首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Functional–structural modelling can be used to increase our understanding of how different aspects of plant structure and function interact, identify knowledge gaps and guide priorities for future experimentation. By integrating existing knowledge of the different aspects of the kiwifruit (Actinidia deliciosa) vine''s architecture and physiology, our aim is to develop conceptual and mathematical hypotheses on several of the vine''s features: (a) plasticity of the vine''s architecture; (b) effects of organ position within the canopy on its size; (c) effects of environment and horticultural management on shoot growth, light distribution and organ size; and (d) role of carbon reserves in early shoot growth.

Methods

Using the L-system modelling platform, a functional–structural plant model of a kiwifruit vine was created that integrates architectural development, mechanistic modelling of carbon transport and allocation, and environmental and management effects on vine and fruit growth. The branching pattern was captured at the individual shoot level by modelling axillary shoot development using a discrete-time Markov chain. An existing carbon transport resistance model was extended to account for several source/sink components of individual plant elements. A quasi-Monte Carlo path-tracing algorithm was used to estimate the absorbed irradiance of each leaf.

Key Results

Several simulations were performed to illustrate the model''s potential to reproduce the major features of the vine''s behaviour. The model simulated vine growth responses that were qualitatively similar to those observed in experiments, including the plastic response of shoot growth to local carbon supply, the branching patterns of two Actinidia species, the effect of carbon limitation and topological distance on fruit size and the complex behaviour of sink competition for carbon.

Conclusions

The model is able to reproduce differences in vine and fruit growth arising from various experimental treatments. This implies it will be a valuable tool for refining our understanding of kiwifruit growth and for identifying strategies to improve production.  相似文献   

2.

Background

The incidence of esophageal adenocarcinoma (EAC) has risen rapidly in the U.S. and western world. The aim of the study was to begin the investigation of this rapid rise by developing, calibrating, and validating a mathematical disease simulation model of EAC using available epidemiologic data.

Methods

The model represents the natural history of EAC, including the essential biologic health states from normal mucosa to detected cancer. Progression rates between health states were estimated via calibration, which identified distinct parameter sets producing model outputs that fit epidemiologic data; specifically, the prevalence of pre-cancerous lesions and EAC cancer incidence from the published literature and Surveillance, Epidemiology, and End Results (SEER) data. As an illustrative example of a clinical and policy application, the calibrated and validated model retrospectively analyzed the potential benefit of an aspirin chemoprevention program.

Results

Model outcomes approximated calibration targets; results of the model''s fit and validation are presented. Approximately 7,000 cases of EAC could have been prevented over a 30-year period if all white males started aspirin chemoprevention at age 40 in 1965.

Conclusions

The model serves as the foundation for future analyses to determine a cost-effective screening and management strategy to prevent EAC morbidity and mortality.  相似文献   

3.
Wang F  Kang M  Lu Q  Letort V  Han H  Guo Y  de Reffye P  Li B 《Annals of botany》2011,107(5):781-792

Background and Aims

Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal species used for windbreak and sand stabilization in arid and semi-arid areas in northern China. A model-assisted analysis of its canopy architectural development and functions is valuable for better understanding its behaviour and roles in fragile ecosystems. However, due to the intrinsic complexity and variability of trees, the parametric identification of such models is currently a major obstacle to their evaluation and their validation with respect to real data. The aim of this paper was to present the mathematical framework of a stochastic functional–structural model (GL2) and its parameterization for Mongolian Scots pines, taking into account inter-plant variability in terms of topological development and biomass partitioning.

Methods

In GL2, plant organogenesis is determined by the realization of random variables representing the behaviour of axillary or apical buds. The associated probabilities are calibrated for Mongolian Scots pines using experimental data including means and variances of the numbers of organs per plant in each order-based class. The functional part of the model relies on the principles of source–sink regulation and is parameterized by direct observations of living trees and the inversion method using measured data for organ mass and dimensions.

Key Results

The final calibration accuracy satisfies both organogenetic and morphogenetic processes. Our hypothesis for the number of organs following a binomial distribution is found to be consistent with the real data. Based on the calibrated parameters, stochastic simulations of the growth of Mongolian Scots pines in plantations are generated by the Monte Carlo method, allowing analysis of the inter-individual variability of the number of organs and biomass partitioning. Three-dimensional (3D) architectures of young Mongolian Scots pines were simulated for 4-, 6- and 8-year-old trees.

