首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Cytochrome b(5), a 17-kDa hemeprotein associated primarily with the endoplasmic reticulum of eukaryotic cells, has long been known to augment some cytochrome P450 monooxygenase reactions, but the mechanism of stimulation has remained controversial. Studies in recent years have clarified this issue by delineating three pathways by which cytochrome b(5) augments P450 reactions: direct electron transfer of both required electrons from NADH-cytochrome b(5) reductase to P450, in a pathway separate and independent of NADPH-cytochrome P450 reductase; transfer of the second electron to oxyferrous P450 from either cytochrome b(5) reductase or cytochrome P450 reductase; and allosteric stimulation of P450 without electron transfer. Evidence now indicates that each of these pathways is likely to operate in vivo.  相似文献   

2.
Monooxygenase activity in microsomes from the LPR strain of house fly (Musca domestica L.) was inhibited by anti-P450lpr, and antiserum specific for house fly cytochrome P450lpr. Anti-P450lpr did not inhibit house fly cytochrome P450 reductase or rat cytochrome P450 monooxygenase assays, consistent with specific inhibition of P450lpr. Anti-P450lpr inhibited the ability of cytochrome P450 reductase to reduce carbon monoxide treated LPR microsomal cytochrome P450, up to 49% of the total, showing that inhibition of cytochrome P450 reduction is the major mechanism of inhibition. Anti-P450lpr inhibited 98% of methoxyresorufin-O-demethylase activity and all the benzo(a)pyrene hydroxylase activity in LPR microsomes, but none of the pentoxyresorufin-O-dealkylase activity. The antiserum partially inhibited ethoxyresorufin-O-dealkylase and ethoxycoumarin-O-dealkylase activity. These results demonstrate that methoxyresourfin-O-demethylase activity and benzo(a)pyrene hydroxylase activity are characteristic substrates for P450lpr activity in the LPR strain of house fly.  相似文献   

3.
Cytochrome P450p (IIIA1) has been purified from rat liver microsomes by several investigators, but in all cases the purified protein, in contrast to other P450 enzymes, has not been catalytically active when reconstituted with NADPH-cytochrome P450 reductase and dilauroylphosphatidylcholine. We now report the successful reconstitution of testosterone oxidation by cytochrome P450p, which was purified from liver microsomes from troleandomycin-treated rats. The rate of testosterone oxidation was greatest when purified cytochrome P450p (50 pmol/ml) was reconstituted with a fivefold molar excess of NADPH-cytochrome P450 reductase, an equimolar amount of cytochrome b5, 200 micrograms/ml of a chloroform/methanol extract of microsomal lipid (which could not be substituted with dilauroylphosphatidylcholine), and the nonionic detergent, Emulgen 911 (50 micrograms/ml). Testosterone oxidation by cytochrome P450p was optimal at 200 mM potassium phosphate, pH 7.25. In addition to their final concentration, the order of addition of these components was found to influence the catalytic activity of cytochrome P450p. Under these experimental conditions, purified cytochrome P450p converted testosterone to four major and four minor metabolites at an overall rate of 18 nmol/nmol P450p/min (which is comparable to the rate of testosterone oxidation catalyzed by other purified forms of rat liver cytochrome P450). The four major metabolites were 6 beta-hydroxytestosterone (51%), 2 beta-hydroxytestosterone (18%), 15 beta-hydroxytestosterone (11%) and 6-dehydrotestosterone (10%). The four minor metabolites were 18-hydroxytestosterone (3%), 1 beta-hydroxytestosterone (3%), 16 beta-hydroxytestosterone (2%), and androstenedione (2%). With the exception of 16 beta-hydroxytestosterone and androstenedione, the conversion of testosterone to each of these metabolites was inhibited greater than 85% when liver microsomes from various sources were incubated with rabbit polyclonal antibody against cytochrome P450p. This antibody, which recognized two electrophoretically distinct proteins in liver microsomes from troleandomycin-treated rats, did not inhibit testosterone oxidation by cytochromes P450a, P450b, P450h, or P450m. The catalytic turnover of microsomal cytochrome P450p was estimated from the increase in testosterone oxidation and the apparent increase in cytochrome P450 concentration following treatment of liver microsomes from troleandomycin- or erythromycin-induced rats with potassium ferricyanide (which dissociates the cytochrome P450p-inducer complex). Based on this estimate, the catalytic turnover values for purified, reconstituted cytochrome P450p were 4.2 to 4.6 times greater than the rate catalyzed by microsomal cytochrome P450p.  相似文献   

