首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 253 毫秒
1.
To determine if membrane-bound cytochromes function as endogenous near-UV photosensitizers, strains containing the cloned cydA and cydB genes were tested for near-UV sensitivity. A strain containing both cloned genes overproduced cytochromes b558, b595, and d. Another strain containing only cloned cydB overproduced cytochrome b558. Both cytochrome-overproducing strains were hypersensitive to broad-spectrum near-UV inactivation. The presence of excess cytochromes did not affect sensitivity to far-UV radiation and provided protection against H2O2 inactivation.  相似文献   

2.
In Escherichia coli strain GR84N[pNG10], the cloned gene for subunit I of the membrane-bound cytochrome d complex resulted in the overproduction of cytochrome b558 and facilitated purification of this cytochrome. Extracting membranes with 1% Triton X-100 followed by two chromatographic steps yielded a single band on sodium dodecyl sulfate-polyacrylamide gels corresponding to subunit I (Mr 57 000). Purified cytochrome b558 was in its native state as determined by difference absorption spectroscopy and by potentiometric analysis. Both the membranes of strain GR84N[pNG10] and the purified subunit I lacked the other two spectroscopically defined cytochromes, b595 (previously "a1") and d, of the cytochrome d complex. Reconstitution of cytochrome b558 in phospholipid vesicles demonstrated that cytochrome b558 can be reduced by ubiquinol but that it does not reduce molecular oxygen. Heme extraction of cytochrome b558 yielded an extinction coefficient of 22 000 M-1 cm-1 for the wavelength pair of 560 and 580 nm in the reduced-minus-oxidized spectrum. The mutation on pNG10 that eliminates subunit II was mapped to a 250 base pair DNA fragment.  相似文献   

3.
Cytochrome d terminal oxidase mutants were isolated by using hydroxylamine mutagenesis of pNG2, a pBR322-derived plasmid containing the wild-type cyd operon. The mutagenized plasmid was transformed into a cyo cyd recA strain, and the transformants were screened for the inability to confer aerobic growth on nonfermentable carbon sources. Western blot analysis and visible-light spectroscopy were performed to characterize three independent mutants grown both aerobically and anaerobically. The mutational variants of the cytochrome d complex were stabilized under anaerobic growth conditions. All three mutations perturb the b595 and d heme components of the complex. These mutations were mapped and sequenced and are shown to be located in the N-terminal third of subunit II of the cytochrome d complex. It is proposed that the N terminus of subunit II may interact with subunit I to form an interface that binds the b595 and d heme centers.  相似文献   

4.
The genome of Azotobacter vinelandii contains DNA sequences homologous to the structural genes for the Escherichia coli cytochrome bd terminal oxidase complex. Two recombinant clones bearing cydA- and cydB-like sequence were isolated from an A. vinelandii gene library and subcloned into the plasmid vector pACYC184. Physical mapping demonstrated that the cydA- and cydB-like regions in A. vinelandii are contiguous. The cydAB and flanking DNA was mutagenized by the insertion of Tn5-B20. Mutations in the cydB-hybridizing region resulted in the loss of spectral features associated with cytochromes b595 and d. A new locus, cydB, encoding cytochromes b595 and d in A. vinelandii is proposed. A second region adjacent to cydB was also involved in expression of the cytochrome bd complex in A. vinelandii, since mutations in this region resulted in an increase in the levels of both cytochrome b595 and cytochrome d. The regions involved in expression of the cytochrome bd complex and cydB are transcribed in the same direction. Mutants deficient in cytochromes b595 and d were unable to grow on N-deficient medium when incubated in air but could fix nitrogen when the environmental O2 concentration was reduced to 1.5% (vol/vol). It is proposed that the branch of the respiratory chain terminated by the cytochrome bd complex supports the high respiration rates required for the respiratory protection of nitrogenase.  相似文献   