Conclusions

This work provides a new method for characterizing tree structures and biomass allocation that can be used to build a 3D virtual Mongolian Scots pine forest. The work paves the way for bridging the gap between a single-plant model and a stand model.  相似文献   

4.

Background and Aims

Simulating nitrogen economy in crop plants requires formalizing the interactions between soil nitrogen availability, root nitrogen acquisition, distribution between vegetative organs and remobilization towards grains. This study evaluates and analyses the functional–structural and mechanistic model of nitrogen economy, NEMA (Nitrogen Economy Model within plant Architecture), developed for winter wheat (Triticum aestivum) after flowering.

Methods

NEMA was calibrated for field plants under three nitrogen fertilization treatments at flowering. Model behaviour was investigated and sensitivity to parameter values was analysed.

Key Results

Nitrogen content of all photosynthetic organs and in particular nitrogen vertical distribution along the stem and remobilization patterns in response to fertilization were simulated accurately by the model, from Rubisco turnover modulated by light intercepted by the organ and a mobile nitrogen pool. This pool proved to be a reliable indicator of plant nitrogen status, allowing efficient regulation of nitrogen acquisition by roots, remobilization from vegetative organs and accumulation in grains in response to nitrogen treatments. In our simulations, root capacity to import carbon, rather than carbon availability, limited nitrogen acquisition and ultimately nitrogen accumulation in grains, while Rubisco turnover intensity mostly affected dry matter accumulation in grains.

Conclusions

NEMA enabled interpretation of several key patterns usually observed in field conditions and the identification of plausible processes limiting for grain yield, protein content and root nitrogen acquisition that could be targets for plant breeding; however, further understanding requires more mechanistic formalization of carbon metabolism. Its strong physiological basis and its realistic behaviour support its use to gain insights into nitrogen economy after flowering.  相似文献   

5.
Ford ED  Kennedy MC 《Annals of botany》2011,108(6):1043-1053

Background and Aims

Constructing functional–structural plant models (FSPMs) is a valuable method for examining how physiology and morphology interact in determining plant processes. However, such models always have uncertainty concerned with whether model components have been selected and represented effectively, with the number of model outputs simulated and with the quality of data used in assessment. We provide a procedure for defining uncertainty of an FSPM and how this uncertainty can be reduced.

Methods

An important characteristic of FSPMs is that typically they calculate many variables. These can be variables that the model is designed to predict and also variables that give indications of how the model functions. Together these variables are used as criteria in a method of multi-criteria assessment. Expected ranges are defined and an evolutionary computation algorithm searches for model parameters that achieve criteria within these ranges. Typically, different combinations of model parameter values provide solutions achieving different combinations of variables within their specified ranges. We show how these solutions define a Pareto Frontier that can inform about the functioning of the model.

Key Results

The method of multi-criteria assessment is applied to development of BRANCHPRO, an FSPM for foliage reiteration on old-growth branches of Pseudotsuga menziesii. A geometric model utilizing probabilities for bud growth is developed into a causal explanation for the pattern of reiteration found on these branches and how this pattern may contribute to the longevity of this species.

Conclusions

FSPMs should be assessed by their ability to simulate multiple criteria simultaneously. When different combinations of parameter values achieve different groups of assessment criteria effectively a Pareto Frontier can be calculated and used to define the sources of model uncertainty.  相似文献   

6.
7.

Backgrounds and Aims

Functional–structural models are interesting tools to relate environmental and management conditions with forest growth. Their three-dimensional images can reveal important characteristics of wood used for industrial products. Like virtual laboratories, they can be used to evaluate relationships among species, sites and management, and to support silvicultural design and decision processes. Our aim was to develop a functional–structural model for radiata pine (Pinus radiata) given its economic importance in many countries.

Methods

The plant model uses the L-system language. The structure of the model is based on operational units, which obey particular rules, and execute photosynthesis, respiration and morphogenesis, according to their particular characteristics. Plant allometry is adhered to so that harmonic growth and plant development are achieved. Environmental signals for morphogenesis are used. Dynamic turnover guides the normal evolution of the tree. Monthly steps allow for detailed information of wood characteristics. The model is independent of traditional forest inventory relationships and is conceived as a mechanistic model. For model parameterization, three databases which generated new information relating to P. radiata were analysed and incorporated.

Key Results

Simulations under different and contrasting environmental and management conditions were run and statistically tested. The model was validated against forest inventory data for the same sites and times and against true crown architectural data. The performance of the model for 6-year-old trees was encouraging. Total height, diameter and lengths of growth units were adequately estimated. Branch diameters were slightly overestimated. Wood density values were not satisfactory, but the cyclical pattern and increase of growth rings were reasonably well modelled.