4.
Cytochrome P450a was purified to electrophoretic homogeneity from liver microsomes from immature male Long-Evans rats treated with Aroclor 1254. Rabbit polyclonal antibody raised against cytochrome P450a cross-reacted with cytochromes P450b, P450e, and P450f (which are structurally related to cytochrome P450a). The cross-reacting antibodies were removed by passing anti-P450a over an N-octylamino-Sepharose column containing these heterologous antigens. The immunoabsorbed antibody recognized only a single protein (i.e., cytochrome P450a) in liver microsomes from immature male rats treated with Aroclor 1254 (i.e., the microsomes from which cytochrome P450a was purified). However, the immunoabsorbed antibody recognized three proteins in liver microsomes from mature male rats, as determined by Western immunoblot. As expected, one of these proteins (Mr 48,000) corresponded to cytochrome P450a. The other two proteins did not correspond to cytochromes P450b, P450e, or P450f (as might be expected if the antibody were incompletely immunoabsorbed), nor did they correspond to cytochromes P450c, P450d, P450g, P450h, P450i, P450j, P450k, or P450p. One of these proteins was designated cytochrome P450m (Mr approximately 49,000), the other cytochrome P450n (Mr approximately 50,000). Like cytochrome P450a, cytochrome P450n was present in liver microsomes from both male and female rats. However, whereas cytochrome P450a was detectable in liver microsomes from 1-week-old rats, cytochrome P450n was barely detectable until the rats were at least 3 weeks old. Furthermore, in contrast to cytochrome P450a, the levels of cytochrome P450n did not decline appreciably with age in postpubertal male rats. Cytochrome P450m was detectable only in liver microsomes from postpubertal (greater than 4 week-old) male rats. Cytochromes P450m and P450n were isolated from liver microsomes from mature male rats and purified to remove cytochrome P450a. When reconstituted with NADPH-cytochrome P450 reductase and lipid, cytochrome P450n exhibited little testosterone hydroxylase activity, whereas cytochrome P450m catalyzed the 15 alpha-, 18-, 6 beta-, and 7 alpha-hydroxylations of testosterone at 10.8, 4.6, 2.0, and 1.9 nmol/nmol P450/min, respectively. The ability of cytochrome P450m to catalyze the 7 alpha-hydroxylation of testosterone was not due to contamination with cytochrome P450a, which catalyzed this reaction at approximately 25 nmol/nmol P450a/min. Cytochrome P450m also converted testosterone to several minor metabolites, including androstenedione and 15 beta-, 14 alpha-, and 16 alpha-hydroxytestosterone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The reactions of cytochromes P450101 (P450cam), P450108 (P450terp), and P450102 (P450BM-3) with phenyldiazene result in the formation of phenyl-iron complexes with absorption maxima at 474-478 nm. Treatment of the cytochrome P450 complexes with K3Fe(CN)6 decreases the 474-478 nm absorbance and shifts the phenyl group from the iron to the porphyrin nitrogens. Acidification and extraction of the prosthetic group from each of the ferricyanide-treated enzymes yields a different mixture of the four possible N-phenylprotoporphyrin IX regioisomers. The ratios of the regioisomers with the phenyl ring on pyrrole rings B, A, C, and D (in order of elution from the high performance liquid chromatography column) are, respectively: cytochrome P450cam, 0:0:1:4; P450terp, 0:0:0:1; and P450BM-3, 2:10:2:1. The isomer ratio for recombinant cytochrome P450BM-3 without the cytochrome P450 reductase domain (2:9:2:1) shows that the reductase domain does not detectably perturb the active site topology of cytochrome P450BM-3. Potassium ions modulate the intensity of the spectrum of the phenyl-iron complex of cytochrome P450cam, but do not alter the N-phenyl isomer ratio. Computer graphics analysis of the crystal structure of the cytochrome P450cam phenyl-iron complex indicates that the active site of cytochrome P450cam is open above pyrrole ring D and, to a small extent, pyrrole ring C, in complete agreement with the observed N-phenylprotoporphyrin IX regioisomer pattern. The regioisomer ratios indicate that the active site of cytochrome P450terp is only open above pyrrole ring D, whereas that of cytochrome P450BM-3 is open to some extent above all the pyrrole rings but particularly above pyrrole ring A. The bacterial enzymes thus have topologies distinct from each other and from those of the mammalian enzymes so far investigated, which have active sites that are open to a comparable extent above pyrrole rings A and D.  相似文献   

