首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The genome of Azotobacter vinelandii contains DNA sequences homologous to the structural genes for the Escherichia coli cytochrome bd terminal oxidase complex. Two recombinant clones bearing cydA- and cydB-like sequence were isolated from an A. vinelandii gene library and subcloned into the plasmid vector pACYC184. Physical mapping demonstrated that the cydA- and cydB-like regions in A. vinelandii are contiguous. The cydAB and flanking DNA was mutagenized by the insertion of Tn5-B20. Mutations in the cydB-hybridizing region resulted in the loss of spectral features associated with cytochromes b595 and d. A new locus, cydB, encoding cytochromes b595 and d in A. vinelandii is proposed. A second region adjacent to cydB was also involved in expression of the cytochrome bd complex in A. vinelandii, since mutations in this region resulted in an increase in the levels of both cytochrome b595 and cytochrome d. The regions involved in expression of the cytochrome bd complex and cydB are transcribed in the same direction. Mutants deficient in cytochromes b595 and d were unable to grow on N-deficient medium when incubated in air but could fix nitrogen when the environmental O2 concentration was reduced to 1.5% (vol/vol). It is proposed that the branch of the respiratory chain terminated by the cytochrome bd complex supports the high respiration rates required for the respiratory protection of nitrogenase.  相似文献   

2.
3.
Corynebacterium glutamicum possesses two terminal oxidases, cytochrome aa3 and cytochrome bd. Cytochrome aa3 forms a supercomplex with the cytochrome bc1 complex, which contains an unusual diheme cytochrome c1. Both the bc1 -aa3 supercomplex and cytochrome bd transfer reducing equivalents from menaquinol to oxygen; however, they differ in their proton translocation efficiency by a factor of three. Here, we analyzed the role of cytochrome bd for growth and lysine production. When cultivated in glucose minimal medium, a cydAB deletion mutant of C. glutamicum ATCC 13032 grew like the wild type in the exponential phase, but growth thereafter was inhibited, leading to a biomass formation 40% less than that of the wild type. Constitutive overproduction of functional cytochrome bd oxidase in ATCC 13032 led to a reduction of the growth rate by approximately 45% and of the maximal biomass by approximately 35%, presumably as a consequence of increased electron flow through the inefficient cytochrome bd oxidase. In the L-lysine-producing C. glutamicum strain MH20-22B, deletion of the cydAB genes had only minor effects on growth rate and biomass formation, but lysine production was increased by approximately 12%. Thus, the respiratory chain was shown to be a target for improving amino acid production by C. glutamicum.  相似文献   

4.
The aerobic electron transport chain in Mycobacterium smegmatis can terminate in one of three possible terminal oxidase complexes. The structure and function of the electron transport pathway leading from the menaquinol-menaquinone pool to the cytochrome bc1 complex and terminating in the aa3-type cytochrome c oxidase was characterized. M. smegmatis strains with mutations in the bc1 complex and in subunit II of cyctochome c oxidase were found to be profoundly growth impaired, confirming the importance of this respiratory pathway for mycobacterial growth under aerobic conditions. Disruption of this pathway resulted in an adaptation of the respiratory network that is characterized by a marked up-regulation of cydAB, which encodes the bioenergetically less efficient and microaerobically induced cytochrome bd-type menaquinol oxidase that is required for the growth of M. smegmatis under O2-limiting conditions. Further insights into the adaptation of this organism to rerouting of the electron flux through the branch terminating in the bd-type oxidase were revealed by expression profiling of the bc1-deficient mutant strain using a partial-genome microarray of M. smegmatis that is enriched in essential genes. Although the expression profile was indicative of an increase in the reduced state of the respiratory chain, blockage of the bc1-aa3 pathway did not induce the sentinel genes of M. smegmatis that are induced by oxygen starvation and are regulated by the DosR two-component regulator.  相似文献   

