首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《植物生态学报》2017,41(1):126
Aims Little is known about the stoichiometric characteristics of carbon (C), nitrogen (N) and phosphorus (P) in plateau shrubs across China. Sibiraea angustata is a typical and representative shrub species on the eastern Qinghai- Xizang Plateau, and exploring its C, N and P distribution patterns and stoichiometric properties in different organs (including root, shoot, leaf, twig and fruit) would help us better understand the mechanisms of C, N and P cycling and balance in the S. angustata dominated shrub ecosystem.
Methods Sixteen sampling sites were selected on the eastern Qinghai-Xizang Plateau by the stratified sampling method. The height and coverage of the dominant shrubs, latitude, longitude and altitude of the sites were recorded. Three 5 m × 5 m plots were selected at each site. At least 128 biological samples of plant organs of S. angustata were collected and measured, respectively. The C and N concentrations of plant samples were analyzed using an elemental analyzer (2400 II CHNS). The P concentration was analyzed using the molydate/ascorbic acid method after H2SO4-H2O2 digestion.
Important findings The C, N and P concentrations of different organs followed the order of: shoot (495.07 g·kg-1) > twig (483.37 g·kg-1) > fruit (480.35 g·kg-1) > root (468.47 g·kg-1) > leaf (466.33 g·kg-1); leaf (22.27 g·kg-1) > fruit (19.74 g·kg-1) > twig (7.98 g·kg-1) > shoot (4.54 g·kg-1) > root (4.00 g·kg-1) and fruit (2.85 g·kg-1) > leaf (1.92 g·kg-1) > twig (0.96 g·kg-1) > root (0.52 g·kg-1) > shoot (0.45 g·kg-1), respectively. The ranges of the coefficient of variation (CV) for C, N and P concentrations were 1.71%-4.44%, 14.49%-25.50% and 11.46%-46.15%, respectively. Specifically, the C concentration was relatively high and stable, and the maximum CV values for N and P were found in roots. The N:P value of different organs varied from 7.12-12.41 and the minimum CV for N:P was found in twig, which indicated that N:P in twig had higher internal stability. In addition, correlation analysis indicated that the C concentration was significantly negatively correlated with N and P concentrations and correlation coefficients were -0.407 and -0.342, respectively. However, N concentration had dramatically positive correlation with P concentration and the correlation coefficient was 0.814. These results also could indicate that the C, N and P stoichiometric characteristics in the S. angustata shrub accorded with the homeostatic mechanism and growth rate hypothesis to some extent, the distributions of C, N and P concentrations were closely related to the function of the organs and it should be prudent to use ecological stoichiometric ratios to judge the condition of nutrient limitation at the species level.  相似文献   

2.
《植物生态学报》2017,41(5):506
Aims Xinjiang is located in the hinterland of the Eurasian arid areas, with grasslands widely distributed. Grasslands in Xinjiang provide significant economic and ecological benefits. However, research on evapotranspiration (ET) and water use efficiency (WUE) of the grasslands is still relatively weak. This study aimed to explore the spatio-temporal characteristics on ET and WUE in the grasslands of Xinjiang in the context of climate change.Methods The Biome-BGC model was used to determine the spatio-temporal characteristics of ET and WUE of the grasslands over the period 1979-2012 across different seasons, areas and grassland types in Xinjiang.Important findings The average annual ET in the grasslands of Xinjiang was estimated at 245.7 mm, with interannual variations generally consistent with that of precipitation. Overall, the value of ET was lower than that of precipitation. The higher values of ET mainly distributed in the Tianshan Mountains, Altai Mountains, Altun Mountains and the low mountain areas on the northern slope of Kunlun Mountains. The lower values of ET mainly distributed in the highland areas of Kunlun Mountains and the desert plains. Over the period 1979-2012, average annual ET was 183.2 mm in the grasslands of southern Xinjiang, 357.9 mm in the grasslands of the Tianshan Mountains, and 221.3 mm in grasslands of northern Xinjiang. In winter, ET in grasslands of northern Xinjiang was slightly higher than that of Tianshan Mountains. Average annual ET ranked among grassland types as: mid-mountain meadow > swamp meadow > typical grassland > desert grassland > alpine meadow > saline meadow. The highest ET value occurred in summer, and the lowest ET value occurred in winter, with ET in spring being slightly higher than that in autumn. The higher WUE values mainly distributed in the areas of Tianshan Mountains and Altai Mountains. The lower WUE values mainly distributed in the highland areas of Kunlun Mountains and part of the desert plains. The average annual WUE in the grasslands of Xinjiang was 0.56 g·kg-1, with the seasonal values of 0.43 g·kg-1 in spring, 0.60 g·kg-1 in summer, and 0.48 g·kg-1 in autumn, respectively. Over the period 1979-2012, the values of WUE displayed significant regional differences: the average values were 0.73 g·kg-1 in northern Xinjiang, 0.26 g·kg-1 in southern Xinjiang, and 0.69 g·kg-1 in Tianshan Mountains. There were also significant differences in WUE among grassland types. The values of WUE ranked in the order of mid-mountain meadow > typical grassland > swamp meadow > saline meadow > alpine meadow > desert grassland.  相似文献   

