首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Vasoactive intestinal polypeptide and its receptor, VPAC(2), play important roles in the functioning of the brain's circadian clock in the suprachiasmatic nuclei (SCN). Mice lacking VPAC(2) receptors (Vipr2(-/-)) show altered circadian rhythms in locomotor behavior, neuronal firing rate, and clock gene expression, however, the nature of molecular oscillations in individual cells is unclear. Here, we used real-time confocal imaging of a destabilized green fluorescent protein (GFP) reporter to track the expression of the core clock gene Per1 in live SCN-containing brain slices from wild-type (WT) and Vipr2(-/-) mice. Rhythms in Per1-driven GFP were detected in WT and Vipr2(-/-) cells, though a significantly lower number and proportion of cells in Vipr2(-/-) slices expressed detectable rhythms. Further, Vipr2(-/-) cells expressed significantly lower amplitude oscillations than WT cells. Within each slice, the phases of WT cells were synchronized whereas cells in Vipr2(-/-) slices were poorly synchronized. Most GFP-expressing cells, from both genotypes, expressed neither vasopressin nor vasoactive intestinal polypeptide. Pharmacological blockade of VPAC(2) receptors in WT SCN slices partially mimicked the Vipr2(-/-) phenotype. These data demonstrate that intercellular communication via the VPAC(2) receptor is important for SCN neurons to sustain robust, synchronous oscillations in clock gene expression.  相似文献   

2.
Behavioral responses of Vipr2-/- mice to light   总被引:1,自引:0,他引:1  
Vasoactive intestinal polypeptide and its receptor, VPAC2, play important roles in the functioning of the dominant circadian pacemaker, located in the hypothalamic suprachiasmatic nuclei (SCN). Mice lacking VPAC2 receptors (Vipr2-/-) show altered circadian rhythms and impaired synchronization to environmental lighting cues. However, light can increase phosphoprotein and immediate early gene expression in the Vipr2-/- SCN demonstrating that the circadian clock is readily responsive to light in these mice. It is not clear whether these neurochemical responses to light can be transduced to behavioral changes as seen in wild-type (WT) animals. In this study we investigated the diurnal and circadian wheel-running profile of WT (C57BL/6J) and Vipr2-/- mice under a 12-h light:12-h complete darkness (LD) lighting schedule and in constant darkness (DD) and used 1-h light pulses to shift the activity of mice in DD. Unlike WT mice, Vipr2-/- mice show grossly altered locomotor patterns making the analysis of behavioral responses to light problematic. However, analyses of both the onset and the offset of locomotor activity reveal that in a subset of these mice, light can reset the offset of behavioral rhythms during the subjective night. This suggests that the SCN clock of Vipr2-/- mice and the rhythms it generates are responsive to photic stimulation and that these responses can be integrated to whole animal behavioral changes.  相似文献   

3.
Fluctuations in circulating estrogen and progesterone levels associated with the estrous cycle alter circadian rhythms of physiology and behavior in female rodents. Endogenously applied estrogen shortens the period of the locomotor activity rhythm in rodents. We recently found that estrogen implants affect Period (Per) gene expression in the suprachiasmatic nucleus (SCN; central clock) and uterus of rats in vivo. To explore whether estrogen directly influences the circadian clock in the SCN and/or tissues of the reproductive system, we examined the effects of 17beta-estradiol (E(2)) on PER2::LUCIFERASE (PER2::LUC) expression in tissue explant cultures from ovariectomized PER2::LUC knockin mice. E(2) applied to explanted cultures shortened the period of rhythmic PER2::LUC expression in the uterus but did not change the period of PER2::LUC expression in the SCN. Raloxifene, a selective estrogen receptor modulator and known E(2) antagonist in uterine tissues, attenuated the effect of E(2) on the period of the PER2::LUC rhythm in the uterus. These data indicate that estrogen directly affects the timing of the molecular clock in the uterus via an estrogen receptor-mediated response.  相似文献   

