首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
Cytochrome P450a was purified to electrophoretic homogeneity from liver microsomes from immature male Long-Evans rats treated with Aroclor 1254. Rabbit polyclonal antibody raised against cytochrome P450a cross-reacted with cytochromes P450b, P450e, and P450f (which are structurally related to cytochrome P450a). The cross-reacting antibodies were removed by passing anti-P450a over an N-octylamino-Sepharose column containing these heterologous antigens. The immunoabsorbed antibody recognized only a single protein (i.e., cytochrome P450a) in liver microsomes from immature male rats treated with Aroclor 1254 (i.e., the microsomes from which cytochrome P450a was purified). However, the immunoabsorbed antibody recognized three proteins in liver microsomes from mature male rats, as determined by Western immunoblot. As expected, one of these proteins (Mr 48,000) corresponded to cytochrome P450a. The other two proteins did not correspond to cytochromes P450b, P450e, or P450f (as might be expected if the antibody were incompletely immunoabsorbed), nor did they correspond to cytochromes P450c, P450d, P450g, P450h, P450i, P450j, P450k, or P450p. One of these proteins was designated cytochrome P450m (Mr approximately 49,000), the other cytochrome P450n (Mr approximately 50,000). Like cytochrome P450a, cytochrome P450n was present in liver microsomes from both male and female rats. However, whereas cytochrome P450a was detectable in liver microsomes from 1-week-old rats, cytochrome P450n was barely detectable until the rats were at least 3 weeks old. Furthermore, in contrast to cytochrome P450a, the levels of cytochrome P450n did not decline appreciably with age in postpubertal male rats. Cytochrome P450m was detectable only in liver microsomes from postpubertal (greater than 4 week-old) male rats. Cytochromes P450m and P450n were isolated from liver microsomes from mature male rats and purified to remove cytochrome P450a. When reconstituted with NADPH-cytochrome P450 reductase and lipid, cytochrome P450n exhibited little testosterone hydroxylase activity, whereas cytochrome P450m catalyzed the 15 alpha-, 18-, 6 beta-, and 7 alpha-hydroxylations of testosterone at 10.8, 4.6, 2.0, and 1.9 nmol/nmol P450/min, respectively. The ability of cytochrome P450m to catalyze the 7 alpha-hydroxylation of testosterone was not due to contamination with cytochrome P450a, which catalyzed this reaction at approximately 25 nmol/nmol P450a/min. Cytochrome P450m also converted testosterone to several minor metabolites, including androstenedione and 15 beta-, 14 alpha-, and 16 alpha-hydroxytestosterone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Polyclonal antibody elicited in a rabbit against purified cytochrome P-450cc25, which catalyzes 25-hydroxylation of vitamin D3, inhibited not only 25-hydroxylation of cholecalciferol and 1 alpha-hydroxycholecalciferol, but also 16 alpha- and 2 alpha-hydroxylation of testosterone catalyzed by the purified P-450cc25 preparation. Antibody inhibition experiments with microsomes revealed that most 16 alpha- and 2 alpha-hydroxylation of testosterone and most 25-hydroxylation of cholecalciferol by male rat liver microsomes were catalyzed by P-450cc25. In order to examine the identity of cholecalciferol 25-hydroxylase and testosterone 16 alpha-hydroxylase, monoclonal antibodies recognizing three different epitopes of P-450cc25 were prepared from hybridoma clones produced by fusion of mouse myeloma cells (P3X63Ag8U1) with the spleen cells of immunized BALB/c mouse. All of these monoclonal antibodies inhibited both 25-hydroxylation of 1 alpha-hydroxycholecalciferol and 16 alpha-hydroxylation of testosterone by purified P-450cc25. These observations suggested that immunochemically indistinguishable form(s) of cytochrome P-450 catalyzed both reactions.  相似文献   