3.
Aims As the second largest C flux between the atmosphere and terrestrial ecosystems, soil respiration plays a vital role in regulating atmosphere CO2 concentration. Therefore, understanding the response of soil respiration to the increasing nitrogen deposition is urgently needed for prediction of future climate change. However, it is still unclear how nitrogen deposition influences soil respiration of shrubland in subtropical China. Our objectives were to explore the effects of different levels of nitrogen fertilization on soil respiration, root biomass increment, and litter biomass, and to analyze the relationships between soil respiration and soil temperature and moisture.
Methods From January 2013 to September 2014, we conducted a short-term simulated nitrogen deposition experiment in the Rhododendron simsii shrubland of Dawei Mountain, located in Hunan Province, southern China. Four levels of nitrogen addition treatments (each level with three replicates) were established: control (CK, no nitrogen addition), low nitrogen addition (LN, 2 g·m-2·a-1), medium nitrogen addition (MN, 5 g·m-2·a-1) and high nitrogen addition (HN, 10 g·m-2·a-1). Soil respiration was measured by LI-8100 soil CO2 efflux system. At the same time, we measured root biomass increment and litter biomass in each plot.
Important findings Soil respiration exhibited a strong seasonal pattern, with the highest rates found in summer and the lowest rates in winter. Annual accumulative soil respiration rate in the CK, LN, MN and HN was (2.37 ± 0.39), (2.79 ± 0.42), (2.26 ± 0.38) and (2.30 ± 0.36) kg CO2·m-2, respectively. Annual mean soil respiration rate in the CK, LN, MN and HN was (1.71 ± 0.28), (2.01 ± 0.30), (1.63 ± 0.27) and (1.66 ± 0.26) μmol CO2·m-2·s-1, respectively, and it was 17.25% higher in the LN treatment compared with CK (p = 0.06). The root biomass increment was increased by LN, MN, and HN treatments by 18.36%, 36.49% and 61.63%, respectively, compared to CK. The litter biomass was increased by LN, MN, and HN treatments by 35.87%, 22.17% and 15.35%, respectively, compared with CK. Soil respiration exhibited a significant exponential relationship with soil temperature (p < 0.01, R2 is 0.77 to 0.82) and a significant linear relationship with soil moisture at the depth of 5 cm (p < 0.05, R2 is 0.10 to 0.15). The temperature sensitivity (Q10) value of CK, LN, MN and HN plots was 3.96, 3.60, 3.71 and 3.51, respectively. These results suggested that nitrogen addition promoted plant growth and decreased the temperature sensitivity of soil respiration. The increase of root biomass under N addition may be an important reason for the change of soil respiration in the study area.  相似文献   

4.
珍贵树种降香黄檀与印度檀香混交种植是当前华南地区人工林发展的一种重要模式.本研究设置对照(不做处理)、铲草、施肥、铲草+施肥4个处理,研究抚育措施对林地土壤净矿化速率、净硝化速率、净铵化速率和氮素淋溶速率的影响.结果表明:4个处理0~10 cm土层在春、秋季有最大净氮矿化速率,分别为18.92、18.13 mg·kg^-1·month^-1;在春、秋季有最大硝化速率,分别为20.35、18.85 mg·kg^-1·month^-1;夏、冬季有最大铵化速率,分别为0.22、0.26 mg·kg^-1·month^-1;秋季的氮素淋溶最严重,为15.98 mg·kg^-1·month^-1,全年最大淋溶为86.69 mg·kg^-1.铲草、施肥、铲草+施肥都在一定程度上抑制了土壤氮的净矿化和硝化速率,铲草、施肥、铲草+施肥处理年氮矿化量分别下降26.2%、16.1%、6.3%,年氮硝化量分别下降17.1%、16.6%、1.4%,同时也抑制了土壤铵态氮的累积.铲草、施肥、铲草+施肥处理全年氮素淋溶量依次减少25.2%、8.6%、6.1%.相对于铲草、施肥、铲草+施肥抚育措施,季节因素对土壤氮素矿化和淋溶过程的影响更显著.铲草、施肥、铲草+施肥措施在一定程度上抑制了土壤氮素硝化和铵化过程,减少了土壤氮素的矿化和淋溶损失量,有利于土壤肥力的保存和氮素的累积.  相似文献   

5.
《植物生态学报》2017,41(12):1251
Aims Plant roots store large amount of terrestrial carbon, but little is known about humus formation processes during the decomposing root litter. Compared with coarse roots, fine roots have greater nutrients, which may be favorable to humus formation. The objective of the study was to examine how root diameters affect their humus formation processes. Methods In this study, in order to examine the accumulation of humic acid and fulvic acid of three root diameter classes (0-2, 2-5 and 5-10 mm) of two subalpine tree species (Abies faxoniana and Picea asperata) on the eastern Qinghai-Xizang Plateau of China, a two-year field experiment was conducted using a litter-bag method. Air-dried roots of A. faxoniana and P. asperata were placed in litterbags and incubated at 10 cm of soil depth in October 11th, 2013. Duplicate litter bags were collected in May (late winter) and October (late in the growing season) of 2014 and 2015, respectively. Concentrations of humic acid and fulvic acid were measured, and net accumulations were calculated for different periods. Important findings The concentrations of humic acid and fulvic acid were significantly influenced by root diameter that humic acid and fulvic acid decreased with increase in root diameter. Root diameter had significant effects on the net accumulation of humic acid, but not for the accumulation of fulvic acid. However, there were no significant differences in both humic acid and fulvic acid between A. faxoniana and P. asperata roots. Regardless of tree species, humic acid degraded during the winter but accumulated during the growing season. After two years of decomposition, the net accumulations of humic acid in 0-2, 2-5 and 5-10 mm roots were 8.0, 10.8 and 7.6 g·kg-1 for P. asperata and 15.2, 8.0 and 7.8 g·kg-1 for A. faxoniana, respectively. Conversely, the degradation of fulvic acid in 0-2, 2-5 and 5-10 mm roots were 178.0, 166.0 and 118.0 g·kg-1 for P. asperata and 170.0, 160.0 and 128.0 g·kg-1 for A. faxoniana, respectively. Our results suggest that diameter-associated variations in substrate quality could be an important driver for root litter humification in this subalpine forest. Moreover, diameter effect is dependent on decomposition period in this specific area.  相似文献   

