首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Allometric relationships and the determination of critical buckling heights have been examined for Pinus radiata in the past. However, how they relate to more mature Pinus radiata exhibiting a wide range of stem diameters, slenderness and modulus of elasticity (E) at operationally used stand densities is largely unknown. The aim of this study was to examine the relationship between Pinus radiata stand structure variables and allometric scaling and critical buckling height.

Methods

Utilizing a Pinus radiata Nelder trial with stand density and genetic breed as variables, critical buckling height was calculated whilst reduced major axis regression was used to determine scaling exponents between critical height (Hcrit), actual height (H), ground line diameter (D), slenderness (S), density-specific stiffness (E/ρ) and modulus of elasticity (E).

Key Results

Critical buckling height was highly responsive to decreasing diameter and increasing slenderness. Safety factors in this study were typically considerably lower than previously reported margins in other species. As density-specific stiffness scaled negatively with diameter, the exponent of 0·55 between critical height and diameter did not meet the assumed value of 0·67 under constant density-specific stiffness. E scaled positively with stem slenderness to the power of 0·78.

Conclusions

The findings suggest that within species density-specific stiffness variation may influence critical height and the scaling exponent between critical height and diameter, which is considered so important in assumptions regarding allometric relationships.  相似文献   

2.
3.

Background and Aims

Functional–structural modelling can be used to increase our understanding of how different aspects of plant structure and function interact, identify knowledge gaps and guide priorities for future experimentation. By integrating existing knowledge of the different aspects of the kiwifruit (Actinidia deliciosa) vine''s architecture and physiology, our aim is to develop conceptual and mathematical hypotheses on several of the vine''s features: (a) plasticity of the vine''s architecture; (b) effects of organ position within the canopy on its size; (c) effects of environment and horticultural management on shoot growth, light distribution and organ size; and (d) role of carbon reserves in early shoot growth.

Methods

Using the L-system modelling platform, a functional–structural plant model of a kiwifruit vine was created that integrates architectural development, mechanistic modelling of carbon transport and allocation, and environmental and management effects on vine and fruit growth. The branching pattern was captured at the individual shoot level by modelling axillary shoot development using a discrete-time Markov chain. An existing carbon transport resistance model was extended to account for several source/sink components of individual plant elements. A quasi-Monte Carlo path-tracing algorithm was used to estimate the absorbed irradiance of each leaf.

Key Results

Several simulations were performed to illustrate the model''s potential to reproduce the major features of the vine''s behaviour. The model simulated vine growth responses that were qualitatively similar to those observed in experiments, including the plastic response of shoot growth to local carbon supply, the branching patterns of two Actinidia species, the effect of carbon limitation and topological distance on fruit size and the complex behaviour of sink competition for carbon.

Conclusions

The model is able to reproduce differences in vine and fruit growth arising from various experimental treatments. This implies it will be a valuable tool for refining our understanding of kiwifruit growth and for identifying strategies to improve production.  相似文献   

4.

Background and Aims

Growth imbalances between individual fruits are common in indeterminate plants such as cucumber (Cucumis sativus). In this species, these imbalances can be related to differences in two growth characteristics, fruit growth duration until reaching a given size and fruit abortion. Both are related to distribution, and environmental factors as well as canopy architecture play a key role in their differentiation. Furthermore, events leading to a fruit reaching its harvestable size before or simultaneously with a prior fruit can be observed. Functional–structural plant models (FSPMs) allow for interactions between environmental factors, canopy architecture and physiological processes. Here, we tested hypotheses which account for these interactions by introducing dominance and abortion thresholds for the partitioning of assimilates between growing fruits.

Methods

Using the L-System formalism, an FSPM was developed which combined a model for architectural development, a biochemical model of photosynthesis and a model for assimilate partitioning, the last including a fruit growth model based on a size-related potential growth rate (RP). Starting from a distribution proportional to RP, the model was extended by including abortion and dominance. Abortion was related to source strength and dominance to sink strength. Both thresholds were varied to test their influence on fruit growth characteristics. Simulations were conducted for a dense row and a sparse isometric canopy.

Key Results

The simple partitioning models failed to simulate individual fruit growth realistically. The introduction of abortion and dominance thresholds gave the best results. Simulations of fruit growth durations and abortion rates were in line with measurements, and events in which a fruit was harvestable earlier than an older fruit were reproduced.

Conclusions

Dominance and abortion events need to be considered when simulating typical fruit growth traits. By integrating environmental factors, the FSPM can be a valuable tool to analyse and improve existing knowledge about the dynamics of assimilates partitioning.  相似文献   

5.