3.
A procedure for the preparation of monospecific antibody directed against rat liver microsomal cytochrome P-45-a is described. This antibody, together with monospecific antibodies to cytochromes P-450b and P-450c, has been used to show that these three forms of cytochrome P-450 are distinct and share no common antigenic determinants. These antibodies (a) give single immunoprecipitin bands with detergent-solubilized microsomes; (b) do not cross-react with the purified heterologous antigens in Ouchterlony double diffusion analyses; (c) have no effect on catalytic activity of the heterologous antigens but completely inhibit the enzymatic activity of the homologous antigens; and (d) remove only the homologous antigen from detergent-solubilized microsomes when covalently bound to a solid support. With radial immunodiffusion assay, we have quantitated these three forms of cytochrome P-450 in liver microsomes after treatment of rats with seven different inducers of cytochrome P-450. The levels of these cytochrome P-450 isozymes vary independently and are also regulated by the age and sex of the animal. The antibodies have also been used to assess the contribution of cytochromes P-450a, P-450b, and P-450c in the metabolism of xenobiotics by rat liver microsomes. A large proportion of benzo(a)pyrene metabolism and testosterone 16 alpha-hydroxylation in microsomes from untreated rats is not catalyzed by cytochromes P-450a, P-450b, and P-450c. Epoxide hydrolase, another microsomal enzyme involved in the metabolism of xenobiotics, was also quantitated by radial immunodiffusion after prior treatment of rats with microsomal enzyme inducers. The inductions of epoxide hydrolase varies independently of the induction of cytochromes P-450a, P-450b, and P-450c.  相似文献   

4.
Polyclonal antibody has been shown previously to react identically with cytochromes P-450b and P-450e purified from Long Evans rats and a strain variant of cytochrome P-450b purified from Holtzman rats (P-450bH). In the present study, an array of 12 different monoclonal antibodies produced against cytochrome P-450b has been used to distinguish among these closely related phenobarbital-inducible rat hepatic cytochromes P-450. In immunoblots and enzyme-linked immunosorbent assays, 10 monoclonal antibodies bind to cytochromes P-450b, P-450e, and P-450bH; one monoclonal antibody (B50) recognizes cytochromes P-450b and P-450bH but not cytochrome P-450e; and one monoclonal antibody (B51) is specific for cytochrome P-450b. In addition, one monoclonal antibody (BEF29) reacts strongly with cytochrome P-450f, and another antibody (BEA33) reacts weakly with cytochrome P-450a. No cross-reactions with cytochromes P-450c, P-450d, and P-450g-P-450j were detected with any of the monoclonal antibodies in these assays. Six spatially distinct epitopes on cytochrome P-450b were identified, and differences in antibody reactivity provided evidence for three additional overlapping epitopes. Several monoclonal antibodies are potent inhibitors of testosterone and benzphetamine metabolism supported by cytochrome P-450b in a reconstituted system. B50 and BE52 do not inhibit metabolism of the two substrates by microsomes from untreated rats, but inhibit benzphetamine N-demethylation and testosterone metabolism to 16 alpha- and 16 beta-hydroxytestosterone as well as androstenedione formation 67-94% by microsomes from phenobarbital-treated rats. No other pathways of testosterone metabolism are inhibited by these monoclonal antibodies. The differential inhibition of microsomal metabolism of benzphetamine and testosterone by these monoclonal antibodies is a reflection of the content and inducibility of cytochromes P-450b and P-450e as well as other cytochrome P-450 isozymes.  相似文献   

5.
Age- and sex-related expression of cytochromes p450f and P450g in rat liver   总被引:2,自引:0,他引:2  
We have previously shown that rat hepatic cytochromes P450f, P450g, P450h, and P450i possess a high degree of immunochemical and, presumably, structural relatedness. Polyclonal antibodies directed against cytochromes P450f and P450g were made monospecific by immunoabsorption against the cross-reactive proteins. The specificity of the immunoabsorbed antibodies was established by using Ouchterlony double diffusion analyses, enzyme-linked immunosorbent assays (ELISA), and immunoblots. Since factors regulating the expression of cytochromes P450f and P450g are unknown, a competitive ELISA employing the monospecific antibodies was developed to quantitate each of these isozymes in hepatic microsomes from control and treated rats. The results obtained showed that expression of cytochrome P450f is developmentally regulated in both male and female rat liver. Cytochrome P450f levels rise from less than 1% in young animals to approximately 7 and 14% of total cytochrome P450 in adult male and female rats, respectively. Cytochrome P450g is sex-specific since it is expressed only in male rat liver where it also is developmentally regulated. Levels of cytochrome P450g rise from less than 1% in 3-week-old male rats to an average value of 17% of total cytochrome P450 in 6-week-old adult animals. However, there appear to be at least two subpopulations of adult male Long Evans rats, one of which expresses low levels (less than 1%) of cytochrome P450g and the other high levels (greater than or equal to 10%). This expression appears to be independent of serum testosterone levels. Treatment of immature and adult male rats with 20 xenobiotics that are known inducers of certain cytochrome P450 isozymes revealed that cytochromes P450f and P450g are relatively refractory to induction, although Kepone appears to be a weak inducer of cytochrome P450f.  相似文献   