6.
中国寒温带不同林龄白桦林碳储量及分配特征   总被引:1,自引:0,他引:1       下载免费PDF全文
魏红  满秀玲 《植物生态学报》2019,43(10):843-852
为了解中国寒温带地区不同林龄白桦林生态系统碳储量及固碳能力, 在样地调查基础上, 以大兴安岭地区25、40与61年白桦(Betula platyphylla)林生态系统为研究对象, 对其乔木层、林下地被物层(灌木层、草本层、凋落物层)、土壤层(0-100 cm)碳储量与分配特征进行调查研究。结果表明白桦林乔木层各器官碳含量在440.7-506.7 g·kg -1之间, 各器官碳含量随着林龄的增长而降低; 灌木层、草本层碳含量随林龄的增加呈先降后升的变化趋势; 凋落物层碳含量随林龄增加而降低; 土壤层(0-100 cm)碳含量随林龄增加而显著升高, 随着土层深度的增加而降低。白桦林生态系统各层次碳储量均随林龄的增加而明显升高。25、40与61年白桦林乔木层碳储量分别为11.9、19.1和34.2 t·hm -2, 各器官碳储量大小顺序表现为树干>树根>树枝>树叶, 树干碳储量分配比例随林龄增加而升高。25、40与61年白桦林生态系统碳储量分别为77.4、180.9和271.4 t·hm -2, 其中土壤层占生态系统总碳储量的81.6%、87.7%和85.9%, 是白桦林生态系统的主要碳库。随林龄增加, 白桦林年净生产力(2.0-4.4 t·hm -2·a -1)、年净固碳量(1.0-2.1 t·hm -2·a -1)均出现增长, 老龄白桦林仍具有较强的碳汇作用。  相似文献   

7.
《植物生态学报》2017,41(9):925
Aims Net primary production (NPP) is the input to terrestrial ecosystem carbon pool. Climate and land use change affect NPP significantly. Shrublands occupy more than 20% of the terrestrial area of China, and their NPP is comparable to those of the forests. Our objective was to estimate China shrubland NPP from 2001 to 2013, and to analyze its variation and response to climate change.Methods We used a Carnegie-Ames-Stanford Approach (CASA) model to estimate the NPP of six shrubland types in China from 2001 to 2013. Furthermore, we used Theil-Sen slope combined with Mann-kendall test to analyze its spatial variation and a linear regression of one-variable model to analyze its inter- and intra-annual variation. Finally, a multi-factor linear regression model was used to analyze its response to climate change.Important findings We found the annual mean NPP of China shrubland was 281.82 g•m-2•a-1. The subtropical evergreen shrubland has the maximum NPP of 420.47 g•m-2•a-1, while the high cold desert shrubland has the minimum NPP of 52.65 g•m-2•a-1. The countrywide shrublands NPP increased at the rate of 1.23 g•m-2•a-1, the relative change rate was 5.99%. The temperate deciduous shrubland NPP increased the fastest with a speed of 3.05 g•m-2•a-1 and subalpine evergreen shrubland had a decreasing trend with a speed of -0.73 g•m-2•a-1. Moreover, the other four shrublands NPP had a growing trend, only subalpine deciduous shrubland NPP did not change significantly. The response of NPP to climate change of different seasons varies to different shrubland types. In general, the NPP variation was mainly affected by precipitation, and the spring warming also contributed to it. The increase of countrywide shrubland NPP may promote its contribution to the regional ecosystem function.  相似文献   

8.
《植物生态学报》2016,40(12):1298
AimsThe objective of this study was to investigate the change pattern of leaves photosynthesis and stem sap flow of Tamarix chinensisin under different groundwater salinity, which can be served as a theoretical basis and technical reference for cultivation and management of T. chinensis in shallow groundwater table around Yellow River Delta.MethodsThree-year-old T. chinensis, one of the dominated species in Yellow River Delta, was selected. Plants were treated by four different salinity concentrations of groundwater—fresh water (0 g∙L-1), brackish water (3.0 g∙L-1), saline water (8.0 g∙L-1), and salt water (20.0 g∙L-1) under 1.2 m groundwater level. Light response of photosynthesis and the diurnal courses of leaf transpiration rate, stem sap flux velocity and environment factors under different groundwater salinity were determined via LI-6400XT portable photosynthesis system and a Dynamax packaged stem sap flow gauge based on stem-heat balance method, respectively.Important findings The result showed that groundwater salinity had a significant impact on photosynthesis efficiency and water consumption capacity of T. chinensis by influencing the soil salt. The net photosynthetic rate (Pn), maximum Pn, transpiration rate, stomatal conductance, apparent quantum yield and dark respiration rate increased first and then decreased with increasing groundwater salinity, while the water use efficiency (WUE) continuously decreased. The mean Pn under fresh water, brackish water and salt water decreased by 44.1%, 15.1% and 62.6%, respectively, compared with that under saline water (25.90 µmol∙m-2∙s-1). The mean WUE under brackish water, saline water and salt water decreased by 25.0%, 29.2% and 41.7%, respectively, compared with that under fresh water (2.40 µmol∙mmol-1). With the increase of groundwater salinity from brackish water to salt water, light saturation point of T. chinensisdecreased while the light compensation point increased, which lead to the decrease of light ecological amplitude and light use efficiency. Fresh water and brackish water treatment helped T. chinensis to use low or high level light, which could significantly improve the utilization rate of light energy. The decrease in Pn of T. chinensis was mainly due to non-stomatal limitation under treatment from saline water to fresh water, while the decrease in Pn of T. chinensis was due to stomatal limitation from saline water to salt water. With increasing groundwater salinity, stem sap flux velocity of T. chinensis increased firstly and then decreased, reached the maximum value under saline water. The mean stem sap flux velocity under fresh water, brackish water and salt water decreased by 61.8%, 13.1% and 41.9%, respectively, compared with that under saline water (16.96 g·h-1). Tamarix chinensis had higher photosynthetic productivity under saline water treatment, and could attained high WUE under severe water deprivation by transpiration, which was suitable for the growth of T. chinensis.  相似文献   