Background and Aims

The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming.

Methods

Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments.

Key Results

Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted.

Conclusions

Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics.  相似文献   

6.

Background and Aims

The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional–structural model is presented and is used to assess the effects of management on forest functioning at a national scale.

Methods

The stand process-based model (PBM) Castanea was coupled to a stand structure module (SSM) based on empirical tree-to-tree competition rules. The calibration of the SSM was based on a thorough analysis of intersite and interannual variability of competition asymmetry. The coupled Castanea–SSM model was evaluated across France using forest inventory data, and used to compare the effect of contrasted silvicultural practices on simulated stand carbon fluxes and growth.

Key Results

The asymmetry of competition varied consistently with stand productivity at both spatial and temporal scales. The modelling of the competition rules enabled efficient prediction of changes in stand structure within the Castanea PBM. The coupled model predicted an increase in net primary productivity (NPP) with management intensity, resulting in higher growth. This positive effect of management was found to vary at a national scale across France: the highest increases in NPP were attained in forests facing moderate to high water stress; however, the absolute effect of management on simulated stand growth remained moderate to low because stand thinning involved changes in carbon allocation at the tree scale.

Conclusions

This modelling approach helps to identify the areas where management efforts should be concentrated in order to mitigate near-future drought impact on national forest productivity. Around a quarter of the French temperate oak and beech forests are currently in zones of high vulnerability, where management could thus mitigate the influence of climate change on forest yield  相似文献   

7.

Background and Aims

Knowledge of pollen dispersal patterns and variation of fecundity is essential to understanding plant evolutionary processes and to formulating strategies to conserve forest genetic resources. Nevertheless, the pollen dispersal pattern of dipterocarp, main canopy tree species in palaeo-tropical forest remains unclear, and flowering intensity variation in the field suggests heterogeneity of fecundity.

Methods

Pollen dispersal patterns and male fecundity variation of Shorea leprosula and Shorea parvifolia ssp. parvifolia on Peninsular Malaysian were investigated during two general flowering seasons (2001 and 2002), using a neighbourhood model modified by including terms accounting for variation in male fecundity among individual trees to express heterogeneity in flowering.

Key Results

The pollen dispersal patterns of the two dipterocarp species were affected by differences in conspecific tree flowering density, and reductions in conspecific tree flowering density led to an increased selfing rate. Active pollen dispersal and a larger number of effective paternal parents were observed for both species in the season of greater magnitude of general flowering (2002).

Conclusions

The magnitude of general flowering, male fecundity variation, and distance between pollen donors and mother trees should be taken into account when attempting to predict the effects of management practices on the self-fertilization and genetic structure of key tree species in tropical forest, and also the sustainability of possible management strategies, especially selective logging regimes.  相似文献   

8.
Cambial activity related to tree size in a mature silver-fir plantation   总被引:1,自引:0,他引:1  

Background and Aims

Our knowledge about the influences of environmental factors on tree growth is principally based on the study of dominant trees. However, tree social status may influence intra-annual dynamics of growth, leading to differential responses to environmental conditions. The aim was to determine whether within-stand differences in stem diameters of trees belonging to different crown classes resulted from variations in the length of the growing period or in the rate of cell production.

Methods

Cambial activity was monitored weekly in 2006 for three crown classes in a 40-year-old silver-fir (Abies alba) plantation near Nancy (France). Timings, duration and rate of tracheid production were assessed from anatomical observations of the developing xylem.

Key Results

Cambial activity started earlier, stopped later and lasted longer in dominant trees than in intermediate and suppressed ones. The onset of cambial activity was estimated to have taken 3 weeks to spread to 90 % of the trees in the stand, while the cessation needed 6 weeks. Cambial activity was more intense in dominant trees than in intermediate and suppressed ones. It was estimated that about 75 % of tree-ring width variability was attributable to the rate of cell production and only 25 % to its duration. Moreover, growth duration was correlated to tree height, while growth rate was better correlated to crown area.

Conclusions

These results show that, in a closed conifer forest, stem diameter variations resulted principally from differences in the rate of xylem cell production rather than in its duration. Tree size interacts with environmental factors to control the timings, duration and rate of cambial activity through functional processes involving source–sink relationships principally, but also hormonal controls.  相似文献   

9.

Background

Stem diameter variations are mainly determined by the radial water transport between xylem and storage tissues. This radial transport results from the water potential difference between these tissues, which is influenced by both hydraulic and carbon related processes. Measurements have shown that when subjected to the same environmental conditions, the co-occurring mangrove species Avicennia marina and Rhizophora stylosa unexpectedly show a totally different pattern in daily stem diameter variation.

