首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glioblastomas (GBMs) are the most lethal and common types of primary brain tumors. The hallmark of GBMs is their highly infiltrative nature. The cellular and molecular mechanisms underlying the aggressive cancer invasion in GBMs are poorly understood. GBM displays remarkable cellular heterogeneity and hierarchy containing self-renewing glioblastoma stem cells (GSCs). Whether GSCs are more invasive than non-stem tumor cells and contribute to the invasive phenotype in GBMs has not been determined. Here we provide experimental evidence supporting that GSCs derived from GBM surgical specimens or xenografts display greater invasive potential in vitro and in vivo than matched non-stem tumor cells. Furthermore, we identified several invasion-associated proteins that were differentially expressed in GSCs relative to non-stem tumor cells. One of such proteins is L1CAM, a cell surface molecule shown to be critical to maintain GSC tumorigenic potential in our previous study. Immunohistochemical staining showed that L1CAM is highly expressed in a population of cancer cells in the invasive fronts of primary GBMs. Collectively, these data demonstrate the invasive nature of GSCs, suggesting that disrupting GSCs through a specific target such as L1CAM may reduce GBM cancer invasion and tumor recurrence.  相似文献   

3.
Glioblastomas (GBMs) are highly lethal primary brain tumors. Despite current therapeutic advances in other solid cancers, the treatment of these malignant gliomas remains essentially palliative. GBMs are extremely resistant to conventional radiation and chemotherapies. We and others have demonstrated that a highly tumorigenic subpopulation of cancer cells called GBM stem cells (GSCs) promotes therapeutic resistance. We also found that GSCs stimulate tumor angiogenesis by expressing elevated levels of VEGF and contribute to tumor growth, which has been translated into a useful therapeutic strategy in the treatment of recurrent or progressive GBMs. Furthermore, stem cell-like cancer cells (cancer stem cells) have been shown to promote metastasis. Although GBMs rarely metastasize beyond the central nervous system, these highly infiltrative cancers often invade into normal brain tissues preventing surgical resection, and GSCs display an aggressive invasive phenotype. These studies suggest that targeting GSCs may effectively reduce tumor recurrence and significantly improve GBM treatment. Recent studies indicate that cancer stem cells share core signaling pathways with normal somatic or embryonic stem cells, but also display critical distinctions that provide important clues into useful therapeutic targets. In this review, we summarize the current understanding and advances in glioma stem cell research, and discuss potential targeting strategies for future development of anti-GSC therapies.  相似文献   

4.
IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance. These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.  相似文献   

5.
Glioblastoma (GBM) is the most malignant primary brain tumor, with an average survival rate of 15 months. GBM is highly refractory to therapy, and such unresponsiveness is due, primarily, but not exclusively, to the glioma stem-like cells (GSCs). This subpopulation express stem-like cell markers and is responsible for the heterogeneity of GBM, generating multiple differentiated cell phenotypes. However, how GBMs maintain the balance between stem and non-stem populations is still poorly understood. We investigated the GBM ability to interconvert between stem and non-stem states through the evaluation of the expression of specific stem cell markers as well as cell communication proteins. We evaluated the molecular and phenotypic characteristics of GSCs derived from differentiated GBM cell lines by comparing their stem-like cell properties and expression of connexins. We showed that non-GSCs as well as GSCs can undergo successive cycles of gain and loss of stem properties, demonstrating a bidirectional cellular plasticity model that is accompanied by changes on connexins expression. Our findings indicate that the interconversion between non-GSCs and GSCs can be modulated by extracellular factors culminating on differential expression of stem-like cell markers and cell-cell communication proteins. Ultimately, we observed that stem markers are mostly expressed on GBMs rather than on low-grade astrocytomas, suggesting that the presence of GSCs is a feature of high-grade gliomas. Together, our data demonstrate the utmost importance of the understanding of stem cell plasticity properties in a way to a step closer to new strategic approaches to potentially eliminate GSCs and, hopefully, prevent tumor recurrence.  相似文献   