9.
根系分泌物是植物与土壤间进行物质交换和信息传递的重要载体, 是植物响应外界胁迫的重要途径, 也是构成根际微生态特征的关键因素。根系分泌物与有机污染物的植物修复密切相关, 研究胁迫条件下不同修复潜力植物间根系分泌物的释放特征有助于揭示植物修复的内在机制。该文借助根际袋土培试验研究了苯并[α]芘(BaP)胁迫下5种羊茅属(Festuca)植物根系不同生长期(30-70天)几种低分子量有机物的分泌特征。结果表明: 1) BaP浓度在10.25-161.74 mg·kg-1范围内时, 待试植物能有效地促进土壤中BaP的去除, 其修复潜力依次为苇状羊茅(F. arundinacea) > 草原羊茅(F. chelungkiangnica) ≥ 毛稃羊茅(F. rubra subsp. arctica) ≥ 贫芒羊茅(F. sinomutica) > 细芒羊茅(F. stapfii)。2) BaP胁迫增强了植物根系对可溶性糖的分泌: 随着胁迫强度的增大、胁迫期的延长, 其分泌量变化呈“先升后降”趋势。3) BaP胁迫促进了植物根系低分子量有机酸的释放, 植物的修复潜力越大, 有机酸高峰值出现时的胁迫浓度越高; 组成成分较稳定, 草酸、乙酸、乳酸和苹果酸为主要组分(>97.34%), 在修复潜力较强植物的根系分泌物中检测出微量的反丁烯二酸。4) BaP胁迫对氨基酸种类影响不大, 但对分泌量影响较大。其中, 苏氨酸、丝氨酸、甘氨酸、丙氨酸的分泌量随BaP胁迫强度的增强而剧增; 脯氨酸、羟脯氨酸和天冬氨酸近乎以加和效应甚至协同效应的形式参与植物对BaP胁迫的应激反应: 参与应激组分的分泌量随胁迫强度的增强而剧增, 植物的修复潜力越强, 参与的组分越多。可见BaP胁迫下, 5种羊茅属植物根系分泌物中几种低分子量有机物的释放特征与植物自身的修复潜力有关: 修复潜力越强, 释放量越多且成分也越复杂, 并呈现出较强的环境适应性及生理可塑性。  相似文献   

10.
《植物生态学报》2017,41(6):610
Aims Understanding the responses of root exudative carbon (C) to increasing nitrogen deposition is important for predicting carbon cycling in terrestrial ecosystems. However, fewer studies have investigated the dynamics of root exudation in shrubbery ecosystems compared to forests and grassland ecosystems. This objective of this study was to determine the effects of nitrogen fertilization on the rate and C flux of root exudates.Methods Three levels of nitrogen addition treatments were applied to a Sibiraea angustata shrubbery ecosystem situated at the eastern fringe of Qinghai-Xizang Plateau, including N0 (without nitrogen application), N5 (nitrogen addition rate of 5 g·m-2·a-1), and N10 (nitrogen addition rate of 10 g·m-2·a-1), respectively, in 5 m ´ 5 m plots. Root exudates were collected in June, August and October of 2015, using a modified culture-based cuvette system. Root biomass in each plot was measured with root core method.Important findings The rates of root exudates on biomass, length, and surface area basis all displayed apparent seasonal variations during the experimental period, with the magnitude ranked in the order of: August > June > October, consistent with changes in soil temperature at 5 cm depth. With increases in the nitrogen addition rate, the rate of root exudates on biomass, length, and area basis all trended lower. Compared with the control (N0), the N5 and N10 treatments significantly reduced fine root biomass in the Sibiraea angustata shrubbery, by 23.36% and 33.84%, respectively. The decreasing root exudation and fine root biomass in response to nitrogen addition significantly decreased C flux of root exudates. Our results provide additional evidences toward a robust theoretical foundation for better understanding soil C-nutrient cycling process mediated by root exudation inputs in Alpine shrubbery ecosystems under various environmental changes.  相似文献   