Methods

Using in situ measurements of stem diameter variation, stem water potential and sap flow, a mechanistic flow and storage model based on the cohesion–tension theory was applied to assess the differences in osmotic storage water potential between Avicennia marina and Rhizophora stylosa.

Key results

Both species, subjected to the same environmental conditions, showed a resembling daily pattern in simulated osmotic storage water potential. However, the osmotic storage water potential of R. stylosa started to decrease slightly after that of A. marina in the morning and increased again slightly later in the evening. This small shift in osmotic storage water potential likely underlaid the marked differences in daily stem diameter variation pattern between the two species.

Conclusions

The results show that in addition to environmental dynamics, endogenous changes in the osmotic storage water potential must be taken into account in order to accurately predict stem diameter variations, and hence growth.  相似文献   

10.

Background and Aims

The phenotypes of grasses show differences depending on growth conditions and ontogenetic stage. Understanding these responses and finding suitable mathematical formalizations are an essential part of the development of plant and crop models. Usually, a marked change in architecture between juvenile and adult plants is observed, where dimension and shape of leaves are likely to change. In this paper, the plasticity of leaf shape is analysed according to growth conditions and ontogeny.

Methods

Leaf shape of Triticum aestivum, Hordeum vulgare and Zea mays cultivars grown under varying conditions was measured using digital image processing. An empirical leaf shape model was fitted to measured shape data of single leaves. Obtained values of model parameters were used to analyse the patterns in leaf shape.

Key Results

The model was able to delineate leaf shape of all studied species. The model error was small. Differences in leaf shape between juvenile and adult leaves in T. aestivum and H. vulgare were observed. Varying growth conditions impacted leaf dimensions but did not impact leaf shape of the respective species.

Conclusions

Leaf shape of the studied T. aestivum and H. vulgare cultivars was remarkably stable for a comparable ontogenetic stage (leaf rank), but differed between stages. Along with other aspects of grass architecture, leaf shape changed during the transition from juvenile to adult growth phase. Model-based analysis of leaf shape is a method to investigate these differences. Presented results can be integrated into architectural models of plant development to delineate leaf shape for different species, cultivars and environmental conditions.  相似文献   

11.

Background and Aims

Tillering has a significant effect on canopy development and, hence, on resource capture, crop growth and grain yield in sorghum. However, the physiological basis of tillering and its regulation by environmental effects are not fully understood. The objective of this study was to understand and quantify the environmental effects on tillering in sorghum using a carbohydrate supply–demand framework.

Methods

A series of five experiments with a wide range of radiation and temperature conditions was conducted and details of the tillering responses of a single representative hybrid were monitored. The concept of internal plant competition for carbohydrate was developed for analysis of these responses.

Key Results

Tiller appearance was highly synchronized with main shoot leaf appearance, with a consistent hierarchy for tillering across environments. The main environmental effect was on the frequency of tiller appearance, in particular of the lower-rank tillers. This explained some of the observed environmental differences in the onset of tillering. A generalized index of internal plant competition, which took account of plant assimilate supply and demand (S/Dindex) during the critical period for tillering, explained most of the variation in maximum tiller number observed across the five experiments.

Conclusions

This result was consistent with the hypothesis that internal plant competition for assimilates regulates tillering in sorghum. Hence, the framework outlined has a predictive value that could provide the basis for dynamic simulation of tillering in crop growth models.  相似文献   

12.
13.

Background and Aims

Predicting light partitioning in crop mixtures is a critical step in improving the productivity of such complex systems, and light interception has been shown to be closely linked to plant architecture. The aim of the present work was to analyse the relationships between plant architecture and light partitioning within wheat–pea (Triticum aestivumPisum sativum) mixtures. An existing model for wheat was utilized and a new model for pea morphogenesis was developed. Both models were then used to assess the effects of architectural variations in light partitioning.

Methods

First, a deterministic model (L-Pea) was developed in order to obtain dynamic reconstructions of pea architecture. The L-Pea model is based on L-systems formalism and consists of modules for ‘vegetative development’ and ‘organ extension’. A tripartite simulator was then built up from pea and wheat models interfaced with a radiative transfer model. Architectural parameters from both plant models, selected on the basis of their contribution to leaf area index (LAI), height and leaf geometry, were then modified in order to generate contrasting architectures of wheat and pea.

Key results

By scaling down the analysis to the organ level, it could be shown that the number of branches/tillers and length of internodes significantly determined the partitioning of light within mixtures. Temporal relationships between light partitioning and the LAI and height of the different species showed that light capture was mainly related to the architectural traits involved in plant LAI during the early stages of development, and in plant height during the onset of interspecific competition.