4.
We have recently demonstrated that the outcome of repeated social defeat (SD) on behavior, physiology and immunology is more negative when applied during the dark/active phase as compared with the light/inactive phase of male C57BL/6 mice. Here, we investigated the effects of the same stress paradigm, which combines a psychosocial and novelty stressor, on the circadian clock in transgenic PERIOD2::LUCIFERASE (PER2::LUC) and wildtype (WT) mice by subjecting them to repeated SD, either in the early light phase (social defeat light?=?SDL) or in the early dark phase (social defeat dark?=?SDD) across 19 days. The PER2::LUC rhythms and clock gene mRNA expression were analyzed in the suprachiasmatic nucleus (SCN) and the adrenal gland, and PER2 protein expression in the SCN was assessed. SDD mice showed increased PER2::LUC rhythm amplitude in the SCN, reduced Per2 and Cryptochrome1 mRNA expression in the adrenal gland, and increased PER2 protein expression in the posterior part of the SCN compared with single-housed control (SHC) and SDL mice. In contrast, PER2::LUC rhythms in the SCN of SDL mice were not affected. However, SDL mice exhibited a 2-hour phase advance of the PER2::LUC rhythm in the adrenal gland compared to SHC mice. Furthermore, plasma levels of brain-derived neurotrophic factor (BDNF) and BDNF mRNA in the SCN were elevated in SDL mice. Taken together, these results show that the SCN molecular rhythmicity is affected by repeated SDD, but not SDL, while the adrenal peripheral clock is influenced mainly by SDL. The observed increase in BDNF in the SDL group may act to protect against the negative consequences of repeated psychosocial stress.  相似文献   

5.
The neuropeptides pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are implicated in the photic entrainment of circadian rhythms in the suprachiasmatic nuclei (SCN). We now report that mice carrying a null mutation of the VPAC(2) receptor for VIP and PACAP (Vipr2(-/-)) are incapable of sustaining normal circadian rhythms of rest/activity behavior. These mice also fail to exhibit circadian expression of the core clock genes mPer1, mPer2, and mCry1 and the clock-controlled gene arginine vasopressin (AVP) in the SCN. Moreover, the mutants fail to show acute induction of mPer1 and mPer2 by nocturnal illumination. This study highlights the role of intercellular neuropeptidergic signaling in maintenance of circadian function within the SCN.  相似文献   

6.
Valproic acid (VPA) is an anticonvulsant used to treat bipolar disorder, a psychiatric disease associated with disturbances in circadian rhythmicity. Little is known about how VPA affects circadian rhythms. The authors cultured tissues containing the master brain pacemaker for circadian rhythmicity, the suprachiasmatic nuclei (SCN), and skin fibroblasts from transgenic PERIOD2::LUCIFERASE (PER2::LUC) mice and studied the effect of VPA on the circadian PER2::LUC rhythm by measuring bioluminescence. VPA (1 mM) significantly phase advanced the PER2::LUC rhythm when applied at a time point corresponding to the lowest (trough, ~ZT 0) PER2::LUC expression but phase delayed the PER2::LUC rhythm when the drug was administered at the time of highest (peak, ~ZT 12) protein expression. In addition, it significantly increased the overall amplitude of PER2::LUC oscillations at time points at or close to ZT 12 but had no effect on period. Real-time PCR analyses on mouse and human fibroblasts revealed that expressions of other clock genes were increased after 2 h treatment with VPA. Because VPA is known to inhibit histone deacetylation, the authors treated cultures with an established histone deacetylation inhibitor, trichostatin A (TSA; 20 ng/mL), to compare the effect of VPA and TSA on molecular rhythmicity. They found that TSA had similar effects on the PER2::LUC rhythm as VPA. Furthermore, VPA and TSA significantly increased acetylation on histone H3 but in comparison little on histone H4. Lithium is another commonly used treatment for bipolar disorder. Therefore, the authors also studied the impact of lithium chloride (LiCl; 10 mM) on the PER2::LUC rhythm. LiCl delayed the phase, but in contrast to VPA and TSA, LiCl lengthened the PER2::LUC period and had no effect on histone acetylation. These results demonstrate that VPA can delay or advance the phase, as well as increase the amplitude, of the PERIOD2::LUCIFERASE rhythm depending on the circadian time of application. Furthermore, the authors show that LiCl delays the phase and lengthens the period of the PER2::LUC rhythm, confirming previous reports on circadian lithium effects. These different molecular effects may underlie differential chronotherapeutic effects of VPA and lithium.  相似文献   

7.
8.
The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC) clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate) and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate) did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36)-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER proteins to play key roles in the organization of the retinal circadian clock.  相似文献   

