首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May-June-July 2009 in China (Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl.  相似文献   

2.

Background

Since late 2003, highly pathogenic avian influenza (HPAI) outbreaks caused by infection with H5N1 virus has led to the deaths of millions of poultry and more than 10 thousands of wild birds, and as of 18-March 2008, at least 373 laboratory-confirmed human infections with 236 fatalities, have occurred. The unrestrained worldwide spread of this disease has caused great anxiety about the potential of another global pandemic. However, the effect of environmental factors influencing the spread of HPAI H5N1 virus is unclear.

Methodology/Principal Findings

A database including incident dates and locations was developed for 128 confirmed HPAI H5N1 outbreaks in poultry and wild birds, as well as 21 human cases in mainland China during 2004–2006. These data, together with information on wild bird migration, poultry densities, and environmental variables (water bodies, wetlands, transportation routes, main cities, precipitation and elevation), were integrated into a Geographical Information System (GIS). A case-control design was used to identify the environmental factors associated with the incidence of the disease. Multivariate logistic regression analysis indicated that minimal distance to the nearest national highway, annual precipitation and the interaction between minimal distance to the nearest lake and wetland, were important predictive environmental variables for the risk of HPAI. A risk map was constructed based on these factors.

Conclusions/Significance

Our study indicates that environmental factors contribute to the spread of the disease. The risk map can be used to target countermeasures to stop further spread of the HPAI H5N1 at its source.  相似文献   

3.
A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this 'thoroughfare'. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005-2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations.  相似文献   

4.
The spread of highly pathogenic avian influenza (HPAI) H5N1 remains a threat for both wild and domestic bird populations, while low pathogenic avian influenza (LPAI) strains have been reported to induce partial immunity to HPAI in poultry and some wild birds inoculated with both HPAI and LPAI strains. Here, based on the reported data and experiments, we develop a two-strain avian influenza model to examine the extent to which this partial immunity observed at the individual level can affect the outcome of the outbreaks among migratory birds in the wild at the population level during different seasons. We find a distinct mitigating effect of LPAI on the death toll induced by HPAI strain, and this effect is particularly important for populations previously exposed to and recovered from LPAI. We further investigate the effect of the dominant mode of transmission of an HPAI strain on the outcome of the epidemic. Four combinations of contact based direct transmission and indirect fecal-to-oral (or environmental) routes are examined. For a given infection peak of HPAI, indirect fecal-to-oral transmission of HPAI can lead to a higher death toll than that associated with direct transmission. The mitigating effect of LPAI can, in turn, be dependent on the route of infection of HPAI.  相似文献   

5.
The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.  相似文献   

6.
Prior to the emergence of the A/goose/Guangdong/1/1996 (Gs/GD) H5N1 influenza A virus, the long-held and well-supported paradigm was that highly pathogenic avian influenza (HPAI) outbreaks were restricted to poultry, the result of cross-species transmission of precursor viruses from wild aquatic birds that subsequently gained pathogenicity in domestic birds. Therefore, management agencies typically adopted a prevention, control, and eradication strategy that included strict biosecurity for domestic bird production, isolation of infected and exposed flocks, and prompt depopulation. In most cases, this strategy has proved sufficient for eradicating HPAI. Since 2002, this paradigm has been challenged with many detections of viral descendants of the Gs/GD lineage among wild birds, most of which have been associated with sporadic mortality events. Since the emergence and evolution of the genetically distinct clade 2.3.4.4 Gs/GD lineage HPAI viruses in approximately 2010, there have been further increases in the occurrence of HPAI in wild birds and geographic spread through migratory bird movement. A prominent example is the introduction of clade 2.3.4.4 Gs/GD HPAI viruses from East Asia to North America via migratory birds in autumn 2014 that ultimately led to the largest outbreak of HPAI in the history of the United States. Given the apparent maintenance of Gs/GD lineage HPAI viruses in a global avian reservoir; bidirectional virus exchange between wild and domestic birds facilitating the continued adaptation of Gs/GD HPAI viruses in wild bird hosts; the current frequency of HPAI outbreaks in wild birds globally, and particularly in Eurasia where Gs/GD HPAI viruses may now be enzootic; and ongoing dispersal of AI viruses from East Asia to North America via migratory birds, HPAI now represents an emerging disease threat to North American wildlife. This recent paradigm shift implies that management of HPAI in domestic birds alone may no longer be sufficient to eradicate HPAI viruses from a given country or region. Rather, agencies managing wild birds and their habitats may consider the development or adoption of mitigation strategies to minimize introductions to poultry, to reduce negative impacts on wild bird populations, and to diminish adverse effects to stakeholders using wildlife resources. The main objective of this review is, therefore, to provide information that will assist wildlife managers in developing mitigation strategies or approaches for dealing with outbreaks of Gs/GD HPAI in wild birds in the form of preparedness, surveillance, research, communications, and targeted management actions. Resultant outbreak response plans and actions may represent meaningful steps of wildlife managers toward the use of collaborative and multi-jurisdictional One Health approaches when it comes to the detection, investigation, and mitigation of emerging viruses at the human-domestic animal-wildlife interface.  相似文献   