5.
A combination of potentiometric analysis and electrochemically poised low-temperature difference spectroscopy was used to examine a mutant strain of Escherichia coli that was previously shown by immunological criteria to be lacking the cytochrome d terminal oxidase. It was shown that this strain is missing cytochromes d, a1, and b558 and that the cytochrome composition of the mutant is similar to that of the wild-type strain grown under conditions of high aeration. The data indicate that the high-aeration branch of the respiratory chain contains two cytochrome components, b556 (midpoint potential [Em] = +35 mV) and cytochrome o (Em = +165 mV). The latter component binds to CO and apparently has a reduced-minus-oxidized split-alpha band with peaks at 555 and 562 nm. When the wild-type strain was grown under conditions of low aeration, the components of the cytochrome d terminal oxidase complex were observed: cytochrome d (Em = +260 mV), cytochrome a1 (Em = +150 mV) and cytochrome b558 (Em = +180 mV). All cytochromes appeared to undergo simple one-electron oxidation-reduction reactions. In the absence of CO, cytochromes b558 and o have nearly the same Em values. In the presence of CO, the Em of cytochrome o is raised, thus allowing cytochromes b558 and o to be individually quantitated by potentiometric analysis when they are both present.  相似文献   

6.
The cydAB genes from Mycobacterium smegmatis have been cloned and characterized. The cydA and cydB genes encode the two subunits of a cytochrome bd oxidase belonging to the widely distributed family of quinol oxidases found in prokaryotes. The cydD and cydC genes located immediately downstream of cydB encode a putative ATP-binding cassette-type transporter. At room temperature, reduced minus oxidized difference spectra of membranes purified from wild-type M. smegmatis displayed spectral features that are characteristic of the gamma-proteobacterial type cytochrome bd oxidase. Inactivation of cydA or cydB by insertion of a kanamycin resistance marker resulted in loss of d-heme absorbance at 631 nm. The d-heme could be restored by transformation of the M. smegmatis cyd mutants with a replicating plasmid carrying the highly homologous cydABDC gene cluster from Mycobacterium tuberculosis. Inactivation of cydA had no effect on the ability of M. smegmatis to exit from stationary phase at 37 or 42 degrees C. The growth rate of the cydA mutant was tested under oxystatic conditions. Although no discernible growth defect was observed under moderately aerobic conditions (9.2 to 37.5 x 10(2) Pa of pO(2) or 5 to 21% air saturation), the mutant displayed a significant growth disadvantage when cocultured with the wild type under extreme microaerophilia (0.8 to 1.7 x 10(2) Pa of pO(2) or 0.5 to 1% air saturation). These observations were in accordance with the two- to threefold increase in cydAB gene expression observed upon reduction of the pO(2) of the growth medium from 21 to 0.5% air saturation and with the concomitant increase in d-heme absorbance in spectra of membranes isolated from wild-type M. smegmatis cultured at 1% air saturation. Finally, the cydA mutant displayed a competitive growth disadvantage in the presence of the terminal oxidase inhibitor, cyanide, when cocultured with wild type at 21% air saturation in an oxystat. In conjunction with these findings, our results suggest that cytochrome bd is an important terminal oxidase in M. smegmatis.  相似文献   

7.
The role of quinones in the cytochrome o branch of the Escherichia coli respiratory chain was investigated by using mutant strains lacking the cytochrome d terminal oxidase complex. The only cytochromes present were cytochrome b556 and the cytochrome o complex, consisting of cytochrome b555-b562. Mutant strains missing ubiquinone, menaquinone, or both were constructed in the cytochrome d-minus (cyd) background. The steady-state levels of cytochrome b reduction were examined and compared in these strains to assess the effects of the quinone deficiencies. The data clearly show that a ubiquinone deficiency results in a lower level of cytochrome b reduction in the steady state. The data are consistent with a simple model in which ubiquinone is placed on the dehydrogenase side of all the cytochromes in this branch of the respiratory chain. There is no evidence from these experiments for a role of quinones in the respiratory chain at any site besides this one.  相似文献   

8.
The aerobic respiratory chain of Escherichia coli is branched. In aerobically grown cells harvested in midexponential phase, a respiratory chain containing only b-type cytochromes is predominant. This chain contains a terminal oxidase which is a b-type cytochrome, referred to as cytochrome o. However, when the bacteria are grown under conditions of oxygen limitation, additional components of the respiratory chain are induced, as evidenced by the appearance of new spectroscopic species. These include a new b-type cytochrome, cytochrome b558, as well as cytochrome a1 and cytochrome d. In this paper, a purification protocol and the initial characterization of the terminal oxidase complex containing cytochrome d are reported. Solubilization of the membrane is effected by Zwittergent 3-12, and purification is accomplished by chromatography with DEAE-Sepharose CL-6B and hydroxyapatite. The complex contains cytochrome b558, a1, and d. Analysis by sodium dodecyl sulfate-polyacrylamide gels indicates that the complex contains only two types of polypeptides with the molecular weights estimated to be 57,000 and 43,000. The purified complex has oxidase activity in the presence of detergents, utilizing substrates including ubinquinol-1, N,N,N',N'-tetramethyl-p-phenylenediamine, and 2,3,5,6-tetramethyl-p-phenylenediamine. The cytochrome d complex contains protoheme IX and iron, but does not contain nonheme iron or copper. Approximately half of the cytochromes which are thought to participate in E. coli aerobic respiration are accounted for by this single complex. These results suggest that the E. coli aerobic respiratory chain is organized around a relatively small number of cytochrome-containing complexes.  相似文献   