Conclusions

The model was able to reproduce the development and growth of the species based on mechanistic formulations. It may be valuable in assessing stand behaviour under different environmental and management conditions, assisting in decision-making with regard to management, and as a research tool to formulate hypothesis regarding forest tree growth and development.  相似文献   

8.

Background and Aims

At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions.

Methods

Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional–structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions.

Key Results

Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north–south orientation of rows differed from east–west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis.

Conclusions

Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised.  相似文献   

9.

Background and Aims

Resistance of plants to ozone stress can be classified as either avoidance or tolerance. Avoidance of ozone stress may be explained by decreased stomatal conductance during ozone exposure because stomata are the principal interface for entry of ozone into plants. In this study, a coupled photosynthesis–stomatal model was modified to test whether the presence of ozone can induce avoidance of ozone stress by stomatal closure.

Methods

The response of Siebold''s beech (Fagus crenata), a representative deciduous tree species, to ozone was studied in a free-air ozone exposure experiment in Japan. Photosynthesis and stomatal conductance were measured under ambient and elevated ozone. An optimization model of stomata involving water, CO2 and ozone flux was tested using the leaf gas exchange data.

Key Results

The data suggest that there are two phases in the avoidance of ozone stress via stomatal closure for Siebold''s beech: (1) in early summer ozone influx is efficiently limited by a reduction in stomatal conductance, without any clear effect on photosynthetic capacity; and (2) in late summer and autumn the efficiency of ozone stress avoidance was decreased because the decrease in stomatal conductance was small and accompanied by an ozone-induced decline of photosynthetic capacity.

Conclusions

Ozone-induced stomatal closure in Siebold''s beech during early summer reduces ozone influx and allows the maximum photosynthetic capacity to be reached, but is not sufficient in older leaves to protect the photosynthetic system.  相似文献   

10.

Background and Aims

The production system of cut-rose (Rosa × hybrida) involves a complex combination of plant material, management practice and environment. Plant structure is determined by bud break and shoot development while having an effect on local light climate. The aim of the present study is to cover selected aspects of the cut-rose system using functional–structural plant modelling (FSPM), in order to better understand processes contributing to produce quality and quantity.

Methods

The model describes the production system in three dimensions, including a virtual greenhouse environment with the crop, light sources (diffuse and direct sun light and lamps) and photosynthetically active radiation (PAR) sensors. The crop model is designed as a multiscaled FSPM with plant organs (axillary buds, leaves, internodes, flowers) as basic units, and local light interception and photosynthesis within each leaf. A Monte-Carlo light model was used to compute the local light climate for leaf photosynthesis, the latter described using a biochemical rate model.

Key Results

The model was able to reproduce PAR measurements taken at different canopy positions, different times of the day and different light regimes. Simulated incident and absorbed PAR as well as net assimilation rate in upright and bent shoots showed characteristic spatial and diurnal dynamics for different common cultivation scenarios.

Conclusions

The model of cut-rose presented allowed the creation of a range of initial structures thanks to interactive rules for pruning, cutting and bending. These static structures can be regarded as departure points for the dynamic simulation of production of flower canes. Furthermore, the model was able to predict local (per leaf) light absorption and photosynthesis. It can be used to investigate the physiology of ornamental plants, and provide support for the decisions of growers and consultants.  相似文献   

11.

Background and Aims

Many physiological processes such as photosynthesis, respiration and transpiration can be strongly influenced by the diurnal patterns of within-tree water potential. Despite numerous experiments showing the effect of water potential on fruit-tree development and growth, there are very few models combining carbohydrate allocation with water transport. The aim of this work was to include a xylem circuit into the functional–structural L-PEACH model.

Methods

The xylem modelling was based on an electrical circuit analogy and the Hagen–Poisseuille law for hydraulic conductance. Sub-models for leaf transpiration, soil water potential and the soil–plant interface were also incorporated to provide the driving force and pathway for water flow. The model was assessed by comparing model outputs to field measurements and published knowledge.

Key Results

The model was able to simulate both the water uptake over a season and the effect of different irrigation treatments on tree development, growth and fruit yield.