6.
Hepatic NADPH cytochrome P450 oxidoreductase capable of supporting polysubstrate monooxygenase (PSMO) reactions was purified from microsomes obtained from phenobarbitone (PB) pretreated rhesus monkey. Two preparations of the enzyme purified by affinity and molecular exclusion chromatographic techniques demonstrated specific content of 19.5 and 37.9 nmol cytochrome c reduced/min/mg protein and subunit molecular weight of 66 and 80 kDa, respectively. Both forms supported oxidation of NADPH and reduction of cytochrome c and DCIP but only 80 kDa preparation supported PSMO reactions. The reconstituted system consisted of hepatic P450, NADPH cytochrome P450 oxidoreductase, cytochrome b5 all purified from PB pretreated rhesus monkey and dilauroyl phosphatidylcholine or microsomal lipid. Eighty kDa preparation supported the metabolism of aminopyrine and tolbutamide by hepatic P4502C and erythromycin, ethylmorphine and nifedipine by hepatic P450 3A, respectively. The turnover of these substrates increased in the presence of partially purified cytochrome b5 from the rhesus monkey. To best of our knowledge this is the first report on the purification of monkey hepatic NADPH cytochrome P450 oxidoreductase capable of supporting in vitro PSMO by different isozymes of P450.  相似文献   

7.
In order to provide evidence that a cytochrome P450 belonging to the IIB subfamily is expressed as a constitutive form in the guinea pig, we tried to purify an isozyme from liver microsomes of untreated guinea pigs by assessing its reactivity with anti-P450b antibody in the present study. One form of cytochrome P450, named P450GP-1, was obtained. The minimum molecular weight of this isozyme was estimated to be 52,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino terminal sequence up to the 33rd amino acid of P450GP-1 was determined. As expected, comparison of the amino acid sequence with those of cytochrome P450 isozymes from other species reported so far indicated that P450GP-1 was highly homologous to P450s categorized in the IIB subfamily; that is, 67% similarity to rat P450b, 82% to rabbit LM2, 76% to dog PBD-2, 70% to mouse pf 3/46, and 73% to human IIB1. On the other hand, P450GP-1 showed only low similarity, less than 41%, to other cytochrome P450s of the II subfamily and those of the I, III, and IV families. Affinity of P450GP-1 to anti-P450b immunoglobulin G was confirmed to be comparable with that of a principal antigen, P450b. Immunoblot analysis revealed that P450GP-1 in the guinea pig liver microsomes was induced by phenobarbital treatment, but the increase was not as large as in the rat. P450GP-1 efficiently catalyzed benzphetamine N-demethylation, strychnine 2-hydroxylation, and testosterone 16 beta-hydroxylation, all of which are also catalyzed by P450b. Based on these results, it was strongly suggested that the IIB-type of cytochrome P450 in guinea pigs, at least one of them, is a constitutive form which is moderately induced by phenobarbital.  相似文献   

8.
The metabolism and covalent binding of 14C-monocrotaline in Sprague–Dawley (SD) rat liver microsomes was investigated using the inducers dexamethasone, clotrimazole, pregnenolone-16α-carbonitrile, and phenobarbital. Monocrotaline is a pyrrolizidine alkaloid (PA) that causes a syndrome in rats that is a model for human primary pulmonary hypertension. It has been documented that bioactivation of PAs (dehydrogenation to reactive pyrroles) in the liver by cytochromes P450 is required for their toxicity. Covalent binding of these reactive pyrroles to tissue macromolecules has been hypothesized to correspond to PA toxicosis. We correlated metabolism and total microsomal covalent binding of 14C-monocrotaline with cytochrome P450 3A using the aforementioned inducers, troleandomycin (a cytochrome P450 3A inhibitor), erythromycin N-demethylase assay of cytochrome P450 3A activity, and Western blots employing anti-rat cytochrome P450 3A antibodies. In addition, autoradiography of membranes electroblotted from SDS-PAGE demonstrated the formation of radiolabeled adducts with specific protein(s). The most intensely radiolabeled protein bands have an apparent molecular weight of ∼52 kDa, which was similar to the molecular weight detected by anti-rat cytochrome P450 3A antibodies in the Western blots. No radiolabeled proteins were detected in microsomes pretreated with troleandomycin. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 157–166, 1998  相似文献   