5.
Terminal oxidases provide the final step in aerobic respiration by reducing oxygen. The mycobacteria possess two terminal oxidases: a cytochrome c aa3 type and a quinol bd type. We previously isolated a bd-type oxidase knockout mutant of Mycobacterium smegmatis that allowed for functional analysis of the aa3 type without the contribution of bd-type activity. Growth of M. smegmatis LR222 and JAM1 (LR222bd::kan) was monitored and the cytochrome content at different time points examined. No difference in aerobic growth was observed between M. smegmatis LR222 and JAM1. Membranes were obtained from these cultures and the oxidase concentrations were calculated from their spectrum. Although the mutant was producing only one oxidase type, this oxidase did not reach wild-type levels of expression, suggesting an additional mechanism for energizing the membrane. Moreover, the concentration of both oxidases in the wild-type strain dropped when cultures entered stationary phase, which was not the case for the aa3-type oxidase of the mutant strain. This oxidase remained at a constant concentration post mid-log phase. RNase protection assays also demonstrated late growth phase dependent message expression of the bd oxidase and that the subunits I and II genes were cotranscribed as an operon.  相似文献   

6.
The cytochrome d terminal oxidase complex was recently purified from Escherichia coli membranes (Miller, M. J., and Gennis , R. B. (1983) J. Biol. Chem. 258, 9159-1965). The complex contains two polypeptides, subunits I and II, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and three spectroscopically defined cytochromes, b558 , a1, and d. A mutant that failed to oxidize N,N,N',N'-tetramethyl-p-phenylenediamine was obtained which was lacking this terminal oxidase complex and was shown to map at a locus called cyd on the E. coli genome. In this paper, localized mutagenesis was used to generate a series of mutants in the cytochrome d terminal oxidase. These mutants were isolated by a newly developed selection procedure based on their sensitivity to azide. Two classes of mutants which map to the cyd locus were obtained, cydA and cydB . The cydA phenotype included the lack of all three spectroscopically detectable cytochromes as well as the absence of both polypeptides, determined by immunological criteria. Strains manifesting the cydB phenotype lacked cytochromes a1 and d, but had a normal amount of cytochrome b558 . Immunological analysis showed that subunit I (57,000 daltons) was present in the membranes, but that subunit II (43,000 daltons) was missing. These data justify the conclusion that subunit I of this two-subunit complex can be identified as the cytochrome b558 component of the cytochrome d terminal oxidase complex.  相似文献   

7.
Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic pathogens and frequently coinfect the lungs of cystic fibrosis patients. P. aeruginosa secretes an arsenal of small respiratory inhibitors, like pyocyanin, hydrogen cyanide, or quinoline N-oxides, that may act against the commensal flora as well as host cells. Here, we show that with respect to their susceptibility to these respiratory inhibitors, staphylococcal species can be divided into two groups: the sensitive group, comprised of pathogenic species such as S. aureus and S. epidermidis, and the resistant group, represented by nonpathogenic species such as S. carnosus, S. piscifermentans, and S. gallinarum. The resistance in the latter group of species was due to cydAB genes that encode a pyocyanin- and cyanide-insensitive cytochrome bd quinol oxidase. By exchanging cydB in S. aureus with the S. carnosus-specific cydB, we could demonstrate that CydB determines resistance. The resistant or sensitive phenotype was based on structural alterations in CydB, which is part of CydAB, the cytochrome bd quinol oxidase. CydB represents a prime example of both microevolution and the asymmetric pattern of evolutionary change.  相似文献   

8.
Temperature-sensitive DNA polymerase mutants (dnaE) are protected from cell death on incubation at nonpermissive temperature by mutation in the cydA gene controlling cytochrome bd oxidase. Protection is observed in complex (Luria-Bertani [LB]) medium but not on minimal medium. The cydA mutation protects a thymine-deficient strain from death in the absence of thymine on LB but not on minimal medium. Both dnaE and Deltathy mutants filament under nonpermissive conditions. Filamentation per se is not the cause of cell death, because the dnaE cydA double mutant forms long filaments after 24 h of incubation in LB medium at nonpermissive temperature. These filaments have multiply dispersed nucleoids and produce colonies on return to permissive conditions. The protective effect of a deficiency of cydA at high temperature is itself suppressed by overexpression of cytochrome bo3, indicating that the phenomenon is related to energy metabolism rather than to a specific effect of the cydA protein. We propose that filamentation and cell death resulting from thymine deprivation or slowing of DNA synthesis are not sequential events but occur in response to the same or a similar signal which is modulated in complex medium by cytochrome bd oxidase. The events which follow inhibition of replication fork progression due to either polymerase inactivation, thymine deprivation, or hydroxyurea inhibition differ in detail from those following actual DNA damage.  相似文献   