11.
为探明沿海滩涂极重度盐土盐分动态规律及其影响因子,并探讨盐生植被和秸秆覆盖下土壤的脱盐及控盐效果,2014年5月—2015年5月,在江苏沿海滩涂极重度盐土中进行田间试验,设置4种处理:对照(裸地,CK)、种植碱蓬(PS)、15 t·hm-2秸秆覆盖(SM-A)和30t·hm-2秸秆覆盖(SM-2A),监测气候因子和土壤盐分的动态变化.结果表明:(1)滩涂裸地表层土壤盐分具有显著的季节性变化特征,表现为在6—8月盐分降低至最低值(8.69g·kg-1),9—12月呈现积盐作用,最大值为26.66 g·kg-1;表层土壤盐分变化比亚表层更剧烈,而且亚表层盐分变化相对于表层具有一定的滞后性;(2)相关分析表明,滩涂裸地表层盐分变化与采样前15 d的累积降雨量及蒸降比具有显著的线性关系;多因子及互作逐步分析表明,降雨量增加可以显著促进脱盐作用,大气温度升高可加剧盐分积累,降雨量和大气温度的互作效应增加会对盐分累积产生正效应;(3)PS处理没有显著改变土壤盐分的季节性变化规律,但降低了表层土壤盐分;(4)SM-A和SM-2A条件下,土壤脱盐率与覆盖处理天数回归拟合符合Logistic曲线,且经过雨季覆盖处理90~100 d后表层土壤脱盐率均可达到95.0%以上,覆盖处理120 d后亚表层土壤脱盐率均可达到92.0%以上,之后表层和亚表层土壤盐分分别在0.60和1.00 g·kg-1以下波动.综合考虑脱盐效果和经济投入,在梅雨季节前(4—5月)采用15 t·hm-2秸秆覆盖,可能是未来滩涂极重度盐土进行快速脱盐和改良的重要措施.  相似文献   

12.
Aims The shrublands of northern China have poor soil and nitrogen (N) deposition has greatly increased the local soil available N for decades. Shrub growth is one of important components of C sequestration in shrublands and litterfall acts as a vital link between plants and soil. Both are key factors in nutrient and energy cycling of terrestrial ecosystems, which greatly affected by nitrogen (N) addition (adding N fertilizer to the surface soil directly). However, the effects and significance of N addition on C sequestration and litterfall in shrublands remain unclear. Thus, a study was designed to investigate how N deposition and related treatments affected shrublands growth related to C sequestration and litterfall production of Vitex negundo var. heterophylla and Spiraea salicifolia in Mt. Dongling region of China.
Methods A N enrichment experiment has been conducted for V. negundo var. heterophylla and S. salicifolia shrublands in Mt. Dongling, Beijing, including four N addition treatment levels (control (N0, 0 kg N·hm-2·a-1), low N (N1, 20 kg N·hm-2·a-1), medium N (N2, 50 kg N·hm-2·a-1) and high N (N3, 100 kg N·hm-2·a-1)). Basal diameter and plant height of shrub were measured from 2012-2013 within all treatments, and allometric models for different species of shrub’s live branch, leaf and root biomass were developed based on independent variables of basal diameter and plant height, which will be used to calculate biomass increment of shrub layer. Litterfall (litterfall sometimes is named litter, referring to the collective name for all organic matter produced by the aboveground part of plants and returned to the surface, and mainly includes leaves, bark, dead twigs, flowers and fruits.) also was investigated from 2012-2013 within all treatments.
Important findings The results showed 1) mean basal diameter of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were increased by 1.69%, 2.78%, 2.51%, 1.80% and 1.38%, 1.37%, 1.59%, 2.05% every year; 2) The height growth rate (the shrub height relative growth rate is defined with the percentage increase of plant height) of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were 8.36%, 8.48%, 9.49%, 9.83% and 2.12%, 2.86%, 2.36%, 2.52% every year, respectively. Thee results indicated that N deposition stimulated growth of shrub layer both in V. negundo var. heterophylla and S. salicifolia shrublands, but did not reach statistical significance among all nitrogen treatments. The above-ground biomass increment of shrub layer in the V. negundo var. heterophylla and S. salicifolia shrublands were 0.19, 0.23, 0.14, 0.15 and 0.027, 0.025, 0.032, 0.041 t C·hm-2·a-1 respectively, which demonstrated that short-term N addition had no significant effects on the accumulation of C storage of the two shrublands. The litter production of the V. negundo var. heterophylla and S. salicifolia communities in 2013 were 135.7 and 129.6 g·m-2 under natural conditions, respectively. Nitrogen addition promoted annual production of total litterfall and different components of litterfall to a certain extent, but did not reach statistical significance among all nitrogen treatments. Above results indicated that short-term fertilization, together with extremely low soil moisture content and other related factors, lead to inefficient use of soil available nitrogen and slow response of shrublands to N addition treatments.  相似文献   

13.
土壤有效磷(Olsen-P)含量的变化过程及其与土壤磷素平衡和作物产量的关系是科学推荐施磷的基础.本文通过设置于黄土高原黄绵土区持续34年(1981—2015)的长期定位试验,研究了长期不同施肥处理对作物磷素携出量、土壤磷素平衡、土壤Olsen-P含量的影响及其演变过程,同时对土壤Olsen-P含量与磷素平衡和作物籽粒产量的相关关系进行了分析.试验采用裂区设计,主处理为施用有机肥(M)和不施用有机肥,副处理为不施化肥(CK)、单施氮肥(N)、氮磷肥配合施用(NP)和氮磷钾肥配合施用(NPK).结果表明: 不同施肥处理和作物类型对磷素携出量和磷素平衡都有显著影响.CK、N、NP、NPK、M、MN、MNP 和MNPK处理小麦的磷素携出量多年平均值为8.63、10.64、16.22、16.21、16.25、17.83、20.39、20.27 kg·hm-2,而油菜为4.40、8.38、15.08、15.71、10.52、11.23、17.96、17.66 kg·hm-2,小麦的携出量略高于油菜.土壤磷素盈亏量与磷素投入量呈显著正相关,土壤磷素盈余为零,种植小麦的最小土壤磷素投入量为10.47 kg·hm-2,而油菜为6.97 kg·hm-2.土壤磷素盈亏量显著影响土壤有效磷的变化过程.长期不施磷的CK和N处理,土壤有效磷含量随试验年限延长而逐渐降低,年均分别降低0.16和0.15 mg·kg-1,而NP、NPK、M、MN、MNP和MNPK处理土壤有效磷含量随试验年限的延续而逐渐增加,年均增幅在0.02~0.33 mg·kg-1.土壤磷素累积盈亏量与土壤有效磷含量间存在显著的正相关关系,不施用有机肥和施有机肥处理可分别用线性模型y=0.012x+9.33和y=0.009x+11.72显著拟合.不施有机肥处理小麦籽粒产量与土壤有效磷含量呈显著正相关,而施有机肥处理两者间的相关性不明显,两者的小麦籽粒产量和土壤有效磷含量可以用线性分段模型拟合.小麦土壤有效磷农学阈值为14.99 kg·hm-2,油菜籽粒产量虽随土壤速效磷含量增加呈增加的趋势,但相关性不显著,表明在黄土高原黄绵土区,当土壤有效磷含量高于14.99 mg·kg-1时,种植小麦应减少磷肥施用量或不施磷肥.  相似文献   