6.
The effects of starvation on the composition of 12 different cytochrome P450s in rat hepatic microsomes were studied with a specific antibody. Changes in the metabolic activity of the microsomes were studied at the same time. P450 DM (P450j) was induced 2.5-fold by a 48-h starvation and its increase reflected the increase of metabolic activity of hepatic microsomes toward aniline, 7-ethoxycoumarin, and N-nitrosodimethylamine. P450 K-5, the major renal cytochrome P450 in untreated male rat, was also induced 2.5-fold by a 48-h starvation. P450 UT-2 (P450h) and P450 UT-5 (P450g), typical male-specific forms, decreased with starvation. P450 UT-2 had high testosterone 2 alpha- and 16 alpha-hydroxylation activities. These activities of hepatic microsomes were reduced with the decrease in P450 UT-2. P450 PB-1, testosterone 6 beta-hydroxylase, was increased time-dependently by starvation. P450 UT-4 (RLM2), a minor male-specific form, was not changed by starvation. P450 PB-2 (P450k), present in both sexes, was changed little by starvation. P450 PB-4 (P450b) and P450 PB-5 (P450e) are strongly induced in rat liver by phenobarbital in coordinate fashion. Starvation increased P450 PB-4 12-fold but reduced P450 PB-5 to 22% of the control level. P450 MC-1 (P450d) was decreased by starvation. P450 MC-5 (P450c) was barely detected in control rats and was not changed by starvation. P450 IF-3 (P450a), rich in immature rats, was increased by starvation, accompanied by an increase in testosterone 7 alpha-hydroxylation activity in the hepatic microsomes. We further investigated whether new cytochrome P450s appeared upon starvation by comparison of chromatographic profiles of cytochrome P450 from starved rats with those of cytochrome P450 from control rats using HPLC. Three new cytochrome P450s were detected in the starved rats. These cytochrome P450s were purified to homogeneity. One of them was P450 DM, judging from spectral properties, catalytic activity, and the NH2-terminal sequence. The two other forms were designated P450 3b and 4b. The minimum molecular weights of P450 3b and 4b were 53,000 and 52,000, respectively, and their CO-reduced absorption maxima were at 449 and 452 nm, respectively. P450 3b metabolized aminopyrine, N-nitrosodimethylamine, 7-ethoxycoumarin, and lauric acid, but with low activity. P450 4b was efficient in lauric acid omega- and (omega-1)-hydroxylation only. The spectral properties, catalytic activity, peptide map, and NH2-terminal sequence of P450 4b agreed with those of P450 K-5. P450 3b was a new cytochrome P450, judged by these criteria.  相似文献   

7.
The differences in the levels of cytochrome P-450s in hepatic and renal microsomes between spontaneously hypertensive rats (SHR) and normotensive control rats (Wistar Kyoto rats, WKY) were investigated by Western blotting with a specific antibody. Differences in the metabolic activity of the microsomes were also studied. In hepatic microsomes, the content of P450 PB-1 (IIIA2) was 140% higher in SHR than in WKY and the content of P450 IF-3 (IIA1) in SHR was one-seventh that in WKY. The differences reflected the increase in testosterone 6 beta-hydroxylation activity and decrease in testosterone 7 alpha-hydroxylation activity in hepatic microsomes of SHR. The level of P450 K-5 (IVA2) in hepatic microsomes of SHR was 4-times that in microsomes of WKY. The levels of other cytochrome P-450s in SHR were not very different from those in WKY. In renal microsomes, the levels of three renal cytochrome P-450s, P450 K-2, K-4, and K-5, were measured. The level of P450 K-5 (fatty acid omega-hydroxylase) in SHR was 50% higher than that in WKY and the difference reflected the increase in lauric acid omega- and (omega-1)-hydroxylation activities of the renal microsomes of SHR. The levels of P450 K-2 and K-4 did not differ in both rats.  相似文献   