9.
Brucellosis is characterized by abortion in ruminants and a protracted undulant fever in humans, which often results in severe pathological manifestations. Scant information exists about the molecular mechanisms employed by Brucella abortus to combat host defenses or to persist and replicate within host cells. Transposon (Tn5) mutagenesis of B. abortus and the subsequent screening of mutants for sensitivity to killing in murine macrophages and in the mouse model led to the identification of mutants which were severely attenuated for intracellular survival. One group of mutants was interrupted in cydB, a gene that is part of the cydAB operon encoding cytochrome bd oxidase, which catalyzes an alternate terminal electron transport step in bacterial respiration. The elevated affinity for molecular oxygen of this enzyme in Escherichia coli has suggested that it is involved in the protection of sensitive enzymatic activities such as those of hydrogenases and nitrogenases from damage. B. abortus cydB::Tn5 strains exhibited heightened sensitivity to the respiratory inhibitors zinc and azide, highly reactive oxygen species such as hydrogen peroxide, low pH, and attenuated virulence in the mouse model of infection. Virulence was restored by an intact copy of cydAB or by B. abortus genes encoding the oxidative radical-scavenging enzyme Cu/Zn superoxide dismutase or catalase. These results suggest a bifunctional role for the products of the cydAB operon, both in preventing the buildup of oxidative free radicals and in detoxifying the intracellular compartment, thus indicating the importance of these products in preventing intracellular destruction. Intracellular conditions that favor expression of the cydAB operon are under investigation and may be linked to the acid sensitivity also observed in this strain.  相似文献   

10.
The aerobic respiratory system of Bacillus subtilis 168 is known to contain three terminal oxidases: cytochrome caa(3), which is a cytochrome c oxidase, and cytochrome aa(3) and bd, which are quinol oxidases. The presence of a possible fourth oxidase in the bacterium was investigated using a constructed mutant, LUH27, that lacks the aa(3) and caa(3) terminal oxidases and is also deficient in succinate:menaquinone oxidoreductase. The cytochrome bd content of LUH27 can be varied by using different growth conditions. LUH27 membranes virtually devoid of cytochrome bd respired with NADH or exogenous quinol as actively as preparations containing 0.4 nmol of cytochrome bd/mg of protein but were more sensitive to cyanide and aurachin D. The reduced minus oxidized difference spectra of the bd-deficient membranes as well as absorption changes induced by CO and cyanide indicated the presence of a "cytochrome o"-like component; however, the membranes did not contain heme O. The results provide strong evidence for the presence of a terminal oxidase of the bb' type in B. subtilis. The enzyme does not pump protons and combines with CO much faster than typical heme-copper oxidases; in these respects, it resembles a cytochrome bd rather than members of the heme-copper oxidase superfamily. The genome sequence of B. subtilis 168 contains gene clusters for four respiratory oxidases. Two of these clusters, cta and qox, are deleted in LUH27. The remaining two, cydAB and ythAB, encode the identified cytochrome bd and a putative second cytochrome bd, respectively. Deletion of ythAB in strain LUH27 or the presence of the yth genes on plasmid did not affect the expression of the bb' oxidase. It is concluded that the novel bb'-type oxidase probably is cytochrome bd encoded by the cyd locus but with heme D being substituted by high spin heme B at the oxygen reactive site, i.e. cytochrome b(558)b(595)b'.  相似文献   

11.
Abstract The amino acid sequence obtained by translating the nucleotide sequence of a 0.55 kb fragment, amplified from Azotobacter vinelandii chromosomal DNA by PCR, was 57% identical to part of the Escherichia coli cyoB gene, encoding subunit I of the cytochrome bo -type quinol oxidase. This fragment was mutated in vitro by insertion of a kanamycin-resistance cassette and introduced into the chromosome of A. vinelandii by homologous recombination. The mutant contained no spectrally detectable cytochrome o . However, in the stationary phase of growth, the level of the alternative oxidase (cytochrome bd ) was 11-fold higher than in the wild-type strain. Respiration of the mutant was insensitive to chlorpromazine, an inhibitor thought to act specifically on cytochrome o . Cytochrome o -deficient mutants fixed nitrogen in air, clearly distinguishing the role of this oxidase from that of cytochrome bd , which is required for respiratory protection of oxygen-labile nitrogenase.  相似文献   