14.
崇明东滩南部滩面高程、土壤盐度在空间上呈明显的梯度变化规律。高程整体西高东低、北高南低, 盐度东北高、西南低, 两者共同限制着盐沼植物在空间上的分布。该文围绕崇明东滩南部主要植被类群及其空间分布, 探讨了土壤盐度、潮滩高程两大环境因子与植物种群分布的对应关系。基于2013年夏、秋季植被空间网格采样和空间插值, 分析了东滩南部植物的空间分布现状, 发现不同植物类群在高程和土壤盐度上存在极显著的差异(p < 0.01)。高程差异: 莎草科类群主要分布于高程区间2.93-4.07 m的低潮滩, 禾本科主要集中分布在高程3.13-4.31 m的中、高潮滩; 盐度差异: 海三棱藨草(Scirpus mariqueter)和互花米草(Spartina alterniflora)优势种群植被覆盖区表层30 cm的平均土壤盐度为(3.2 ± 0.6) g·kg-1, 显著高于其他类群植物分布区的平均土壤盐度(2.0 ± 0.3) g·kg-1 (p < 0.01)。崇明东滩湿地生态系统的关键种兼先锋种——海三棱藨草, 分布高程介于2.53-3.97 m, 而互花米草能适应海三棱藨草80%的高程区间, 两者在高程上存在竞争关系。统计数据显示, 研究区域中近90%的海三棱藨草分布在研究区东北部, 土壤盐度范围为1.6-4.5 g·kg-1, 海三棱藨草、互花米草能较好地适应该空间内的盐度胁迫, 两种植物在此交替出现。但是在高程和土壤盐度的综合作用下, 互花米草的生长状况更好, 因此该区的海三棱藨草很可能会被互花米草逐步取代。对各类群植被分布和优势面积的研究发现, 海三棱藨草总分布面积为294 hm2, 优势群落面积120 hm2, 海三棱藨草仅占莎草科植物总优势面积的15.7%, 占研究区总面积的6.9%, 在6种主要植物(芦苇(Phragmites australis)、白茅(Imperata cylindrica)、互花米草、糙叶薹草(Carex scabrifolia)、藨草(Scirpus triqueter)、海三棱藨草)中比重最小, 这给保护区内海三棱藨草种群的恢复和保护带来极大的挑战。  相似文献   

15.
《植物生态学报》2017,41(11):1177
Aims Recent studies have shown that artificial addition of biochar is an effective way to mitigate atmospheric carbon dioxide concentrations. However, it is still unclear how biochar addition influences soil respiration in Phyllostachys edulis forests of subtropical China. Our objectives were to examine the effects of biochar addition on the dynamics of soil respiration, soil temperature, soil moisture, and the cumulative soil carbon emission, and to determine the relationships of soil respiration with soil temperature and moisture.Methods We conducted a two-year biochar addition experiment in a subtropical P. edulis forest from 2014.05 to 2016.04. The study site is located in the Miaoshanwu Nature Reserve in Fuyang district of Hangzhou, Zhejiang Province, in southern China. The biochar addition treatments included: control (CK, no biochar addition), low rate of biochar addition (LB, 5 t·hm-2), medium rate of biochar addition (MB, 10 t·hm-2), and high rate of biochar addition (HB, 20 t·hm-2). Soil respiration was measured by using a LI-8100 soil CO2 efflux system.Important findings Soil respiration was significantly reduced by biochar addition, and exhibited an apparent seasonal pattern, with the maximum occurring in June or July (except LB in one of the replicated stand) and the minimum in January or February. There were significant differences in soil respiration between the CK and the treatments. Annual mean soil respiration rate in the CK, LB, MB and HB were 3.32, 2.66, 3.04 and 3.24 μmol·m-2·s-1, respectively. Compared with CK, soil respiration rate was 2.33%-54.72% lower in the LB, 1.28%-44.21% lower in the MB, and 0.09%-39.22% lower in the HB. The soil moisture content was increased by 0.97%-75.58% in LB, 0.87%-48.18% in MB, and 0.68%-74.73% in HB, respectively, compared with CK. Soil respiration exhibited a significant exponential relationship with soil temperature and a significant linear relationship with combination of soil temperature and moisture at the depth of 5 cm; no significant relationship was found between soil respiration and soil moisture alone. The temperature sensitivity (Q10) value was reduced in LB and HB. Annual accumulative soil carbon emission in the LB, MB and HB was reduced by 7.98%-35.09%, 1.48%-20.63%, and -4.71%-7.68%, respectively. Biochar addition significantly reduced soil carbon emission and soil temperature sensitivity, highlighting its role in mitigating climate change.  相似文献   