9.
10.
11.
In mammals, a pacemaker in the suprachiasmatic nucleus (SCN) is thought to be required for behavioral, physiological, and molecular circadian rhythms. However, there is considerable evidence that temporal food restriction (restricted feedisng [RF]) and chronic methamphetamine (MA) can drive circadian rhythms of locomotor activity, body temperature, and endocrine function in the absence of SCN. This indicates the existence of extra-SCN pacemakers: the Food Entrainable Oscillator (FEO) and Methamphetamine Sensitive Circadian Oscillator (MASCO). Here, we show that these extra-SCN pacemakers control the phases of peripheral oscillators in intact as well as in SCN-ablated PER2::LUC mice. MA administration shifted the phases of SCN, cornea, pineal, pituitary, kidney, and salivary glands in intact animals. When the SCN was ablated, disrupted phase relationships among peripheral oscillators were reinstated by MA treatment. When intact animals were subjected to restricted feeding, the phases of cornea, pineal, kidney, salivary gland, lung, and liver were shifted. In SCN-lesioned restricted-fed mice, phases of all of the tissues shifted such that they aligned with the time of the meal. Taken together, these data show that FEO and MASCO are strong circadian pacemakers able to regulate the phases of peripheral oscillators.  相似文献   

12.
Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ~4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.  相似文献   

13.
The suprachiasmatic nucleus (SCN) of the hypothalamus synchronizes circadian rhythms of cells and tissues throughout the body. In SCN neurons, rhythms of clock gene expression are suppressed by manipulations that hyperpolarize the plasma membrane or lower intracellular Ca(2+). However, whether clocks in other cells also depend on membrane potential and calcium is unknown. In this study, the authors investigate the effects of membrane potential and intracellular calcium on circadian rhythms in mouse primary fibroblasts. Rhythms of clock gene expression were monitored using a PER2::LUC knockin reporter. Rhythms were lost or delayed at lower (hyperpolarizing) K(+) concentrations. Bioluminescence imaging revealed that this loss of rhythmicity in cultures was due to loss of rhythmicity of single cells rather than loss of synchrony among cells. In lower Ca(2+) concentrations, rhythms were advanced or had shorter periods. Buffering intracellular Ca(2+) by the calcium chelator 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) or manipulation of inositol triphosphate (IP(3))-sensitive intracellular calcium stores by thapsigargin delayed rhythms. These results suggest that the circadian clock in fibroblasts, as in SCN neurons, is regulated by membrane potential and Ca(2+). Changes in intracellular Ca(2+) may mediate the effects of membrane potential observed in this study.  相似文献   

14.
15.
16.
Circadian rhythms in physiology and behavior are known to be influenced by the estrous cycle in female rodents. The clock genes responsible for the generation of circadian oscillations are widely expressed both within the central nervous system and peripheral tissues, including those that comprise the reproductive system. To address whether the estrous cycle affects rhythms of clock gene expression in peripheral tissues, we first examined rhythms of clock gene expression (Per1, Per2, Bmal1) in reproductive (uterus, ovary) and non-reproductive (liver) tissues of cycling rats using quantitative real-time PCR (in vivo) and luminescent recording methods to measure circadian rhythms of PER2 expression in tissue explant cultures from cycling PER2::LUCIFERASE (PER2::LUC) knockin mice (ex vivo). We found significant estrous variations of clock gene expression in all three tissues in vivo, and in the uterus ex vivo. We also found that exogenous application of estrogen and progesterone altered rhythms of PER2::LUC expression in the uterus. In addition, we measured the effects of ovarian steroids on clock gene expression in a human breast cancer cell line (MCF-7 cells) as a model for endocrine cells that contain both the steroid hormone receptors and clock genes. We found that progesterone, but not estrogen, acutely up-regulated Per1, Per2, and Bmal1 expression in MCF-7 cells. Together, our findings demonstrate that the timing of the circadian clock in reproductive tissues is influenced by the estrous cycle and suggest that fluctuating steroid hormone levels may be responsible, in part, through direct effects on the timing of clock gene expression.  相似文献   