6.
7.
Glioblastomas (GBMs) are characterized as highly invasive; the contribution of GBM stem-like cells (GSCs) to the invasive phenotype, however, has not been completely defined. Towards this end, we have defined the invasion potential of CD133+ GSCs and their differentiated CD133− counterparts grown under standard in vitro conditions and in co-culture with astrocytes. Using a trans-well assay, astrocytes or astrocyte conditioned media in the bottom chamber significantly increased the invasion of GSCs yet had no effect on CD133− cells. In addition, a monolayer invasion assay showed that the GSCs invaded farther into an astrocyte monolayer than their differentiated progeny. Gene expression profiles were generated from two GSC lines grown in trans-well culture with astrocytes in the bottom chamber or directly in contact with astrocyte monolayers. In each co-culture model, genes whose expression was commonly increased in both GSC lines involved cell movement and included a number of genes that have been previously associated with tumor cell invasion. Similar gene expression modifications were not detected in CD133− cells co-cultured under the same conditions with astrocytes. Finally, evaluation of the secretome of astrocytes grown in monolayer identified a number of chemokines and cytokines associated with tumor cell invasion. These data suggest that astrocytes enhance the invasion of CD133+ GSCs and provide additional support for a critical role of brain microenvironment in the regulation of GBM biology.  相似文献   

8.
9.
10.
Glioblastoma (GBM) is an aggressive and lethal cancer, accounting for the majority of primary brain tumors in adults. GBMs are characterized by large and small alterations in genes that control cell growth, apoptosis, angiogenesis, and invasion. Epigenetic alterations also affect the expression of cancer genes, either alone or in combination with genetic mechanisms. The current evidence suggests that hypermethylation of promoter CpG islands is a common epigenetic event in a variety of human cancers. A subset of GBMs is also characterized by a locus-specific and genome-wide decrease in DNA methylation. Epigenetic alterations are important in the molecular pathology of GBM. However, there are very limited data about these epigenetic alterations in GBM. Alterations in promoter methylations are important to understand because histone deacetylases are targets for drugs that are in clinical trial for GBMs. The aim of the current study was to investigate whether the promoter hypermethylation of putative tumor suppressor genes was involved in GBM. We examined the methylation status at the promoter regions of GATA6, MGMT, and FHIT using the methylation-specific polymerase chain reaction in 61 primary GBMs. Our results reveal that there is no promoter hypermethylation of FHIT in the examined GBM tissue specimens. In contrast, the promoter hypermethylation of GATA6 and MGMT was detected in 42.8 and 11.11% of GBMs, respectively. The frequency of MGMT promoter hypermethylation was low in the group of patients we evaluated. In conclusion, our study demonstrates that promoter hypermethylation of MGMT is a common event in GBMs, whereas GATA6 is epigenetically affected in GBMs. Furthermore, inactivation of FHIT by epigenetic mechanisms in GBM may not be associated with brain tumorigenesis.  相似文献   

11.
Glioblastoma multiforme (GBM) is the deadliest form of primary brain tumor. GBM tumors are highly heterogeneous, being composed of tumor cells as well as glioblastoma stem cells (GSCs) that contribute to drug resistance and tumor recurrence following treatment. To develop therapeutic strategies, an improved understanding of GSC behavior in their microenvironment is critical. Herein, we have employed three-dimensional (3D) hyaluronic acid (HA) hydrogels that allow the incorporation of brain microenvironmental cues to investigate GSC behavior. U87 cell line and patient-derived D456 cells were cultured as suspension cultures (serum-free) and adherently (in the presence of serum) and were then encapsulated in HA hydrogels. We observed that all the seeded single cells expanded and formed spheres, and the size of the spheres increased with time. Increasing the initial cell seeding density of cells influenced the sphere size distribution. Interestingly, clonal expansion of serum-free grown tumor cells in HA hydrogels was observed. Also, stemness marker expression of serum and/or serum-free grown cells was altered when cultured in HA hydrogels. Finally, we demonstrated that HA hydrogels can support long-term GSC culture (up to 60 days) with retention of stemness markers. Overall, such biomimetic culture systems could further our understanding of the microenvironmental regulation of GSC phenotypes.  相似文献   

12.
Glioblastomas (GBMs) are considered to be one of the deadliest human cancers, characterized by a high proliferative rate, aggressive invasiveness and insensitivity to radio- and chemotherapy, as well as a short patient survival period. Moreover, GBMs are among the most vascularized and invasive cancers in humans. Angiogenesis in GBMs is correlated with the grade of malignancy and is inversely correlated with patient survival. One of the first steps in tumor invasions is migration. GBM cells have the ability to infiltrate and disrupt physical barriers such as basement membranes, extracellular matrix and cell junctions. The invasion process includes the overexpression of several members of a super-family of zinc-based proteinases, the Metzincin, in particular a sub-group, metalloproteinases. Another interesting aspect is that, inside the GBM tissue, there are up to 30% of microglia or macrophages. However, little is known about the immune performance and interactions of the microglia with GBMs. These singular properties of GBMs will be described here. A sub-population of cells with stem-like properties may be the source of tumors since, apparently, GBM stem cells (GSCs) are highly resistant to current cancer treatments. These cancer therapies, while killing the majority of tumor cells, ultimately fail in GBM treatment because they do not eliminate GSCs, which survive to regenerate new tumors. Finally, GBM patient prognostic has shown little improvement in decades. In this context, we will discuss how the membrane-acting toxins called cytolysins can be a potential new tool for GBM treatment.  相似文献   