12.
13.
Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. We previously identified and purified an alternative oxidase, cytochrome bd-type quinol oxidase, from a mutant of Bacillus stearothermophilus defective in the caa3-type oxidase activity (J. Sakamoto et al., FEMS Microbiol. Lett. 143 (1996) 151-158). Compared with proteobacterial counterparts, B. stearothermophilus cytochrome bd showed lower molecular weights of the two subunits, shorter wavelength of alpha-band absorption maximum due to heme D, and lower quinol oxidase activity. Preincubation with menaquinone-2 enhanced the enzyme activity up to 40 times, suggesting that, besides the catalytic site, there is another quinone-binding site which largely affects the enzyme activity. In order to clarify the molecular basis of the differences of cytochromes bd between B. stearothermophilus and proteobacteria, the genes encoding for the B. stearothermophilus bd was cloned based on its partial peptide sequences. The gene for subunit I (cbdA) encodes 448 amino acid residues with a molecular weight of 50195 Da, which is 14 and 17% shorter than those of Escherichia coli and Azotobacter vinelandii, respectively, and CbdA lacks the C-terminal half of the long hydrophilic loop between the putative transmembrane segments V and VI (Q loop), which has been suggested to include the substrate quinone-binding site for the E. coli enzyme. The gene for subunit II (cbdB) encodes 342 residues with a molecular weight of 38992 Da. Homology search indicated that the B. stearothermophilus cbdAB has the highest sequence similarity to ythAB in B. subtilis genome rather than to cydAB, the first set of cytochrome bd genes identified in the genome. Sequence comparison of cytochromes bd and their homologs from various organisms demonstrates that the proteins can be classified into two subfamilies, a proteobacterial type including E. coli bd and a more widely distributed type including the B. stearothermophilus enzyme, suggesting that the latter type is evolutionarily older.  相似文献   

14.
The aerobic respiratory chain of Escherichia coli contains two terminal oxidases that catalyze the oxidation of ubiquinol-8 and the reduction of oxygen to water. They are the cytochrome o oxidase complex encoded by cyoABCDE and the cytochrome d oxidase complex encoded by cydAB. To determine how these genes are regulated in response to a variety of environmental stimuli, including oxygen, we examined their expression by using lacZ protein fusions in wild-type and fnr mutant strains of E. coli. Anaerobic growth resulted in a 140-fold repression of cyoA'-'lacZ expression relative to aerobic growth and a 3-fold increase in cydA'-'lacZ expression. Anaerobic repression of both fusions was mediated in part by the fnr gene product, as evidenced by a 30-fold derepression of cyoA'-'lacZ expression and a 4-fold derepression of cydA'-'lacZ expression in an fnr deletion strain. Supplying wild-type fnr in trans restored wild-type repression for both fusions. Fnr thus functions as an anaerobic repressor of both cyoABCDE and cydAB expression. Reduced-minus-oxidized difference spectrum analyses of cell membranes confirmed the effect of the fnr gene product on the production of cytochrome d oxidase in the cell. Based on the pattern of anaerobic cydAB expression observed, we propose the existence of a second, as yet unidentified, regulatory element that must function either to activate cydAB expression as oxygen becomes limiting or to repress cydAB expression aerobically. Whereas cytochrome o oxidase encoded by cyoABCDE appears to be produced only under oxygen-rich growth conditions, in keeping with its biochemical properties, cytochrome d oxidase is expressed moderately aerobically and is elevated yet further when oxygen becomes limiting so that the organism can cope better under oxygen starvation conditions. We also examined cyoABCDE and cydAB expression in response to growth on alternative carbon compounds and to changes in the culture medium pH and osmolarity.  相似文献   