17.
In mammals, a light-entrainable clock located in the suprachiasmatic nucleus (SCN) regulates circadian rhythms by synchronizing oscillators throughout the brain and body. Notably, the nature of the relation between the SCN clock and subordinate oscillators in the rest of the brain is not well defined. We performed a high temporal resolution analysis of the expression of the circadian clock protein PERIOD2 (PER2) in the rat forebrain to characterize the distribution, amplitude and phase of PER2 rhythms across different regions. Eighty-four LEW/Crl male rats were entrained to a 12-h: 12-h light/dark cycle, and subsequently perfused every 30 min across the 24-h day for a total of 48 time-points. PER2 expression was assessed with immunohistochemistry and analyzed using automated cell counts. We report the presence of PER2 expression in 20 forebrain areas important for a wide range of motivated and appetitive behaviors including the SCN, bed nucleus, and several regions of the amygdala, hippocampus, striatum, and cortex. Eighteen areas displayed significant PER2 rhythms, which peaked at different times of day. Our data demonstrate a previously uncharacterized regional distribution of rhythms of a clock protein expression in the brain that provides a sound basis for future studies of circadian clock function in animal models of disease.  相似文献   

18.
19.
Disruption of circadian rhythms is a risk factor for several human gastrointestinal (GI) diseases, ranging from diarrhea to ulcers to cancer. Four-dimensional tissue culture models that faithfully mimic the circadian clock of the GI epithelium would provide an invaluable tool to understand circadian regulation of GI health and disease. We hypothesized that rhythmicity of a key circadian component, PERIOD2 (PER2), would diminish along a continuum from ex vivo intestinal organoids (epithelial ‘miniguts’), nontransformed mouse small intestinal epithelial (MSIE) cells and transformed human colorectal adenocarcinoma (Caco-2) cells. Here, we show that bioluminescent jejunal explants from PERIOD2::LUCIFERASE (PER2::LUC) mice displayed robust circadian rhythms for >72 hours post-excision. Circadian rhythms in primary or passaged PER2::LUC jejunal organoids were similarly robust; they also synchronized upon serum shock and persisted beyond 2 weeks in culture. Remarkably, unshocked organoids autonomously synchronized rhythms within 12 hours of recording. The onset of this autonomous synchronization was slowed by >2 hours in the presence of the glucocorticoid receptor antagonist RU486 (20 μM). Doubling standard concentrations of the organoid growth factors EGF, Noggin and R-spondin enhanced PER2 oscillations, whereas subtraction of these factors individually at 24 hours following serum shock produced no detectable effects on PER2 oscillations. Growth factor pulses induced modest phase delays in unshocked, but not serum-shocked, organoids. Circadian oscillations of PER2::LUC bioluminescence aligned with Per2 mRNA expression upon analysis using quantitative PCR. Concordant findings of robust circadian rhythms in bioluminescent jejunal explants and organoids provide further evidence for a peripheral clock that is intrinsic to the intestinal epithelium. The rhythmic and organotypic features of organoids should offer unprecedented advantages as a resource for elucidating the role of circadian rhythms in GI stem cell dynamics, epithelial homeostasis and disease.KEY WORDS: Circadian rhythm, Intestinal organoid, PERIOD2, R-spondin, RU486  相似文献   

20.
Increasing evidence suggests an important role for VPAC2-activated signal transduction pathways in maintaining a synchronized biological clock in the suprachiasmatic nucleus (SCN). Activation of the VPAC2 signaling pathway induces per1 gene expression in the SCN and phase-shifts the circadian clock. Mice without the VPAC2 receptor lack an overt, coherent circadian rhythm in clock gene expression, SCN neuron firing rate, and locomotor behavior. Using a systems approach, we have developed a kinetic model integrating VPAC2 signaling mediated by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway and leading to induced circadian clock gene expression. We fit the model to experimental data from the literature for cAMP accumulation, PKA activation, cAMP-response element binding protein phosphorylation, and per1 induction. By linking the VPAC2 model to a published circadian clock model, we also simulated clock phase shifts induced by vasoactive intestinal polypeptide (VIP) and matched experimental data for the VIP response. The simulated phase response curve resembled the hamster response to a related neuropeptide, GRP1-27, and light. Simulations using pulses of VIP revealed that the system response is extraordinarily robust to input signal duration, a result with physiologically relevant consequences. Lastly, simulations using varied receptor levels matched literature experimental data from animals overexpressing VPAC2 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号