9.
Genes for lanosterol 14-demethylase, cytochrome P450(14DM), and a mutated inactive cytochrome P450SG1 were cloned from S. cerevisiae strains D587 and SG1, respectively. A single nucleotide change resulting in substitution of Asp for Gly-310 of cytochrome P450(14DM) was found to have occurred in cytochrome P450SG1. In this protein the 6th ligand to heme iron is a histidine residue instead of a water molecule, which may be the ligand for the active cytochrome P450(14DM). Molecular models of the active sites of the cytochrome P450(14DM) and cytochrome P450SG1 were built by computer modeling on the basis of the known structure of that of cytochrome P450CAM whose crystallographic data are available. The mechanisms which may cause a histidine residue to gain access to the heme iron are discussed.  相似文献   

10.
Enzymatic lipid peroxidation in hepatocytes is believed to involve cytochrome P450. cAMP dependent phosphorylation of cytochrome P450 was found to increase the NADPH dependent production of malondialdehyde (lipid peroxidation) by about 30%. The cytochrome P450 inhibitor cyanide abolished this activity. The presence of spermine decreased the cytochrome P450 dependent lipid peroxidation in non-phosphorylated microsomes, phosphorylation partially reversed this effect. Thus, phosphorylation of cytochrome P450 and the associated increased lipid peroxidation may be a hormone dependent response to pathological conditions e.g. stress Phosphorylation was observed to subtly alter other properties of cytochrome P450. The rate of 7-ethoxycoumarin deethylase activity was reduced and the microwave power required to saturate the EPR spectrum of the low spin cytochrome P450 was decreased. It is hypothesized that phosphorylation of cytochrome P450 alters the interaction between the components of the cytochrome P450 system, which may enhance production of free radical species, initiating lipid peroxidation.  相似文献   

11.
Cytochrome P450cin catalyzes the monooxygenation of 1,8-cineole, which is structurally very similar to d-camphor, the substrate for the most thoroughly investigated cytochrome P450, cytochrome P450cam. Both 1,8-cineole and d-camphor are C(10) monoterpenes containing a single oxygen atom with very similar molecular volumes. The cytochrome P450cin-substrate complex crystal structure has been solved to 1.7 A resolution and compared with that of cytochrome P450cam. Despite the similarity in substrates, the active site of cytochrome P450cin is substantially different from that of cytochrome P450cam in that the B' helix, essential for substrate binding in many cytochrome P450s including cytochrome P450cam, is replaced by an ordered loop that results in substantial changes in active site topography. In addition, cytochrome P450cin does not have the conserved threonine, Thr252 in cytochrome P450cam, which is generally considered as an integral part of the proton shuttle machinery required for oxygen activation. Instead, the analogous residue in cytochrome P450cin is Asn242, which provides the only direct protein H-bonding interaction with the substrate. Cytochrome P450cin uses a flavodoxin-like redox partner to reduce the heme iron rather than the more traditional ferredoxin-like Fe(2)S(2) redox partner used by cytochrome P450cam and many other bacterial P450s. It thus might be expected that the redox partner docking site of cytochrome P450cin would resemble that of cytochrome P450BM3, which also uses a flavodoxin-like redox partner. Nevertheless, the putative docking site topography more closely resembles cytochrome P450cam than cytochrome P450BM3.  相似文献   