15.
The surB gene was identified as a gene product required for Escherichia coli cells to exit stationary phase at 37 degrees C under aerobic conditions. surB was shown to be the same as cydC, whose product is required for the proper assembly and activity of cytochrome d oxidase. Cytochrome d oxidase, encoded by the cydAB operon, is one of two alternate terminal cytochrome oxidases that function during aerobic electron transport in E. coli. Mutations inactivating the cydAB operon also cause a temperature-sensitive defect in exiting stationary phase, but the phenotype is not as severe as it is for surB mutants. In this study, we examined the phenotypes of surB1 delta(cydAB) double mutants and the ability of overexpression of cytochrome o oxidase to suppress the temperature-sensitive stationary-phase-exit defect of surB1 and delta(cydAB) mutants and analyzed spontaneous suppressors of surB1. Our results indicate that the severe temperature-sensitive defect in exiting stationary phase of surB1 mutants is due both to the absence of terminal cytochrome oxidase activity and to the presence of a defective cytochrome d oxidase. Membrane vesicles prepared from wild-type, surB1, and delta(cydAB) strains produced superoxide radicals at the same rate in vitro. Therefore, the aerobic growth defects of the surB1 and delta(cydAB) strains are not due to enhanced superoxide production resulting from the block in aerobic electron transport.  相似文献   

16.
17.
The cydABCD operon of Bacillus subtilis encodes products required for the production of cytochrome bd oxidase. Previous work has shown that one regulatory protein, YdiH (Rex), is involved in the repression of this operon. The work reported here confirms the role of Rex in the negative regulation of the cydABCD operon. Two additional regulatory proteins for the cydABCD operon were identified, namely, ResD, a response regulator involved in the regulation of respiration genes, and CcpA, the carbon catabolite regulator protein. ResD, but not ResE, was required for full expression of the cydA promoter in vivo. ResD binding to the cydA promoter between positions -58 and -107, a region which includes ResD consensus binding sequences, was not enhanced by phosphorylation. A ccpA mutant had increased expression from the full-length cydA promoter during stationary growth compared to the wild-type strain. Maximal expression in a ccpA mutant was observed from a 3'-deleted cydA promoter fusion that lacked the Rex binding region, suggesting that the effect of the two repressors, Rex and CcpA, was cumulative. CcpA binds directly to the cydA promoter, protecting the region from positions -4 to -33, which contains sequences similar to the CcpA consensus binding sequence, the cre box. CcpA binding was enhanced upon addition of glucose-6-phosphate, a putative cofactor for CcpA. Mutation of a conserved residue in the cre box reduced CcpA binding 10-fold in vitro and increased cydA expression in vivo. Thus, CcpA and ResD, along with the previously identified cydA regulator Rex (YdiH), affect the expression of the cydABCD operon. Low-level induction of the cydA promoter was observed in vivo in the absence of its regulatory proteins, Rex, CcpA, and ResD. This complex regulation suggests that the cydA promoter is tightly regulated to allow its expression only at the appropriate time and under the appropriate conditions.  相似文献   

18.
To determine if membrane-bound cytochromes function as endogenous near-UV photosensitizers, strains containing the cloned cydA and cydB genes were tested for near-UV sensitivity. A strain containing both cloned genes overproduced cytochromes b558, b595, and d. Another strain containing only cloned cydB overproduced cytochrome b558. Both cytochrome-overproducing strains were hypersensitive to broad-spectrum near-UV inactivation. The presence of excess cytochromes did not affect sensitivity to far-UV radiation and provided protection against H2O2 inactivation.  相似文献   

19.
20.
The cydDC operon of Escherichia coli encodes an ATP-dependent transporter of unknown function that is required for cytochrome bd synthesis. Strains containing defects in either the cydD or cydC gene also demonstrate hypersensitivity to growth at high temperatures and the inability to exit the stationary phase at 37 degrees C. We wished to determine what is responsible for these hypersensitive phenotypes and whether they are due to a lack of the CydDC proteins or a defect of the cytochrome bd encoded by the cydAB genes. Using both K-12- and B-type strains of E. coli, we have compared the phenotypes of isogenic cydAB mutants and cydC mutants. In both K-12- and B-type backgrounds, the hypersensitive phenotypes are due to defects of cytochrome bd activity and not defects of the cydDC genes. We also found that the temperature-sensitive growth phenotypes can be suppressed by exogenous reducing agents, such as glutathione and cysteine. Strikingly, even the enzymes catalase and superoxide dismutase, when added exogenously, can correct the temperature-sensitive and stationary phase arrest phenotypes. We propose that the temperature sensitive growth phenotypes are due to a buildup of diffusible oxygen radicals brought on by the absence of cytochrome bd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号