16.
《植物生态学报》2016,40(10):1003
Aims Grazing activities degrade soil aggregates, reduce vegetation coverage and affect the amount of deposited material, and make the land more vulnerable to wind erosion. Although livestock increase was considered as the main issue leading to the degradation, only very few studies have quantitatively investigated the relationship between grazing and soil erosion. The relationship between different stocking rates and sediment flux, and sediment soil particle was studied to reveal the mechanism of different grazing intensities on soil erosion process, to provide basic parameters for grazing optimization in the Stipa breviflora desert steppe. Methods In the Stipa breviflora desert steppe research area, BSNE collecting sand boxes were set in the randomly distributed paddock experiment sites for 11 year with different grazing intensities (0.15、0.30、0.45、0 sheep·hm-2·month-1, corresponding to light grazing LG, moderate grazing MG, heavy grazing HG and control CK, respectively). The quantitative relationship between grazing intensity and sediment flux, and the characteristics of sediment soil particle were conducted in four sampling periods through 2 years (April 2013 to April 2015).Important findings (1) Grazing intensity had a significant effect on the sediment flux (p< 0.05), and the sediment flux increased with the increase of grazing intensity. The response of sediment flux to grazing intensity was variable with season. The daily average sediment flux (13.12 g·m-1·d-1) during the period of April to October was smaller than that from October to April (18.74 g·m-1·d-1). The sediment flux difference of different grazing intensities was greater from April to October, with the 5 times daily average sand flux in the heavy grazing paddock that in the control. The average sediment flux difference of different grazing intensities was small from October to April. (2) The relationship between the natural logarithm of sediment flux at different height and the vertical height had a better binomial fitting from April to October, and there was no obvious regular pattern about flux vertical distribution from October to April, and the vertical flux difference of grazing intensities was mainly expressed in 0-50 cm layer. (3) Sand sediment particle ≤250 μm accounted for more than 85% of the total sediment, the sand sediment particle of ≤50 μm) size was significantly enriched, and the enrichment ratio increased with the increase of vertical height. The enrichment ratio of 125-250 μm particle and 50-125 μm particle decreased with the increase of vertical height, and the enrichment ratio of 125-250 μm particle was smaller than that of 50-125 μm particle (p< 0.05). Therefore grazing intensity had different influence on the sand flux in Stipa breviflora desert steppe, the greater the grazing intensity, the heavier the wind erosion was, and the effect of grazing intensity on grassland was enhanced by wind erosion.  相似文献   

17.
《植物生态学报》2015,39(12):1198
Aims The relationship between rhizosphere process and fine root growth is very close but still obscure. In poplar plantation, phenolic acid rhizodeposition and soil nutrient availability were considered as two dominant factors of forest productivity decline. It is very hard to separate them in the field and they might show an interactive effect on fine root growth. The objective of this study is to examine the influence of phenolic acids and nitrogen on branch orders of poplar fine roots and to give a deeper insight into how the ecological process on root-soil interface affected fine root growth as well as plantation productivity. Methods The cuttings of health annual poplar seedlings (I-107, Populus × euramericana ‘Neva’) serve as experiment materials, and were cultivated under nine conditions, including three concentration of phenolic acids at 0X, 0.5X, 1.0X (here, X represented the contents of phenolic acids in the soil of poplar plantation) and three concentration of nitrogen at 0 mmol·L-1, 10 mmol·L-1, 20 mmol·L-1, based on Hoagland solution. The roots were all separated from poplar seedlings after 35 days, and 30 percent of total fine roots of every treatment were taken as fine root samples. These fine roots were grouped according to 1 to 5 branch orders, and then the morphological traits of each group of fine roots were scanned via root analyzer system (WinRHIZO, Regent Instruments Company, Quebec, Canada) including total length, surface area, volume and average diameter. Meanwhile, the dry mass of fine root samples of every order was measured to calculate specific root length (SRL), root tissue density (RTD). All data were analyzed via SPSS 17.0 software, and interactive effect of phenolic acids and nitrogen on roots was analyzed through univariate process module. Principal component analysis (PCA) and redundancy analysis (RDA) were conducted via Canoco 4.5 software. Important findings Under the conditions without phenolic acids application, the fine roots growth was significantly inhibited in deficiency and higher nitrogen treatments, especially for 1-3 order roots. Only specific root length appeared decreased with nitrogen level, and other traits of fine roots did not demonstrate linear relationship with nitrogen concentrations. Compared to 0.5X phenolic acids treatment, 1.0X phenolic acids significantly promoted the diameter and volume of 1-2 order roots (p < 0.05). Both phenolic acids and nitrogen demonstrated influence on poplar fine root traits. However, the diameter and volume of 1-2 order roots were significantly affected by phenolic acids, while the total length and surface area of 4-5 order roots was affected by nitrogen. Two way ANOVA showed that phenolic acids and nitrogen made a synergistic or antagonistic effect on morphological building of fine roots. Furthermore, PCA and RDA indicated that the interactive effects of phenolic acids and nitrogen led to significant differences among 1-3 order, 4th order and 5th order of poplar fine roots. The PC1 explained about 60.9 percent of root morphological variance, which was related to foraging traits of roots. The PC2 explained 25.3 percent of variance, which was related to root building properties. The response of poplar roots to phenolic acids and nitrogen was closely related to root order, and nitrogen played more influence on poplar roots than phenolic acids. Thus, phenolic acids and nitrogen level would affect many properties of root morphology and foraging in rhizosphere soil of poplar plantation. But nitrogen availability would serve as a dominant factor influencing root growth, and soil nutrient management should be critical to productivity maintenance of poplar plantation.  相似文献   