Conclusions

This work opens the way to a new field of modelling where complex interactions between water transport, carbohydrate allocation and physiological functions can be simulated at the organ level and describe functioning and behaviour at the tree scale.  相似文献   

12.
Postma JA  Lynch JP 《Annals of botany》2011,107(5):829-841

Background and Aims

The formation of root cortical aerenchyma (RCA) reduces root respiration and nutrient content by converting living tissue to air volume. It was hypothesized that RCA increases soil resource acquisition by reducing the metabolic and phosphorus cost of soil exploration.

Methods

To test the quantitative logic of the hypothesis, SimRoot, a functional–structural plant model with emphasis on root architecture and nutrient acquisition, was employed. Sensitivity analyses for the effects of RCA on the initial 40 d of growth of maize (Zea mays) and common bean (Phaseolus vulgaris) were conducted in soils with varying degrees of phosphorus availability. With reference to future climates, the benefit of having RCA in high CO2 environments was simulated.

Key Results

The model shows that RCA may increase the growth of plants faced with suboptimal phosphorus availability up to 70 % for maize and 14 % for bean after 40 d of growth. Maximum increases were obtained at low phosphorus availability (3 µm). Remobilization of phosphorus from dying cells had a larger effect on plant growth than reduced root respiration. The benefit of both these functions was additive and increased over time. Larger benefits may be expected for mature plants. Sensitivity analysis for light-use efficiency showed that the benefit of having RCA is relatively stable, suggesting that elevated CO2 in future climates will not significantly effect the benefits of having RCA.

Conclusions

The results support the hypothesis that RCA is an adaptive trait for phosphorus acquisition by remobilizing phosphorus from the root cortex and reducing the metabolic costs of soil exploration. The benefit of having RCA in low-phosphorus soils is larger for maize than for bean, as maize is more sensitive to low phosphorus availability while it has a more ‘expensive’ root system. Genetic variation in RCA may be useful for breeding phosphorus-efficient crop cultivars, which is important for improving global food security.  相似文献   

13.

Background

Deceased donor kidneys for transplantation are in most countries allocated preferentially to recipients who have limited co-morbidities. Little is known about the incremental health and economic gain from transplanting those with co-morbidities compared to remaining on dialysis. The aim of our study is to estimate the average and incremental survival benefits and health care costs of listing and transplantation compared to dialysis among individuals with varying co-morbidities.

Methods

A probabilistic Markov model was constructed, using current outcomes for patients with defined co-morbidities treated with either dialysis or transplantation, to compare the health and economic benefits of listing and transplantation with dialysis.

Findings

Using the current waiting time for deceased donor transplantation, transplanting a potential recipient, with or without co-morbidities achieves survival gains of between 6 months and more than three life years compared to remaining on dialysis, with an average incremental cost-effectiveness ratio (ICER) of less than $50,000/LYS, even among those with advanced age. Age at listing and the waiting time for transplantation are the most influential variables within the model. If there were an unlimited supply of organs and no waiting time, transplanting the younger and healthier individuals saves the most number of life years and is cost-saving, whereas transplanting the middle-age to older patients still achieves substantial incremental gains in life expectancy compared to being on dialysis.

Conclusions

Our modelled analyses suggest transplanting the younger and healthier individuals with end-stage kidney disease maximises survival gains and saves money. Listing and transplanting those with considerable co-morbidities is also cost-effective and achieves substantial survival gains compared with the dialysis alternative. Preferentially excluding the older and sicker individuals cannot be justified on utilitarian grounds.  相似文献   

14.

Background and Aims

Girdling, or the removal of a strip of bark around a tree''s outer circumference, is often used to study carbon relationships, as it triggers several carbon responses which seem to be interrelated.

Methods

An existing plant model describing water and carbon transport in a tree was used to evaluate the mechanisms behind the girdling responses. Therefore, the (un)loading functions of the original model were adapted and became a function of the phloem turgor pressure.

Key Results

The adapted model successfully simulated the measured changes in stem growth induced by girdling. The model indicated that the key driving variables for the girdling responses were changes in turgor pressure due to local changes in sugar concentrations. Information about the local damage to the phloem system was transferred to the other plant parts (crown and roots) by a change in phloem pressure. After girdling, the loading rate was affected and corresponded to the experimentally observed feedback inhibition. In addition, the unloading rate decreased after girdling and even reversed in some instances. The model enabled continuous simulation of changes in starch content, although a slight underestimation was observed compared with measured values.