8.
The pathways of testosterone oxidation catalyzed by purified and membrane-bound forms of rat liver microsomal cytochrome P-450 were examined with an HPLC system capable of resolving 14 potential hydroxylated metabolites of testosterone and androstenedione. Seven pathways of testosterone oxidation, namely the 2 alpha-, 2 beta-, 6 beta-, 15 beta-, 16 alpha-, and 18-hydroxylation of testosterone and 17-oxidation to androstenedione, were sexually differentiated in mature rats (male/female = 7-200 fold) but not in immature rats. Developmental changes in two cytochrome P-450 isozymes largely accounted for this sexual differentiation. The selective expression of cytochrome P-450h in mature male rats largely accounted for the male-specific, postpubertal increase in the rate of testosterone 2 alpha-, 16 alpha, and 17-oxidation, whereas the selective repression of cytochrome P-450p in female rats accounted for the female-specific, postpubertal decline in testosterone 2 beta-, 6 beta-, 15 beta-, and 18-hydroxylase activity. A variety of cytochrome P-450p inducers, when administered to mature female rats, markedly increased (up to 130-fold) the rate of testosterone 2 beta-, 6 beta-, 15 beta-, and 18-hydroxylation. These four pathways of testosterone hydroxylation were catalyzed by partially purified cytochrome P-450p, and were selectively stimulated when liver microsomes from troleandomycin- or erythromycin estolate-induced rats were treated with potassium ferricyanide, which dissociates the complex between cytochrome P-450p and these macrolide antibiotics. Just as the testosterone 2 beta-, 6 beta-, 15 beta-, and 18-hydroxylase activity reflected the levels of cytochrome P-450p in rat liver microsomes, so testosterone 7 alpha-hydroxylase activity reflected the levels of cytochrome P-450a; 16 beta-hydroxylase activity the levels of cytochrome P-450b; and 2 alpha-hydroxylase activity the levels of cytochrome P-450h. It is concluded that the regio- and stereoselective hydroxylation of testosterone provides a functional basis to study simultaneously the regulation of several distinct isozymes of rat liver microsomal cytochrome P-450.  相似文献   

9.
Phenobarbital, 3-methylcholanthrene, acetone and pyrazole were used as inducers of cytochrome P450 and the NADPH-dependent oxidase activity (O-2 production) of pulmonary and hepatic microsomes was determined. Oxidase activity of microsomes from 3-methylcholanthrene-treated rats was significantly decreased as compared to that of controls when expressed on the basis of cytochrome P450 content (30% decrease for liver, 60% decrease for lung). The oxidase activity of liver microsomes from pyrazole-treated rats showed a significant increase, whereas phenobarbital treated microsomes had average superoxide-generating activity. The contribution of cytochromes CYP 1A, CYP 2B and CYP 2E1 to superoxide-generating activity was investigated using monoclonal antibodies. Monoclonal antibody 1-91-3 against CYP 2E1 inhibited superoxide generation by 58% in liver microsomes from pyrazole-treated rats. Monoclonal antibodies 1-7-1 and 2-66-3 against CYP 1A and CYP2B, respectively, had no effect on superoxide generation. These results indicate that different cytochrome P450 isoforms are mainly responsible for differential superoxide generating activities of microsomes and complement the reconstitution study of Morehouse and Aust. Furthermore, our study indicates that CYP 1A1, induced by 3-MC, demonstrates an unusually low oxidase activity.  相似文献   