9.
10.
The aerobic respiratory chain of Escherichia coli contains two terminal oxidases which are differentially regulated. The cytochrome o complex predominates under growth conditions of high aeration, whereas the cytochrome d complex predominates when the oxygen tension is low. Either terminal oxidase will support aerobic growth. The goal of the work presented in this paper was to identify genes required for the expression of the functional form of the cytochrome d complex, other than the genes encoding the polypeptide components of the oxidase complex (cyd locus). A strain lacking the cytochrome o complex (cyo mutant strain) was mutagenized by using a lambda-Mu hybrid hopper bacteriophage, lambda placMu53, which inserts randomly into the chromosome and carries a kanamycin resistance marker. Strains were isolated and examined which were unable to grow aerobically, i.e., which lacked functional cytochrome d complex, and which could not be complemented by introduction of the cyd gene on F-prime episomes. One strain was selected for characterization. The phage insert was mapped to min 18.9 on the genetic linkage map, defining a new genetic locus, cydC. Evidence described in the text suggests that the gene product is probably required for the synthesis of the unique heme d component of the cytochrome d complex.  相似文献   

11.
12.
The isolated membranes from an Escherichia coli mutant strain which lacks spectroscopically detectable levels of cytochromes d, a1, and b558 also have abnormally low levels of N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activity. In this paper, it is shown that the material previously identified as the N,N,N',N'-tetramethyl-p-phenylenediamine oxidase is, in fact, the two-subunit cytochrome d complex. Antisera directed against the native cytochrome d complex as well as against each of two subunits apparent on sodium dodecyl sulfate-polyacrylamide gels were used to show that the mutant strain lacks both subunits of the cytochrome d complex. Introduction of F-prime F152 into the mutant strain restored the two subunits along with the spectroscopic and enzymatic activity associated with the cytochrome d complex.  相似文献   

13.
The cytochrome d terminal oxidase complex is one of two terminal oxidases in the aerobic respiratory chain of Escherichia coli. Previous work has shown by dodecyl sulfate-polyacrylamide gel electrophoresis that this enzyme contains two subunits (I and II) and three cytochrome components, b558 , a1, and d. Reconstitution studies have demonstrated that the enzyme functions as a ubiquinol-8 oxidase and catalyzes an electrogenic reaction, i.e. turnover is accompanied by a charge separation across the membrane bilayer. In this paper, monoclonal and polyclonal antibodies were used to obtain structural information about the cytochrome d complex. It is shown that antibodies directed against subunit I effectively inhibit ubiquinol-1 oxidation by the purified enzyme in detergent, whereas antibodies which bind to subunit II have no effect on quinol oxidation. The oxidation rate of N,N,N',N'-tetramethyl-p-phenylenediamine, in contrast, is unaffected by antisubunit I antibodies, but is inhibited by antibodies against subunit II. It is concluded that the quinol oxidation site is on subunit I, previously shown to be the cytochrome b558 component of the complex, and that N,N,N',N'-tetramethyl-p-phenylenediamine oxidation occurs at a secondary site on subunit II. The antibodies were also used to analyze the results of a protein cross-linking experiment. Dimethyl suberimidate was used to cross-link the subunits of purified, solubilized oxidase. Immunoblot analysis of the products of this cross-linking clearly indicate that subunit II probably exists as a dimer within the complex. Finally, it is shown that the purified enzyme contains tightly bound lipopolysaccharide. This was revealed after discovering that one of the monoclonal antibodies raised against the purified complex is actually directed against lipopolysaccharide. The significance of this finding is not known.  相似文献   