12.
Cytochrome P450s (P450) form a superfamily of membrane-bound proteins that play a key role in the primary metabolism of both xenobiotics and endogenous compounds such as drugs and hormones, respectively. To be enzymically active, they require the presence of a second membrane-bound protein, NADPH P450 reductase, which transfers electrons from NADPH to the P450. Because of the diversity of P450 enzymes, much of the work on individual forms has been carried out on purified proteins, in vitro, which requires the use of complex reconstitution mixtures to allow the P450 to associate correctly with the NADPH P450 reductase. There is strong evidence from such reconstitution experiments that, when cytochrome b5 is included, the turnover of some substrates with certain P450s is increased. Here we demonstrate that allowing human P450 reductase, CYP3A4, and cytochrome b5 to associate in an in vivo-like system, by coexpressing all three proteins together in Escherichia coli for the first time, the turnover of both nifedipine and testosterone by CYP3A4 is increased in the presence of cytochrome b5. The turnover of testosterone was increased by 166% in whole cells and by 167% in preparations of bacterial membranes. The coexpression of cytochrome b5 also resulted in the stabilization of the P450 during substrate turnover in whole E. coli, with 109% of spectrally active CYP3A4 remaining in cells after 30 min in the presence of cytochrome b5 compared with 43% of the original P450 remaining in cells in the absence of cytochrome b5.  相似文献   

13.
Cytochrome P450 is a superfamily of membrane-bound hemoprotein that gets involved with the degradation of xenobiotics and internal metabolites. Accumulated body of evidence indicates that phospholipids play a crucial role in determining the enzymatic activity of cytochrome P450 in the microenvironment by modulating its structure during detoxification; however, the structure-function relationship of cytochrome P4501A, a family of enzymes responsible for degrading lipophilic aromatic hydrocarbons, is still not well defined. Inducibility of cytochrome P4501A in cultured catfish hepatocytes in response to carbofuran, a widely used pesticide around the world, was studied earlier in our laboratory. In this present investigation, we observed that treating catfish with carbofuran augmented total phospholipid in the liver. We examined the role of phospholipid on the of cytochrome P4501A-marker enzyme which is known as ethoxyresorufin-O-deethylase (EROD) in the context of structure and function. We purified the carbofuran-induced cytochrome P4501A protein from catfish liver. Subsequently, we examined the enzymatic activity of purified P4501A protein in the presence of phospholipid, and studied how the structure of purified protein was influenced in the phospholipid environment. Membrane phospholipid appeared to accelerate the enzymatic activity of EROD by changing its structural conformation and thus controlling the detoxification of xenobiotics. Our study revealed the missing link of how the cytochrome P450 restores its enzymatic activity by changing its structural conformation in the phospholipid microenvironment.  相似文献   

14.
The effects of exogenous hormone treatment on the expression of cytochromes P450 2C7 and P450 2C11 were studied in neonatally gonadectomized and sham-operated male and female rats. Hepatic levels of cytochrome P450 2C7 were found to be two- to threefold higher in intact adult female versus male rats. Neonatal gonadectomy resulted in a reversal of the relative cytochrome P450 2C7 levels in male and female animals at maturity. Expression of this isozyme was restored in ovariectomized females by estradiol treatment. Furthermore, neonatal and/or pubertal administration of estradiol to intact male rats induced cytochrome P450 2C7 to adult female levels. On the other hand, administration of testosterone at all times examined had no effect in intact female rats, but decreased cytochrome P450 2C7 to normal levels in neonatally castrated males treated during adulthood. Neonatal testosterone treatment also increased hepatic cytochrome P450 2C7 content in both ovariectomized females and intact males. These results indicate that estrogen is required for full expression of cytochrome P450 2C7 while the effect of testosterone is ambiguous. In comparison, neonatal gonadectomy of male rats abolished the adult expression of cytochrome P450 2C11. Normal levels were restored only by treatment with testosterone during adulthood. Neonatal testosterone treatment did not induce cytochrome P450 2C11 levels in gonadectomized rats of either sex. In contrast, neonatal estrogen treatment suppressed cytochrome P450 2C11 expression in intact adult male rats to the same extent as neonatal castration. These results indicate that androgen exposure during the adult, and not the neonatal, phase is essential for full expression of cytochrome P450 2C11.  相似文献   