Conclusions

In silico experiments enabled the study of the intrinsic effects of architectural parameters on the partitioning of light in crop mixtures of wheat and pea. The findings show that plant architecture is an important criterion for the identification/breeding of plant ideotypes, particularly with respect to light partitioning.  相似文献   

14.

Background and Aims

This study is a first step in a multi-stage project aimed at determining allometric relationships among the tropical tree organs, and carbon fluxes between the various tree parts and their environment. Information on canopy–root interrelationships is needed to improve understanding of above- and below-ground processes and for modelling of the regional and global carbon cycle. Allometric relationships between the sizes of different plant parts will be determined.

Methods

Two tropical forest species were used in this study: Ceiba pentandra (kapok), a fast-growing tree native to South and Central America and to Western Africa, and Khaya anthotheca (African mahogany), a slower-growing tree native to Central and Eastern Africa. Growth and allometric parameters of 12-month-old saplings grown in a large-scale aeroponic system and in 50-L soil containers were compared. The main advantage of growing plants in aeroponics is that their root systems are fully accessible throughout the plant life, and can be fully recovered for harvesting.

Key Results

The expected differences in shoot and root size between the fast-growing C. pentandra and the slower-growing K. anthotheca were evident in both growth systems. Roots were recovered from the aeroponically grown saplings only, and their distribution among various diameter classes followed the patterns expected from the literature. Stem, branch and leaf allometric parameters were similar for saplings of each species grown in the two systems.

Conclusions

The aeroponic tree growth system can be utilized for determining the basic allometric relationships between root and shoot components of these trees, and hence can be used to study carbon allocation and fluxes of whole above- and below-ground tree parts.  相似文献   

15.

Background and Aims

This study aimed to identify and characterize the ontogenetic, environmental and individual components of forest tree growth. In the proposed approach, the tree growth data typically correspond to the retrospective measurement of annual shoot characteristics (e.g. length) along the trunk.

Methods

Dedicated statistical models (semi-Markov switching linear mixed models) were applied to data sets of Corsican pine and sessile oak. In the semi-Markov switching linear mixed models estimated from these data sets, the underlying semi-Markov chain represents both the succession of growth phases and their lengths, while the linear mixed models represent both the influence of climatic factors and the inter-individual heterogeneity within each growth phase.

Key Results

On the basis of these integrative statistical models, it is shown that growth phases are not only defined by average growth level but also by growth fluctuation amplitudes in response to climatic factors and inter-individual heterogeneity and that the individual tree status within the population may change between phases. Species plasticity affected the response to climatic factors while tree origin, sampling strategy and silvicultural interventions impacted inter-individual heterogeneity.

Conclusions

The transposition of the proposed integrative statistical modelling approach to cambial growth in relation to climatic factors and the study of the relationship between apical growth and cambial growth constitute the next steps in this research.  相似文献   

16.

Background and Aims

Seagrasses are important marine plants that are under threat globally. Restoration by transplanting vegetative fragments or seedlings into areas where seagrasses have been lost is possible, but long-term trial data are limited. The goal of this study is to use available short-term data to predict long-term outcomes of transplanting seagrass.

Methods

A functional–structural plant model of seagrass growth that integrates data collected from short-term trials and experiments is presented. The model was parameterized for the species Posidonia australis, a limited validation of the model against independent data and a sensitivity analysis were conducted and the model was used to conduct a preliminary evaluation of different transplanting strategies.

Key Results

The limited validation was successful, and reasonable long-term outcomes could be predicted, based only on short-term data.

Conclusions

This approach for modelling seagrass growth and development enables long-term predictions of the outcomes to be made from different strategies for transplanting seagrass, even when empirical long-term data are difficult or impossible to collect. More validation is required to improve confidence in the model''s predictions, and inclusion of more mechanism will extend the model''s usefulness. Marine restoration represents a novel application of functional–structural plant modelling.  相似文献   

17.

Background and Aims

The capacity for fast-growth recovery after de-submergence is important for establishment of riparian species in a water-level-fluctuation zone. Recovery patterns of two wetland plants, Alternanthera philoxeroides and Hemarthria altissima, showing ‘escape’ and ‘quiescence’ responses, respectively, during submergence were investigated.

Methods

Leaf and root growth and photosynthesis were monitored continuously during 10 d of recovery following 20 d of complete submergence. Above- and below-ground dry weights, as well as carbohydrate concentrations, were measured several times during the experiment.