10.
In the present study we show that monospecific antibody against cytochrome P-450a completely inhibits testosterone 7 alpha-hydroxylation in hepatic microsomes of untreated male or female rats or rats of either sex treated with dexamethasone. These data are in contrast with those of K. Nagata et al. (1987, J. Biol. Chem. 262, 2787-2793) who recently reported that an antibody prepared against cytochrome P-450a completely inhibited testosterone 7 alpha-hydroxylase activity in microsomes from untreated or 3-methylcholanthrene-treated rats but only inhibited 50% of the activity in microsomes from dexamethasone-treated rats. They proposed that dexamethasone treatment of rats induced another testosterone 7 alpha-hydroxylase in rat liver. The discrepancy in the two sets of data was due, at least in part, to the use of a chromatography system by Nagata et al. that is incapable of resolving a number of testosterone metabolites. Dexamethasone treatment of rats leads to a marked increase in the production of several testosterone metabolites, including 15 beta-hydroxytestosterone which is cochromatographic with 7 alpha-hydroxytestosterone in their chromatography system. Our results indicate that cytochrome P-450a accounts for all of the testosterone 7 alpha-hydroxylase activity in microsomes from dexamethasone-treated rats, and that testosterone 7 alpha-hydroxylation continues to be a useful marker for monitoring cytochrome P-450a in rat hepatic microsomes.  相似文献   

11.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

12.
Cytochrome P450p (IIIA1) has been purified from rat liver microsomes by several investigators, but in all cases the purified protein, in contrast to other P450 enzymes, has not been catalytically active when reconstituted with NADPH-cytochrome P450 reductase and dilauroylphosphatidylcholine. We now report the successful reconstitution of testosterone oxidation by cytochrome P450p, which was purified from liver microsomes from troleandomycin-treated rats. The rate of testosterone oxidation was greatest when purified cytochrome P450p (50 pmol/ml) was reconstituted with a fivefold molar excess of NADPH-cytochrome P450 reductase, an equimolar amount of cytochrome b5, 200 micrograms/ml of a chloroform/methanol extract of microsomal lipid (which could not be substituted with dilauroylphosphatidylcholine), and the nonionic detergent, Emulgen 911 (50 micrograms/ml). Testosterone oxidation by cytochrome P450p was optimal at 200 mM potassium phosphate, pH 7.25. In addition to their final concentration, the order of addition of these components was found to influence the catalytic activity of cytochrome P450p. Under these experimental conditions, purified cytochrome P450p converted testosterone to four major and four minor metabolites at an overall rate of 18 nmol/nmol P450p/min (which is comparable to the rate of testosterone oxidation catalyzed by other purified forms of rat liver cytochrome P450). The four major metabolites were 6 beta-hydroxytestosterone (51%), 2 beta-hydroxytestosterone (18%), 15 beta-hydroxytestosterone (11%) and 6-dehydrotestosterone (10%). The four minor metabolites were 18-hydroxytestosterone (3%), 1 beta-hydroxytestosterone (3%), 16 beta-hydroxytestosterone (2%), and androstenedione (2%). With the exception of 16 beta-hydroxytestosterone and androstenedione, the conversion of testosterone to each of these metabolites was inhibited greater than 85% when liver microsomes from various sources were incubated with rabbit polyclonal antibody against cytochrome P450p. This antibody, which recognized two electrophoretically distinct proteins in liver microsomes from troleandomycin-treated rats, did not inhibit testosterone oxidation by cytochromes P450a, P450b, P450h, or P450m. The catalytic turnover of microsomal cytochrome P450p was estimated from the increase in testosterone oxidation and the apparent increase in cytochrome P450 concentration following treatment of liver microsomes from troleandomycin- or erythromycin-induced rats with potassium ferricyanide (which dissociates the cytochrome P450p-inducer complex). Based on this estimate, the catalytic turnover values for purified, reconstituted cytochrome P450p were 4.2 to 4.6 times greater than the rate catalyzed by microsomal cytochrome P450p.  相似文献   

