phylogenetic methods and work well when the organisms in the sample are well represented in the database. In contrast, phylogenetic methods have the capability to identify new organisms in a sample but are computationally quite expensive.

Results

We propose a two-step approach for metagenomic taxon identification; i.e., use a rapid method that accurately classifies sequences using a reference database (this is a filtering step) and then use a more complex phylogenetic method for the sequences that were unclassified in the previous step. In this work, we explore whether and when using top BLAST hit(s) yields a correct taxonomic label. We develop a method to detect outliers among BLAST hits in order to separate the phylogenetically most closely related matches from matches to sequences from more distantly related organisms. We used modified BILD (Bayesian Integral Log-Odds) scores, a multiple-alignment scoring function, to define the outliers within a subset of top BLAST hits and assign taxonomic labels. We compared the accuracy of our method to the RDP classifier and show that our method yields fewer misclassifications while properly classifying organisms that are not present in the database. Finally, we evaluated the use of our method as a pre-processing step before more expensive phylogenetic analyses (in our case TIPP) in the context of real 16S rRNA datasets.

Conclusion

Our experiments make a good case for using a two-step approach for accurate taxonomic assignment. We show that our method can be used as a filtering step before using phylogenetic methods and provides a way to interpret BLAST results using more information than provided by E-values and bit-scores alone.
  相似文献   

15.
Next-generation sequencing technologies have allowed researchers to determine the collective genomes of microbial communities co-existing within diverse ecological environments. Varying species abundance, length and complexities within different communities, coupled with discovery of new species makes the problem of taxonomic assignment to short DNA sequence reads extremely challenging. We have developed a new sequence composition-based taxonomic classifier using extreme learning machines referred to as TAC-ELM for metagenomic analysis. TAC-ELM uses the framework of extreme learning machines to quickly and accurately learn the weights for a neural network model. The input features consist of GC content and oligonucleotides. TAC-ELM is evaluated on two metagenomic benchmarks with sequence read lengths reflecting the traditional and current sequencing technologies. Our empirical results indicate the strength of the developed approach, which outperforms state-of-the-art taxonomic classifiers in terms of accuracy and implementation complexity. We also perform experiments that evaluate the pervasive case within metagenome analysis, where a species may not have been previously sequenced or discovered and will not exist in the reference genome databases. TAC-ELM was also combined with BLAST to show improved classification results. Code and Supplementary Results: http://www.cs.gmu.edu/~mlbio/TAC-ELM (BSD License).  相似文献   

16.
17.
Reference phylogenies are crucial for providing a taxonomic framework for interpretation of marker gene and metagenomic surveys, which continue to reveal novel species at a remarkable rate. Greengenes is a dedicated full-length 16S rRNA gene database that provides users with a curated taxonomy based on de novo tree inference. We developed a ‘taxonomy to tree'' approach for transferring group names from an existing taxonomy to a tree topology, and used it to apply the Greengenes, National Center for Biotechnology Information (NCBI) and cyanoDB (Cyanobacteria only) taxonomies to a de novo tree comprising 408 315 sequences. We also incorporated explicit rank information provided by the NCBI taxonomy to group names (by prefixing rank designations) for better user orientation and classification consistency. The resulting merged taxonomy improved the classification of 75% of the sequences by one or more ranks relative to the original NCBI taxonomy with the most pronounced improvements occurring in under-classified environmental sequences. We also assessed candidate phyla (divisions) currently defined by NCBI and present recommendations for consolidation of 34 redundantly named groups. All intermediate results from the pipeline, which includes tree inference, jackknifing and transfer of a donor taxonomy to a recipient tree (tax2tree) are available for download. The improved Greengenes taxonomy should provide important infrastructure for a wide range of megasequencing projects studying ecosystems on scales ranging from our own bodies (the Human Microbiome Project) to the entire planet (the Earth Microbiome Project). The implementation of the software can be obtained from http://sourceforge.net/projects/tax2tree/.  相似文献   

18.
A faithful phylogeny and an objective taxonomy for prokaryotes should agree with each other and ultimately follow the genome data. With the number of sequenced genomes reaching tens of thousands, both tree inference and detailed comparison with taxonomy are great challenges. We now provide one solution in the latest Release 3.0 of the alignment-free and whole-genome-based web server CVTree3. The server resides in a cluster of 64 cores and is equipped with an interactive,collapsible, and expandable tree display. It is capable of comparing the tree branching order with prokaryotic classification at all taxonomic ranks from domains down to species and strains.CVTree3 allows for inquiry by taxon names and trial on lineage modifications. In addition, it reports a summary of monophyletic and non-monophyletic taxa at all ranks as well as produces print-quality subtree figures. After giving an overview of retrospective verification of the CVTree approach, the power of the new server is described for the mega-classification of prokaryotes and determination of taxonomic placement of some newly-sequenced genomes. A few discrepancies between CVTree and 16 S r RNA analyses are also summarized with regard to possible taxonomic revisions. CVTree3 is freely accessible to all users at http://tlife.fudan.edu.cn/cvtree3/ without login requirements.  相似文献   

19.
《Genomics》2022,114(4):110414
Classification of viruses into their taxonomic ranks (e.g., order, family, and genus) provides a framework to organize an abundant population of viruses. Next-generation metagenomic sequencing technologies lead to a rapid increase in generating sequencing data of viruses which require bioinformatics tools to analyze the taxonomy. Many metagenomic taxonomy classifiers have been developed to study microbiomes, but it is particularly challenging to assign the taxonomy of diverse virus sequences and there is a growing need for dedicated methods to be developed that are optimized to classify virus sequences into their taxa. For taxonomic classification of viruses from metagenomic sequences, we developed VirusTaxo using diverse (e.g., 402 DNA and 280 RNA) genera of viruses. VirusTaxo has an average accuracy of 93% at genus level prediction in DNA and RNA viruses. VirusTaxo outperformed existing taxonomic classifiers of viruses where it assigned taxonomy of a larger fraction of metagenomic contigs compared to other methods. Benchmarking of VirusTaxo on a collection of SARS-CoV-2 sequencing libraries and metavirome datasets suggests that VirusTaxo can characterize virus taxonomy from highly diverse contigs and provide a reliable decision on the taxonomy of viruses.  相似文献   

20.
RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner—a multi-level bioinformatics protocol and pipeline—has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号