15.
Limited proteolysis of rat liver microsomes was used to probe the topography and structure of cytochrome P450 bound to the endoplasmic reticulum. Three cytochromes P450 from two families were examined. Monoclonal antibodies to cytochrome P450 forms 1A1, 2B1, and 2E1 were used to immunopurify these proteolyzed cytochromes P450 from microsomes from rats treated with 3-methylcholanthrene, phenobarbital, and acetone, respectively. Electrophoretic and immunoblot analysis of tryptic fragments revealed a highly sensitive cleavage site in all three cytochromes P450. N-Terminal sequencing was performed on the fragments after transfer onto poly(vinylidene difluoride) membranes and showed that this preferential cleavage site is at amino acid position 298 of P450 1A1, position 277 of P450 2B1, and position 278 of P450 2E1. Multiple sequence alignment revealed that these positions are at the amino terminal of a highly conserved region of these cytochromes P450. The important functional role implied by primary sequence conservation along with the proteolytic sensitivity at its amino terminal suggests that this region is a protein domain. Comparison with the known structure of the bacterial cytochrome P450cam predicts that this proteolytically sensitive site is within an interhelical turn region connected to the distal helix that partially encompasses the heme-containing active site. Substrate binding to the cleaved cytochromes P450 was examined in order to determine whether the newly added conformational freedom near the cleavage site functionally altered these cytochromes P450. Cleavage of P450 2B1 abolished benzphetamine binding, which indicates that the cleavage site contains an important structural determinant for binding this substrate. However, cleavage did not affect benzo[a]pyrene binding to P450 1A1.  相似文献   

16.
Klaus Ruckpaul was the leader of cytochrome P450 research in the "East" Germany when the world was politically divided into "East" and "West". Under strong political pressure during the "Cold War", the communication between the scientists in the "East" countries with those in the "West" countries was badly restricted. He wanted to improve the situation, and organized an international gathering of the biochemists studying cytochrome P450. The first meeting was held in 1976, and it developed later into a big international conference named "International Conference on Cytochrome P450, Biochemistry and Biophysics". He and his colleagues also contributed greatly to the elucidation of the mechanism of P450-catalyzed reactions. I respect him for his great contribution to the advancement of biochemical study on cytochrome P450, and feel happy that I have enjoyed a long friendship with him.  相似文献   

17.
Antibodies to mouse liver cytochrome P3-450 (anti-P3-450) and antibodies to rat liver cytochrome P-450d (anti-P-450d-c) inhibit the 0-deethylation of 7-ethoxyresorufin (ER) in liver microsomes of benz(a)pyrene-induced (BP) mice but do not inhibit the 0-deethylase activity in liver microsomes of BP-induced rats. Anti-P3-450 and anti-P-450c inhibit BP-hydroxylation in BP-induced mouse liver microsomes by 20%, but they do not inhibit this reaction at all in BP-induced rat liver microsomes. In a reconstituted monooxygenase system isolated cytochrome P3-450 metabolized 7-ER and BP. In contrast, its homologue, cytochrome P-450d, did not metabolize these substrates. The fraction containing cytochrome P1-450 metabolized 7-ER at a low rate and BP at a rate of 3.6 nmol product/min/nmol cytochrome. Western blot analysis with anti-P-450c + d revealed two bands in SDS-PAGE gels containing BP-induced mouse liver microsomes. The interaction of mouse liver BP-microsomes with anti-P3-450 and anti-P-450d-c was accompanied by the appearance of a single band (cytochrome P3-450).  相似文献   