13.
The metabolism of the immunosuppressant FK-506 was shown to be catalyzed primarily by cytochrome P450 isozymes of the P450 3A subfamily. Antibodies against rat P450 3A inhibited FK-506 metabolism by 82% in rat liver microsomes and by 35-56% in liver microsomes from humans, dexamethasone-induced rats, and erythromycin-induced rabbits. Poor species cross-reactivity of the antibodies, metabolic switching, and/or some metabolism by P450 isozymes other than P450 3A may be responsible for the incomplete inhibition observed. Besides anti-rat P450 3A, antibodies against rat P450 1A also appeared to have some inhibitory effect implicating these particular cytochrome P450 isozymes as having a minor role in FK-506 metabolism. The formation of 13-desmethyl FK-506, identified here as a major metabolite of FK-506 in all types of microsomes examined, was inhibited completely by anti-P450 3A in liver microsomes from dexamethasone-induced rats and erythromycin-induced rabbits but only partially in human and control rat liver microsomes.  相似文献   

14.
Potassium ferricyanide-elicited reactivation of steroid hydroxylase activities, in hepatic microsomes from SKF 525-A-induced male rats, was used as an indicator of complex formation between individual cytochrome P-450 isozymes and the SKF 525-A metabolite. Induction of male rats with SKF 525-A (50 mg/kg for three days) led to apparent increases in androst-4-ene-3,17-dione 16 beta- and 6 beta-hydroxylation to 6.7- and 3-fold of control activities. Steroid 7 alpha-hydroxylase activity was decreased to 0.8-fold of control and 16 alpha-hydroxylation was unchanged. Ferricyanide-elicited dissociation of the SKF 525-A metabolite-P-450 complex revealed an even greater induction of 16 beta- and 6 beta-hydroxylase activities (to 1.8- and 1.6-fold of activities in the absence of ferricyanide). Androst-4-ene-3,17-dione 16 alpha-hydroxylase activity increased 2-fold after ferricyanide but 7 alpha-hydroxylase activity was unaltered. An antibody directed against the male-specific cytochrome P-450 UT-A decreased androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to 13% of control in hepatic microsomes from untreated rats. In contrast, 16 alpha-hydroxylase activity in microsomes from SKF 525-A-induced rats, before and after dissociation with ferricyanide, was reduced by anti UT-A IgG to 32 and 19% of the respective uninhibited controls. Considered together, these observations strongly suggest that the phenobarbital-inducible cytochrome P-450 isozymes PB-B and PCN-E are present in an inactive complexed state in microsomes from SKF 525-A-induced rat liver. Further, the increased susceptibility of androst-4-ene-3,17-dione 16 alpha-hydroxylase activity to inhibition by an antibody to cytochrome P-450 UT-A, following ferricyanide treatment of microsomes, suggests that this male sexually differentiated enzyme is also complexed after in vivo SKF 525-A dosage. In contrast, the constitutive isozyme cytochrome P-450 UT-F, which is active in steroid 7 alpha-hydroxylation, does not appear to be complexed to any extent in microsomes from SKF 525-A-induced rats.  相似文献   

15.
Studies were undertaken to determine the immunochemical relationship between constitutive trout cytochrome P450s and mammalian cytochrome P450IIIA enzymes. Polyclonal antibodies (IgG) generated against trout P450 LMC5 reacted strongly with P450IIIA1 in dexamethasone-induced rat liver microsomes and with P450IIIA4 in human liver microsomes in immunoblots. In contrast, rabbit anti-P450 LMC1 IgG did not recognize these proteins in rat and human liver microsomes. Reciprocal immunoblots using anti-rat P450IIIA1 showed that this antibody does not recognize trout P450 LMC1 or LMC5. However, anti-human P450IIIA4 IgG was found to cross react strongly with P450 LMC1 and LMC5. Progesterone 6 beta-hydroxylase activity of trout liver microsomes, a reaction catalyzed by P450 LMC5, was markedly inhibited by anti-P450IIIA4 and by gestodene, a mechanism-based inactivator of P450IIIA4. These results provide evidence for a close structural similarity between trout P450 LMC5 and human P450IIIA4.  相似文献   