14.
A mutant of Escherichia coli K12 has been isolated affected in a gene, designated cydD, distinct from the three previously described loci involved in the synthesis of assembly of the cytochrome bd oxidase complex. The mutant, obtained by nitrosoguanidine mutagenesis, lacks the spectroscopically detectable components of this oxidase, namely cytochromes b558, b595 and d. Cytochrome oxidase o is the sole CO-binding cytochrome in membranes of the mutant, but the soluble haemoprotein b-590 and catalase activity appear unaffected. Discrimination between Cyd+ and Cyd- strains is facilitated by the development of a defined low-phosphate medium that allows the inclusion of Zn2+ as well as azide, inhibitors of respiratory electron transfer particularly via cytochrome o. Mapping with F-prime factors and by P1 cotransductional frequencies shows the mutation to map near 19.3 min on the E. coli chromosome, distinct from cydC, which maps at 18.9 min. The gene order in this region was tested in a three-factor cross and demonstrates the order zbj::Tn10(YYC199)-cydD-aroA, consistent with cotransduction frequencies.  相似文献   

15.
Partial purification of a cytochrome bd complex from Azotobacter vinelandii grown under high aeration was achieved by isolating respiratory particles enriched in this hemoprotein via differential centrifugation and detergent extraction. The cytochrome bd complex was subsequently solubilized from the inner membrane with dodecyl maltoside and purified to near homogeneity via DEAE-Sepharose chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the complex consisted of two subunits, with sizes in good agreement with those predicted from the cloned cyd locus (59.7 and 42 kDa). Spectral analysis of the purified complex indicated that the heme components present were cytochromes b560, b595, and d; CO difference spectral studies identified cytochrome d as a CO-reactive component. The complex had a Km for ubiquinol-1 approximately seven times larger than that for the analogous bd complex from Escherichia coli, and O2 consumption curves revealed a Km value for O2 three times greater than that which we determined for the E. coli bd complex.  相似文献   

16.
The structural genes encoding the cytochrome o terminal oxidase complex (cyo) of Escherichia coli have been subcloned into the multicopy plasmid pBR322 after the Mu-mediated transposition of the gene locus from the bacterial chromosome onto the conjugative R plasmid RP4. Introduction of cyo plasmids into strains (cyo cyd) lacking both terminal oxidases restored the ability of the strains to grow aerobically on nonfermentable substrates. Strains carrying the cyo plasmids produced 5 to 10 times more cytochrome o oxidase than did control strains. The gene products encoded by the cyo plasmids could be immunoprecipitated with monospecific antibodies raised against cytochrome o. The cloned genes will be valuable for studying the structure, function, and regulation of the cytochrome o terminal oxidase complex.  相似文献   

17.
Coulometric and spectroscopic analyses were performed on the three cytochrome components (cytochrome d, cytochrome b558, and the cytochrome previously described as cytochrome a1) of the purified cytochrome d complex, a terminal oxidase of the Escherichia coli aerobic respiratory chain. On the basis of heme extraction, spectroscopic, and coulometric data, the "cytochrome a1" component was identified as a b-type cytochrome: cytochrome b595. The pyridine hemochromogen technique revealed the presence of two molecules of protoheme IX per cytochrome d complex. This quantity of protoheme IX fully accounted for the sum of the cytochrome b558 and cytochrome b595 components as determined coulometrically. The renaming of cytochrome a1 as cytochrome b595 was further indicated by the lack of any heme a in the complex and by its resolved reduced-minus-oxidized spectrum. The latter was found to be similar to that of cytochrome c peroxidase, which contains protoheme IX. Coulometric titrations and carbon monoxide binding titrations revealed that there are two molecules of cytochrome d per complex. A convenient measurement of the amount of cytochrome b558 was found to be the beta-band at 531 nm since cytochrome b558 was observed to be the only component of the cytochrome d complex with a peak at this wavelength. By use of this method and the extinction coefficient for the purified cytochrome b558, it was estimated that there is one molecule of cytochrome b595 and one of cytochrome b558 per cytochrome complex.  相似文献   