18.
《植物生态学报》2017,41(10):1041
Aims Fine roots are the principal parts for plant nutrients acquisition and play an important role in the underground ecosystem. Increased nitrogen (N) deposition has changed the soil environment and thus has a potential influence on fine roots. The purpose of this study is to reveal the effect of N deposition on biomass, lifespan and morphology of fine root.Methods A field N addition experiment was conducted in a secondary broad-leaved forest in subtropical China from May 2013 to September 2015. Three levels of N treatments: CK (no N added), LN (5 g·m-2·a-1), and HN (15 g·m-2·a-1) were applied monthly. Responses of fine root biomass, lifespan, and morphology of Castanopsis platyacantha to N addition were analyzed by using a minirhizotron image system from April 2014 to September 2015. Surface soil sample (0-10 cm) was collected in November 2014 and soil pH value, and concentrations of NH4+-N and NO3--N were measured.Important findings The biomass and average lifespan of the fine roots of C. platyacantha were 128.30 g·m-3 and 113-186 days, respectively, in 0-45 cm soil layer. Nitrogen addition had no significant effect on either fine root biomass or lifespan in 0-45 cm soil layer. However, LN treatment significantly decreased C. platyacantha root superficial area in 0-15 cm soil layer. HN treatment significantly decreased soil pH value. Our study indicated that short-term N addition influences soil inorganic N concentration and thus decreased pH value in surface soil, and thereafter affect fine root morphology. Short-term N addition, however, did not affect the fine root biomass, lifespan and morphology in subsoil.  相似文献   

19.
有机物料还田是提高土壤肥力、改善土壤结构和增加作物产量的重要农艺措施之一。本研究通过分析有机物料深混还田构建肥沃耕层后土壤的有机质、速效养分含量和玉米产量,明确了黑土区不同土壤类型旱地土壤肥力指标和玉米产量对肥沃耕层构建方式的响应特征,以期为实现东北黑土区旱地保护性利用和农业可持续发展提供科学依据。采用小区试验与大区示范相结合的方式,在黑龙江省、吉林省和辽宁省选取9个生态类型区作为试验点,土壤类型包括黑土(中厚黑土和薄层黑土)、草甸土、黑钙土、白浆土、棕壤、暗棕壤和褐土。每个试验点均设置了玉米秸秆深混构建肥沃耕层(CF)、秸秆配合有机肥深混构建肥沃耕层(CF)和无有机物料还田(CK)3个处理。其中,CF、CF处理的小区试验和大区示范的秸秆还田量分别为10000 kg·hm-2和全量还田,CF处理的有机肥施用量为30000 t·hm-2;CF和CF处理中有机物料的还田深度均为0~35 cm。结果表明: 不同土壤类型旱地的土壤肥力差异较大,不同土层表现为亚耕层土壤肥力小于耕层土壤,其中暗棕壤和白浆土尤为突出;棕壤、褐土耕层和亚耕层的土壤肥力均偏低;黑土和草甸土的质地比较黏重和犁底层较厚。在试验时间为两年以上的5个试验点中,与CK相比,CF和CF处理耕层的土壤有机质、碱解氮、速效磷和速效钾含量平均增加1.85 g·kg-1、20.16 mg·kg-1、1.56 mg·kg-1和17.2 mg·kg-1,亚耕层较耕层增加了2.09 g·kg-1、12.06 mg·kg-1、2.18 mg·kg-1和3.84 mg·kg-1。与CK相比,CF处理显著增加了耕作层和亚耕层土壤有机质和速效磷含量,CF处理显著增加了耕作层和亚耕层的全部土壤肥力指标,说明肥沃耕层构建是提高土壤肥力的重要途径,其中玉米秸秆配施有机肥是快速提升土壤肥力的有效方法。受不同地区水热条件和土壤类型等的影响,不同试验区的玉米产量差异较大;不同处理间差异显著,表现为CF>CF>CK,说明肥沃耕层构建方式在不同生态类型区均能有效提高玉米产量。采用玉米秸秆或者玉米秸秆配合有机肥深混的肥沃耕层构建方式能够同步培肥耕层和亚耕层土壤,提高玉米产量。不同生态类型区应根据土壤类型、有机物料来源等采取相应的肥沃耕层构建方式,建议在有机肥源充足的区域,优先采用秸秆配合有机肥深混构建肥沃耕层。  相似文献   

20.
活性焦对晋北盐碱地土壤性质和两种植物生长的影响   总被引:2,自引:0,他引:2  
固废基改良剂是盐碱地改良的有效手段之一。活性焦作为一种多孔废弃物,应用于盐碱地预期可以起到改善土壤性质、减缓植物盐碱胁迫的作用。为了阐明活性焦对晋北盐碱地的改良效应,本研究设置不同用量活性焦(CK, 0 g·kg-1;A10, 10 g·kg-1;A20, 20 g·kg-1;A50, 50 g·kg-1),分析其对盐碱地土壤性质和植物生长的影响。结果表明: 施用活性焦能显著提高土壤的水稳性团聚体含量,并降低土壤盐分含量、pH值和电导率。与CK相比,种植碱茅和玉米土壤的团聚体平均重量直径增加5.1%~32.2%,pH值降低0.4%~4.1%,钠吸附比(SAR)降低4.8%~18.7%,电导率降低7.4%~8.2%。施用适量活性焦能够降低植物细胞的质膜损伤,提高叶片叶绿素和Ca2+含量,从而有效促进植物生长,碱茅和玉米的生物量均在A20处理达到最大。表明盐碱土施用20 g·kg-1活性焦(A20)可改善根际土壤环境,提高植物对Ca2+等的选择性吸收,从而降低盐分对植物细胞的损伤,促进盐碱生境中植物的生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号