Key Results

Both species remobilized stored carbohydrate during submergence. Although enhanced internode elongation depleted the carbohydrate storage in A. philoxeroides during submergence, this species resumed leaf growth 3 d after de-submergence concomitant with restoration of the maximal photosynthetic capacity. In contrast, some sucrose was conserved in shoots of H. altissima during submergence, which promoted rapid re-growth of leaves 2 d after de-submergence and earlier than the full recovery of photosynthesis. The recovery of root growth was delayed by 1–2 d compared with leaves in both species.

Conclusions

Submergence tolerance of the escape and quiescence strategies entails not only the corresponding regulation of growth, carbohydrate catabolism and energy metabolism during submergence but also co-ordinated recovery of photosynthesis, growth and carbohydrate partitioning following de-submergence.  相似文献   

18.

Background and Aims

Plant genotypic mixtures have the potential to increase yield stability in variable, often unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability remains limited. Field studies are constrained by environmental conditions which cannot be fully controlled and thus reproduced. A suitable model system would allow reproducible experiments on processes operating within crop genetic mixtures.

Methods

Phenotypically dissimilar genotypes of Arabidopsis thaliana were grown in monocultures and mixtures under high levels of competition for abiotic resources. Seed production, flowering time and rosette size were recorded.

Key Results

Mixtures achieved high yield stability across environments through compensatory interactions. Compensation was greatest when plants were under high levels of heat and nutrient stress. Competitive ability and mixture performance were predictable from above-ground phenotypic traits even though below-ground competition appeared to be more intense.

Conclusions

This study indicates that the mixing ability of plant genotypes can be predicted from their phenotypes expressed in a range of relevant environments, and implies that a phenotypic screen of genotypes could improve the selection of suitable components of genotypic mixtures in agriculture intended to be resilient to environmental stress.  相似文献   

19.

Background and Aims

The interaction between forest fragmentation and predicted climate change may pose a serious threat to tree populations. In small and spatially isolated forest fragments, increased homozygosity may directly affect individual tree fitness through the expression of deleterious alleles. Climate change-induced drought stress may exacerbate these detrimental genetic consequences of forest fragmentation, as the fitness response to low levels of individual heterozygosity is generally thought to be stronger under environmental stress than under optimal conditions.

Methods

To test this hypothesis, a greenhouse experiment was performed in which various transpiration and growth traits of 6-month-old seedlings of Quercus robur differing in multilocus heterozygosity (MLH) were recorded for 3 months under a well-watered and a drought stress treatment. Heterozygosity–fitness correlations (HFC) were examined by correlating the recorded traits of individual seedlings to their MLH and by studying their response to drought stress.

Key Results

Weak, but significant, effects of MLH on several fitness traits were obtained, which were stronger for transpiration variables than for the recorded growth traits. High atmospheric stress (measured as vapour pressure deficit) influenced the strength of the HFCs of the transpiration variables, whereas only a limited effect of the irrigation treatment on the HFCs was observed.

Conclusions

Under ongoing climate change, increased atmospheric stress in the future may strengthen the negative fitness responses of trees to low MLH. This indicates the necessity to maximize individual multilocus heterozygosity in forest tree breeding programmes.  相似文献   

20.

Background and Aims

The coexistence of forest tree species has often been linked to differences among species in terms of their response to light availability during the regeneration stage. From this perspective, species coexistence results from growth–growth or mortality–growth trade-offs along spatial light gradients. Experimental evidence of growth–growth trade-offs in natural conditions is sparse due to various confounding factors that potentially hinder the relationship. This study examined growth hierarchies along light gradients between two tree species with contrasting shade tolerance by controlling potential confounding factors such as seedling size, seedling status, seedling density and species composition.

Methods

Natural regenerated shade-tolerant Fagus sylvatica and shade-intermediate Quercus petraea seedlings were used, and growth rankings over a 4-year period were compared in 8- to 10-year-old tree seedlings.

Key results

No rank reversal occurs between the two species along the light gradient, or along the density, mixture or seedling size gradients. The shade-tolerant species was always the more competitive of the two. Pronounced effects of initial size on seedling growth were observed, whereas the effects of light and competition by neighbours were of secondary importance. The paramount effect of size, which results from the asymmetric nature of interseedling competition, gives a strong advantage to tall seedlings over the long term.

Conclusions

This study extends previous efforts to identify potential drivers of rank reversals in young tree mixtures. It does not support the classical assumption that spatial heterogeneity in canopy opening explains the coexistence of the two species studied. It suggests that spatial variation in local size hierarchies among seedlings that may be caused by seedling emergence time or seedling initial performance is the main driver of the dynamics of these mixed stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号