18.
The cytochrome o terminal oxidase from Escherichia coli was immunochemically purified and monospecific antiserum toward cytochrome o was obtained. This antiserum is able to precipitate 100% of the ubiquinol-1 oxidase activity in Triton X-100 extracts of membranes from an E. coli strain in which cytochrome o is the only terminal oxidase. Cytochrome o was analyzed and quantitated using crossed immunoelectrophoresis, rocket immunoelectrophoresis, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that cytochrome o is composed of four subunits of approximate equimolar stoichiometry with molecular weights of 51,000, 28,500, 18,000, and 12,700. The low temperature (77 K) reduced - oxidized spectrum of the immunoprecipitate shows two peaks at 555 and 562 nm, indicating b-type cytochromes. With the anti-cytochrome o and antiserum toward the cytochrome d terminal oxidase complex which was previously obtained, it is possible to immunochemically assay for all the cytochromes in the cytoplasmic membrane of aerobically grown E. coli. Preliminary results indicate that the biosynthesis of cytochrome o is repressed when cytochrome d is induced by lowering the dissolved oxygen concentration during cell growth.  相似文献   

19.
1. Electron-transport particles derived from Escherichia coli grown aerobically contain three b-type cytochromes with mid-point oxidation-reduction potentials at pH7 of +260mV, +80mV and -50mV, with n=1 for each. The variation of these values with pH was determined. 2. E. coli develops a different set of b-type cytochromes when grown anaerobically on glycerol with fumarate or nitrate as terminal electron acceptor. Electron-transport particles of fumarate-grown cells contain b-type cytochromes with mid-point potentials at pH7 of +140mV and +250mV (n=1). These two cytochromes are also present in cells grown with nitrate as terminal acceptor, where an additional cytochrome b with a mid-point potential of +10mV (n=1) is developed. 3. The wavelengths of the alpha-absorption-band maxima of the b-type cytochromes at 77K were: (a) for aerobically grown cells, cytochrome b (E(m7) +260mV), 556nm and 563nm, cytochrome b (E(m7) +80mV), 556nm and cytochrome b (E(m7)-50mV), 558nm; (b) for anaerobically grown cells, cytochrome b (E(m7) +250mV), 558nm, cytochrome b (E(m7) +40mV), 555nm and cytochrome b (E(m7) +10mV), 556nm. 4. Cytochrome d was found to have a mid-point potential at pH7 of +280mV (n=1). 5. Cytochrome a(1) was resolved as two components of equal magnitude with mid-point potentials of +260mV and +160mV (n=1). 6. Redox titrations performed in the presence of CO showed that one of the b-type cytochromes in the aerobically grown cultures was reduced, even at the upper limits of our range of electrode potentials (above +400mV). Cytochrome d was also not oxidizable in the presence of CO. Neither of the cytochromes a(1) was affected by the presence of CO.  相似文献   

20.
Cytochrome d was spectroscopically detected in membrane fractions of the amino-acid-fermenting, high-G+C gram-positive bacterium Corynebacterium glutamicum. Inhibition of NADH oxidase activity in the membranes by cyanide suggested that the main terminal respiratory oxidase during the stationary phase was a type of cytochrome bd. Cytochrome bd-type quinol oxidase, purified from the membranes, was composed of two subunits. Its reduced form showed absorption peaks at 627, 595, and 560 nm, which were due to haem d, high-spin protohaem, and low-spin protohaem, respectively. The air-oxidised form showed a peak at 645 nm, which might be due to oxygenated ferrous haem d. The spectral features and the size of subunit I are more similar to the properties of cytochromes bd from Proteobacteria, such as Escherichia coli, than to those of cytochrome bd from low-G+C gram-positive bacteria, such as Bacillus stearothermophilus. The menaquinol oxidase activity of the purified cytochrome bd was low, but was enhanced about fivefold by pre-incubating the enzyme with menaquinones. The order of effectiveness of quinols as oxidase substrates was clearly different from that of quinones as the activators of enzyme activity. Furthermore, activation was destroyed by ultraviolet irradiation of the pre-incubated enzyme and then restored by a second incubation with menaquinone. These results indicate that the enzymatic properties of this new oxidase are more similar to the properties of cytochromes bd from low-G+C gram-positive bacterial than to those of proteobacterial counterparts. They also suggest that the enzyme has a second quinone-binding site essential for full activity, in addition to the active centre for substrate oxidation. By using probes based on partial peptide sequences of the subunits, the genes for the two subunits of C. glutamicum cytochrome bd were cloned. The deduced amino acid sequence demonstrated that subunit I lacks the C-terminal half of the Q loop and that the primary structure of C. glutamicum cytochrome bd is more similar to that of other gram-positive bacteria than to proteobacterial cytochromes bd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号