Conclusions

For the first time a mechanistic plant model enabled simulation of tree girdling responses, which have thus far only been experimentally observed and fragmentally reported in literature. The close agreement between measured and simulated data confirms the underlying mechanisms introduced in the model.  相似文献   

15.
Postma JA  Lynch JP 《Annals of botany》2012,110(2):521-534

Background and Aims

During their domestication, maize, bean and squash evolved in polycultures grown by small-scale farmers in the Americas. Polycultures often overyield on low-fertility soils, which are a primary production constraint in low-input agriculture. We hypothesized that root architectural differences among these crops causes niche complementarity and thereby greater nutrient acquisition than corresponding monocultures.

Methods

A functional–structural plant model, SimRoot, was used to simulate the first 40 d of growth of these crops in monoculture and polyculture and to determine the effects of root competition on nutrient uptake and biomass production of each plant on low-nitrogen, -phosphorus and -potassium soils.

Key Results

Squash, the earliest domesticated crop, was most sensitive to low soil fertility, while bean, the most recently domesticated crop, was least sensitive to low soil fertility. Nitrate uptake and biomass production were up to 7 % greater in the polycultures than in the monocultures, but only when root architecture was taken into account. Enhanced nitrogen capture in polycultures was independent of nitrogen fixation by bean. Root competition had negligible effects on phosphorus or potassium uptake or biomass production.

Conclusions

We conclude that spatial niche differentiation caused by differences in root architecture allows polycultures to overyield when plants are competing for mobile soil resources. However, direct competition for immobile resources might be negligible in agricultural systems. Interspecies root spacing may also be too large to allow maize to benefit from root exudates of bean or squash. Above-ground competition for light, however, may have strong feedbacks on root foraging for immobile nutrients, which may increase cereal growth more than it will decrease the growth of the other crops. We note that the order of domestication of crops correlates with increasing nutrient efficiency, rather than production potential.  相似文献   

16.
17.
18.

Background and Aims

Characterization of spatial patterns of plant disease can provide insights into important epidemiological processes such as sources of inoculum, mechanisms of dissemination, and reproductive strategies of the pathogen population. Whilst two-dimensional patterns of disease (among plants within fields) have been studied extensively, there is limited information on three-dimensional patterns within individual plant canopies. Reported here are the detailed mapping of different symptom types of brown rot (caused by Monilinia laxa) in individual sour cherry tree (Prunus cerasus) canopies, and the application of spatial statistics to the resulting data points to determine patterns of symptom aggregation and association.

Methods

A magnetic digitizer was utilized to create detailed three-dimensional maps of three symptom types (blossom blight, shoot blight and twig canker) in eight sour cherry tree canopies during the green fruit stage of development. The resulting point patterns were analysed for aggregation (within a given symptom type) and pairwise association (between symptom types) using a three-dimensional extension of nearest-neighbour analysis.

Key Results

Symptoms of M. laxa infection were generally aggregated within the canopy volume, but there was no consistent pattern for one symptom type to be more or less aggregated than the other. Analysis of spatial association among symptom types indicated that previous year''s twig cankers may play an important role in influencing the spatial pattern of current year''s symptoms. This observation provides quantitative support for the epidemiological role of twig cankers as sources of primary inoculum within the tree.

Conclusions

Presented here is a new approach to quantify spatial patterns of plant disease in complex fruit tree canopies using point pattern analysis. This work provides a framework for quantitative analysis of three-dimensional spatial patterns within the finite tree canopy, applicable to many fields of research.  相似文献   

19.

Background and Aims

The strong influence of environment and functioning on plant organogenesis has been well documented by botanists but is poorly reproduced in most functional–structural models. In this context, a model of interactions is proposed between plant organogenesis and plant functional mechanisms.

Methods

The GreenLab model derived from AMAP models was used. Organogenetic rules give the plant architecture, which defines an interconnected network of organs. The plant is considered as a collection of interacting ‘sinks’ that compete for the allocation of photosynthates coming from ‘sources’. A single variable characteristic of the balance between sources and sinks during plant growth controls different events in plant development, such as the number of branches or the fruit load.

Key Results

Variations in the environmental parameters related to light and density induce changes in plant morphogenesis. Architecture appears as the dynamic result of this balance, and plant plasticity expresses itself very simply at different levels: appearance of branches and reiteration, number of organs, fructification and adaptation of ecophysiological characteristics.

Conclusions

The modelling framework serves as a tool for theoretical botany to explore the emergence of specific morphological and architectural patterns and can help to understand plant phenotypic plasticity and its strategy in response to environmental changes.Key words: Trophic plasticity, plant growth, functional–structural models, dynamic system, interactions, GreenLab  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号