16.
Antibody against purified CYP2A1 recognizes two rat liver microsomal P450 enzymes, CYP2A1 and CYP2A2, that catalyze the 7 alpha- and 15 alpha-hydroxylation of testosterone, respectively. In human liver microsomes, this antibody recognizes a single protein, namely CYP2A6, which catalyzes the 7-hydroxylation of coumarin. To examine species differences in CYP2A function, liver microsomes from nine mammalian species (rat, mouse, hamster, rabbit, guinea pig, cat, dog, cynomolgus monkey, and human) were tested for their ability to catalyze the 7 alpha- and 15 alpha-hydroxylation of testosterone and the 7-hydroxylation of coumarin. Antibody against rat CYP2A1 recognized one or more proteins in liver microsomes from all mammalian species examined. However, liver microsomes from cat, dog, cynomolgus monkey, and human catalyzed negligible rates of testosterone 7 alpha- and/or 15 alpha-hydroxylation, whereas rat and cat liver microsomes catalyzed negligible rates of coumarin 7-hydroxylation. Formation of 7-hydroxycoumarin accounted for a different proportion of the coumarin metabolites formed by liver microsomes from each of the various species examined. 7-Hydroxycoumarin was the major metabolite (greater than 70%) in human and monkey, but only a minor metabolite (less than 1%) in rat. The 7-hydroxylation of coumarin by human liver microsomes was catalyzed by a single, high-affinity enzyme (Km 0.2-0.6 microM), which was markedly inhibited (greater than 95%) by antibody against rat CYP2A1. The rate of coumarin 7-hydroxylation varied approximately 17-fold among liver microsomes from 22 human subjects. This variation was highly correlated (r2 = 0.956) with interindividual differences in the levels of CYP2A6, as determined by immunoblotting. These results indicate that CYP2A6 is largely or entirely responsible for catalyzing the 7-hydroxylation of coumarin in human liver microsomes. Treatment of monkeys with phenobarbital or dexamethasone increased coumarin 7-hydroxylase activity, whereas treatment with beta-naphthoflavone caused a slight decrease. These results suggest that environmental factors can increase or decrease CYP2A expression in cynomolgus monkeys, which implies that environmental factors may be responsible for the large variation in CYP2A6 levels in humans, although genetic factors may also be important. In contrast to rats and mice, the expression of CYP2A enzymes in cynomolgus monkeys and humans was not sexually differentiated. Despite their structural similarity to coumarin, the anticoagulants dicumarol and warfarin do not appear to be substrates for CYP2A6. The overall rate of dicumarol metabolism varied approximately 5-fold among the human liver microsomal samples, but this variation correlated poorly (r2 = 0.126) with the variation observed in CYP2A6 levels and coumarin 7-hydroxylase activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Metabolism of 3H-labeled (+)-(S,S)- and (-)-(R,R)-1,2-dihydrodiols of triphenylene by rat liver microsomes and 11 purified isozymes of cytochrome P450 in a reconstituted monooxygenase system has been examined. Although both enantiomers were metabolized at comparable rates, the distribution of metabolites between phenolic dihydrodiols and bay-region, 1,2-diol 3,4-epoxide diastereomers varied substantially with the different systems. Treatment of rats with phenobarbital (PB) or 3-methylcholanthrene (MC) caused a slight reduction or less than a twofold increase, respectively, in the rate of total metabolism (per nanomole of cytochrome P450) of the enantiomeric dihydrodiols compared to microsomes from control rats. Among the 11 isozymes of cytochrome P450 tested, only cytochromes P450c (P450IA1) and P450d (P450IA2) had significant catalytic activity. With either enantiomer of triphenylene 1,2-dihydrodiol, both purified cytochrome P450c (P450IA1) and liver microsomes from MC-treated rats formed diol epoxides and phenolic dihydrodiols in approximately equal amounts. Purifed cytochrome P450d (P450IA2), however, formed bay-region diol epoxides and phenolic dihydrodiols in an 80:20 ratio. Interestingly, liver microsomes from control or PB-treated rats produced only diol epoxides and little or no phenolic dihydrodiols. The diol epoxide diastereomers differ in that the epoxide oxygen is either cis (diol epoxide-1) or trans (diol epoxide-2) to the benzylic 1-hydroxyl group. With either purified cytochromes P450 (isozymes c or d) or liver microsomes from MC-treated rats, diol epoxide-2 is favored over diol epoxide-1 by at least 4:1 when the (-)-enantiomer is the substrate, while diol epoxide-1 is favored by at least 5:1 when the (+)- enantiomer is the substrate. In contrast, with liver microsomes from control or PB-treated rats, formation of diol epoxide-1 relative to diol epoxide-2 was favored by at least 2:1 regardless of the substrate enantiomer metabolized. This is the first instance where the ratio of diol epoxide-1/diol epoxide-2 metabolites is independent of the dihydrodiol enantiomer metabolized. Experiments with antibodies indicate that a large percentage of the metabolism by microsomes from control and PB-treated rats is catalyzed by cytochrome P450p (P450IIIA1), resulting in the altered stereoselectivity of these microsomes compared to that of the liver microsomes from MC-treated rats.  相似文献   