13.
Glioblastoma multiforme (GBM) is a deadly primary brain malignancy. Glioblastoma stem cells (GSC), which have the ability to self-renew and differentiate into tumor lineages, are believed to cause tumor recurrence due to their resistance to current therapies. A subset of GSCs is marked by cell surface expression of CD133, a glycosylated pentaspan transmembrane protein. The study of CD133-expressing GSCs has been limited by the relative paucity of genetic tools that specifically target them. Here, we present CD133-LV, a lentiviral vector presenting a single chain antibody against CD133 on its envelope, as a vehicle for the selective transduction of CD133-expressing GSCs. We show that CD133-LV selectively transduces CD133+ human GSCs in dose-dependent manner and that transduced cells maintain their stem-like properties. The transduction efficiency of CD133-LV is reduced by an antibody that recognizes the same epitope on CD133 as the viral envelope and by shRNA-mediated knockdown of CD133. Conversely, the rate of transduction by CD133-LV is augmented by overexpression of CD133 in primary human GBM cultures. CD133-LV selectively transduces CD133-expressing cells in intracranial human GBM xenografts in NOD.SCID mice, but spares normal mouse brain tissue, neurons derived from human embryonic stem cells and primary human astrocytes. Our findings indicate that CD133-LV represents a novel tool for the selective genetic manipulation of CD133-expressing GSCs, and can be used to answer important questions about how these cells contribute to tumor biology and therapy resistance.  相似文献   

14.
15.
The poor prognosis of glioblastoma multiforme (GBM) is primarily due to highly invasive glioma stem-like cells (GSCs) in tumors. Upon GBM recurrence, GSCs with highly invasive and highly migratory activities must assume a less-motile state and proliferate to regenerate tumor mass. Elucidating the molecular mechanism underlying this transition from a highly invasive phenotype to a less-invasive, proliferative tumor could facilitate the identification of effective molecular targets for treating GBM. Here, we demonstrate that severe hypoxia (1% O2) upregulates CD44 expression via activation of hypoxia-inducible factor (HIF-1α), inducing GSCs to assume a highly invasive tumor. In contrast, moderate hypoxia (5% O2) upregulates osteopontin expression via activation of HIF-2α. The upregulated osteopontin inhibits CD44-promoted GSC migration and invasion and stimulates GSC proliferation, inducing GSCs to assume a less-invasive, highly proliferative tumor. These data indicate that the GSC phenotype is determined by interaction between CD44 and osteopontin. The expression of both CD44 and osteopontin is regulated by differential hypoxia levels. We found that CD44 knockdown significantly inhibited GSC migration and invasion both in vitro and in vivo. Mouse brain tumors generated from CD44-knockdown GSCs exhibited diminished invasiveness, and the mice survived significantly longer than control mice. In contrast, siRNA-mediated silencing of the osteopontin gene decreased GSC proliferation. These results suggest that interaction between CD44 and osteopontin plays a key role in tumor progression in GBM; inhibition of both CD44 and osteopontin may represent an effective therapeutic approach for suppressing tumor progression, thus resulting in a better prognosis for patients with GBM.  相似文献   