18.
In the preceding paper, evidence was presented that rat liver microsomes contain two structurally related isozymes of cytochrome P450, namely cytochromes P450a and P450m, that can both catalyze the 7 alpha-hydroxylation of testosterone. The aim of the present study was to determine the extent to which these two P450 isozymes are responsible for the 7 alpha-hydroxylation of testosterone catalyzed by rat liver microsomes. Four monoclonal antibodies against cytochrome P450a, designated A2, A4, A5, and A7, were prepared in BALB/c mice. Monoclonal antibodies A2 (an IgM), A4 (an IgG2b), and A5 (an IgG1) were determined to be distinct immunoglobulins, whereas A7 could not be distinguished from A5. All of the antibodies were highly specific for cytochrome P450a; none cross-reacted with cytochrome P450m or with 10 other P450 isozymes purified from rat liver microsomes. Competition experiments between unlabeled and horseradish peroxidase-conjugated antibodies revealed that each of the monoclonal antibodies recognized the same epitope on cytochrome P450a. None of the monoclonal antibodies bound to denatured cytochrome P450a, suggesting that they each bound to a spatial epitope. A monospecific, polyclonal antibody against cytochrome P450a was also prepared, as described in the preceding paper. The levels of cytochrome P450a in liver microsomes were determined by single radial immunodiffusion, Western immunoblot (with polyclonal antibody), and enzyme-linked immunosorbent assay with monoclonal antibody. The levels of cytochrome P450a declined with age in male but not female rats, and were inducible up to 10-fold by treatment of rats with various xenobiotics. The levels of cytochrome P450a (but not cytochrome P450m) were also elevated (approximately 3-fold) by thyroidectomy of mature male rats. Near normal levels of cytochrome P450a were restored by treatment of athyroid rats with triiodothyronine, whereas treatment with thyroxine was less effective in this regard. These changes in the levels of cytochrome P450a were highly correlated (r = 0.995) with changes in testosterone 7 alpha-hydroxylase activity. None of the monoclonal antibodies inhibited the catalytic activity of cytochrome P450a when reconstituted with NADPH-cytochrome P450 reductase and lipid. In contrast, the polyclonal antibody not only inhibited the catalytic activity of purified cytochrome P450a, but also completely inhibited (greater than 96%) the 7 alpha-hydroxylation of testosterone catalyzed by liver microsomes from immature and mature rats of both sexes and by liver microsomes from male rats treated with a variety of cytochrome P450 inducers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
In intact rats, ethanol treatment has been associated with increases in hepatic levels of both P450IIB1/2 and P450IIE. When rat hepatocytes were cultured on an extracellular tumor matrix (Matrigel), exposure to ethanol from 48 to 96 h in culture resulted in increases in cytochromes P450IIE, IIB1/2, and IIIA. Cytochrome P450IIE was detected immunologically and enzymatically, using two activities associated with cytochrome P450IIE, p-nitrophenol hydroxylation, and acetaminophen activation to a metabolite that binds to glutathione. The content of cytochrome P450IIE in freshly isolated cells decreased when the cells were placed in culture. Exposure of the cultured hepatocytes to ethanol from 48 to 96 h after inoculation resulted in an increase in cytochrome P450IIE compared to untreated cultured cells. In addition, in culture, the amount of enzymatically active protein after ethanol treatment was equal to that in hepatocytes freshly isolated from intact animals. Ethanol treatment resulted in increases in cytochrome P450IIB1/2 compared to untreated cells, as shown immunologically and by increased benzyloxyresorufin dealkylase activity. However, phenobarbital induced cytochrome P450IIB1/2 to higher levels, compared to ethanol. Ethanol and phenobarbital treatments both increased P450IIIA, as determined immunologically and by the amount of propoxycoumarin depropylase activity that is inhibited by triacetyloleandomycin. However, the amount of P450IIIA increased after ethanol treatment was less than that increased after treatment with dexamethasone in these cells. The ethanol-mediated increases in all four forms of cytochrome P450 in culture suggest that these increases in the intact animal result from direct effects of ethanol on the liver.  相似文献   

20.
Identification and location of alpha-helices in mammalian cytochromes P450   总被引:3,自引:0,他引:3  
A model of the alpha-helical structure of mammalian cytochromes P450 is proposed. The location and sequence of alpha-helices in mammalian cytochromes P450 were predicted from their homology with those of cytochrome P450cam, and these sequences were generally confirmed as helical in nature by using a secondary structure prediction method. These analyses were applied to 26 sequences in 6 gene families of cytochrome P450. Mammalian cytochromes P450 consist of approximately 100 amino acid residues more than cytochrome P450cam. This difference was accounted for by three major areas of insertion: (1) at the N-terminus, (2) between helices C and D and between helices D and E, and (3) between helices J and K. Insertion 1 has been suggested by others as a membrane anchoring sequence, but the apparent insertions at 2 and 3 are novel observations; it is suggested that they may be involved in the binding of cytochrome P450 reductase. Only the mitochondrial cytochrome P450 family appeared to show a major variation from this pattern, as insertion 2 was absent, replaced by an insertion between helices G and H and between helices H and I. This may reflect the difference in electron donor proteins that bind to members of this cytochrome P450 family. Other than these differences the model of mammalian cytochromes P450 proposed maintains the general structure of cytochrome P450cam as determined by its alpha-helical composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号