18.
The catalytic activity of two hepatic cytochrome P450 isozymes from untreated rainbow trout towards lauric acid was investigated. In a reconstituted system, cytochrome P450 LMC1 and P450 LMC2 were found to catalyze exclusively the omega- and (omega-1)-hydroxylation of lauric acid, respectively. Microsomal enzyme inhibition studies with polyclonal antibodies raised against the individual P450 isozymes showed that P450 LMC1 and LMC2, respectively, accounted for most if not all the omega- and (omega-1)-lauric acid hydroxylase activity of trout liver microsomes. The polyclonal antibodies were highly specific in that they only inhibited the enzyme activity of the P450 used as the immunogen. These results illustrate that as in mammals, omega- and (omega-1)-hydroxylation of lauric acid by trout liver microsomes can be carried out separately by distinct isozymes of cytochrome P450.  相似文献   

19.
Cytochrome P-450 was isolated from liver microsomes of phenobarbital treated rats by an essentially single step immunopurification with a monoclonal antibody (MAb). The amino terminal sequence of the isolated cytochrome P-450 displayed a microheterogeneity of isozymes related to previously identified phenobarbital induced forms, indicating that each of these isozymes possess the MAb-specific epitope. This monoclonal antibody-based approach to isolation and subsequent identification of cytochrome P-450 may serve to classify different isozymes by their content of epitopes that bind to different MAbs.  相似文献   

20.
D C Swinney  D E Ryan  P E Thomas  W Levin 《Biochemistry》1987,26(22):7073-7083
Quantitative high-pressure liquid chromatographic assays were developed that separate progesterone and 17 authentic monohydroxylated derivatives. The assays were utilized to investigate the hydroxylation of progesterone by 11 purified rat hepatic cytochrome P-450 isozymes and 8 different rat hepatic microsomal preparations. In a reconstituted system, progesterone was most efficiently metabolized by cytochrome P-450h followed by P-450g and P-450b. Seven different monohydroxylated progesterone metabolites were identified. 16 alpha-Hydroxyprogesterone, formed by 8 of the 11 isozymes, was the only detectable metabolite formed by cytochromes P-450b and P-450e. 2 alpha-Hydroxyprogesterone was formed almost exclusively by cytochrome P-450h, and 6 alpha-hydroxyprogesterone and 7 alpha-hydroxyprogesterone were only formed by P-450a. 6 beta-hydroxylation of progesterone was catalyzed by four isozymes with cytochrome P-450g being the most efficient, and 15 alpha-hydroxyprogesterone was formed as a minor metabolite by cytochromes P-450g, P-450h, and P-450i. None of the isozymes catalyzed 17 alpha-hydroxylation of progesterone, and only cytochrome P-450k had detectable 21-hydroxylase activity. 16 alpha-Hydroxylation catalyzed by cytochrome P-450b was inhibited in the presence of dilauroylphosphatidylcholine (1.6-80 microM), while this phospholipid either stimulated (up to 3-fold) or had no effect on the metabolism of progesterone by the other purified isozymes. Results of microsomal metabolism in conjunction with antibody inhibition experiments indicated that cytochromes P-450a and P-450h were the sole 7 alpha- and 2 alpha-hydroxylases, respectively, and that P-450k or an immunochemically related isozyme contributed greater than 80% of the 21-hydroxylase activity observed in microsomes from phenobarbital-induced rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号