16.
17.
Glioblastoma multiforme (GBM) is the most aggressive and common type of human primary brain tumor. Glioblastoma stem-like cells (GSCs) have been proposed to contribute to tumor initiation, progression, recurrence, and therapeutic resistance of GBM. Therefore, targeting GSCs could be a promising strategy to treat this refractory cancer. Calmodulin (CaM), a major regulator of Ca2+-dependent signaling, controls various cellular functions via interaction with multiple target proteins. Here, we investigated the anticancer effect of hydrazinobenzoylcurcumin (HBC), a Ca 2+/CaM antagonist, against GSCs derived from U87MG and U373MG cells. HBC significantly inhibited not only the self-renewal capacity, such as cell growth and neurosphere formation but also the metastasis-promoting ability, such as migration and invasion of GSCs. HBC induced apoptosis of GSCs in a caspase-dependent manner. Notably, HBC repressed the phosphorylation of Ca 2+/CaM-dependent protein kinase II (CaMKII), c-Met, and its downstream signal transduction mediators, thereby reducing the expression levels of GSC markers, such as CD133, Nanog, Sox2, and Oct4. In addition, the knockdown of CaMKIIγ remarkably decreased the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking c-Met signaling pathway in U87MG GSCs. These results suggest that HBC suppresses the stem-like features of GBM cells via downregulation of CaM/CaMKII/c-Met axis and therefore CaMKII may be a novel therapeutic target to eliminate GSCs.  相似文献   

18.
19.
Glioblastoma multiforme (GBM) is a highly lethal brain tumor. Due to resistance to current therapies, patient prognosis remains poor and development of novel and effective GBM therapy is crucial. Glioma stem cells (GSCs) have gained attention as a therapeutic target in GBM due to their relative resistance to current therapies and potent tumor-initiating ability. Previously, we identified that the mitotic kinase maternal embryonic leucine-zipper kinase (MELK) is highly expressed in GBM tissues, specifically in GSCs, and its expression is inversely correlated with the post-surgical survival period of GBM patients. In addition, patient-derived GSCs depend on MELK for their survival and growth both in vitro and in vivo. Here, we demonstrate evidence that the role of MELK in the GSC survival is specifically dependent on its kinase activity. With in silico structure-based analysis for protein-compound interaction, we identified the small molecule Compound 1 (C1) is predicted to bind to the kinase-active site of MELK protein. Elimination of MELK kinase activity was confirmed by in vitro kinase assay in nano-molar concentrations. When patient-derived GSCs were treated with C1, they underwent mitotic arrest and subsequent cellular apoptosis in vitro, a phenotype identical to that observed with shRNA-mediated MELK knockdown. In addition, C1 treatment strongly induced tumor cell apoptosis in slice cultures of GBM surgical specimens and attenuated growth of mouse intracranial tumors derived from GSCs in a dose-dependent manner. Lastly, C1 treatment sensitizes GSCs to radiation treatment. Collectively, these data indicate that targeting MELK kinase activity is a promising approach to attenuate GBM growth by eliminating GSCs in tumors.  相似文献   

20.
Glioma is the one of the most lethal forms of human cancer. The most effective glioma therapy to date-surgery followed by radiation treatment-offers patients only modest benefits, as most patients do not survive more than five years following diagnosis due to glioma relapse 1,2. The discovery of cancer stem cells in human brain tumors holds promise for having an enormous impact on the development of novel therapeutic strategies for glioma 3. Cancer stem cells are defined by their ability both to self-renew and to differentiate, and are thought to be the only cells in a tumor that have the capacity to initiate new tumors 4. Glioma relapse following radiation therapy is thought to arise from resistance of glioma stem cells (GSCs) to therapy 5-10. In vivo, GSCs are shown to reside in a perivascular niche that is important for maintaining their stem cell-like characteristics 11-14. Central to the organization of the GSC niche are vascular endothelial cells 12. Existing evidence suggests that GSCs and their interaction with the vascular endothelial cells are important for tumor development, and identify GSCs and their interaction with endothelial cells as important therapeutic targets for glioma. The presence of GSCs is determined experimentally by their capability to initiate new tumors upon orthotopic transplantation 15. This is typically achieved by injecting a specific number of GBM cells isolated from human tumors into the brains of severely immuno-deficient mice, or of mouse GBM cells into the brains of congenic host mice. Assays for tumor growth are then performed following sufficient time to allow GSCs among the injected GBM cells to give rise to new tumors-typically several weeks or months. Hence, existing assays do not allow examination of the important pathological process of tumor initiation from single GSCs in vivo. Consequently, essential insights into the specific roles of GSCs and their interaction with the vascular endothelial cells in the early stages of tumor initiation are lacking. Such insights are critical for developing novel therapeutic strategies for glioma, and will have great implications for preventing glioma relapse in patients. Here we have adapted the PoRTS cranial window procedure 16and in vivo two-photon microscopy to allow visualization of tumor initiation from injected GBM cells in the brain of a live mouse. Our technique will pave the way for future efforts to elucidate the key signaling mechanisms between GSCs and vascular endothelial cells during glioma initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号