7.
Avian influenza viruses (AIV) are of great socioeconomic and health concern, notably in Southeast Asia where highly pathogenic strains, such as highly pathogenic avian influenza (HPAI) H5N1 and other H5 and H7 AIVs, continue to occur. Wild bird migrants are often implicated in the maintenance and spread of AIV. However, little systematic surveillance of wild birds has been conducted in Southeast Asia to evaluate whether the prevalence of AIV in wild birds is higher than in other parts of the world where HPAI outbreaks occur less frequently. Across Bangladesh, we randomly sampled a total of 3585 wild and domestic birds to assess the prevalence of AIV and antibodies against AIV and compared these with prevalence levels found in other endemic and non-endemic countries. Our study showed that both resident and migratory wild birds in Bangladesh do not have a particularly elevated AIV prevalence and AIV sero-prevalence compared to wild birds from regions in the world where H5N1 is not endemic and fewer AIV outbreaks in poultry occur. Like elsewhere, notably wild birds of the orders Anseriformes were identified as the main wild bird reservoir, although we found exceptionally high sero-prevalence in one representative of the order Passeriformes, the house crow (Corvus splendens), importantly living on offal from live bird markets. This finding, together with high sero- and viral prevalence levels of AIV in domestic birds, suggests that wild birds are not at the base of the perpetuation of AIV problems in the local poultry sector, but may easily become victim to AIV spill back from poultry into some species of wild birds, potentially assisting in further spread of the virus.  相似文献   

8.
Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations.  相似文献   

9.
Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses   总被引:1,自引:0,他引:1  
The highly pathogenic avian influenza (HPAI) H5N1 virus lineage has undergone extensive genetic reassortment with viruses from different sources to produce numerous H5N1 genotypes, and also developed into multiple genetically distinct sublineages in China. From there, the virus has spread to over 60 countries. The ecological success of this virus in diverse species of both poultry and wild birds with frequent introduction to humans suggests that it is a likely source of the next human pandemic. Therefore, the evolutionary and ecological characteristics of its emergence from wild birds into poultry are of considerable interest. Here, we apply the latest analytical techniques to infer the early evolutionary dynamics of H5N1 virus in the population from which it emerged (wild birds and domestic poultry). By estimating the time of most recent common ancestors of each gene segment, we show that the H5N1 prototype virus was likely introduced from wild birds into poultry as a non-reassortant low pathogenic avian influenza H5N1 virus and was not generated by reassortment in poultry. In contrast, more recent H5N1 genotypes were generated locally in aquatic poultry after the prototype virus (A/goose/Guangdong/1/96) introduction occurred, i.e., they were not a result of additional emergence from wild birds. We show that the H5N1 virus was introduced into Indonesia and Vietnam 3-6 months prior to detection of the first outbreaks in those countries. Population dynamics analyses revealed a rapid increase in the genetic diversity of A/goose/Guangdong/1/96 lineage viruses from mid-1999 to early 2000. Our results suggest that the transmission of reassortant viruses through the mixed poultry population in farms and markets in China has selected HPAI H5N1 viruses that are well adapted to multiple hosts and reduced the interspecies transmission barrier of those viruses.  相似文献   

10.
Liu CM  Lin SH  Chen YC  Lin KC  Wu TS  King CC 《PloS one》2007,2(2):e191
Global influenza surveillance is one of the most effective strategies for containing outbreaks and preparing for a possible pandemic influenza. Since the end of 2003, highly pathogenic avian influenza viruses (HPAI) H5N1 have caused many outbreaks in poultries and wild birds from East Asia and have spread to at least 48 countries. For such a fast and wide-spreading virulent pathogen, prediction based on changes of micro- and macro-environment has rarely been evaluated. In this study, we are developing a new climatic approach by investigating the conditions that occurred before the H5N1 avian influenza outbreaks for early predicting future HPAI outbreaks and preventing pandemic disasters. The results show a temperature drop shortly before these outbreaks in birds in each of the Eurasian regions stricken in 2005 and 2006. Dust storms, like those that struck near China's Lake Qinghai around May 4, 2005, exacerbated the spread of this HPAI H5N1 virus, causing the deaths of a record number of wild birds and triggering the subsequent spread of H5N1. Weather monitoring could play an important role in the early warning of outbreaks of this potentially dangerous virus.  相似文献   

11.
Thirty-two epizootics of high pathogenicity avian influenza (HPAI) have been reported in poultry and other birds since 1959. The ongoing H5N1 HPAI epizootic that began in 1996 has also spilled over to infect wild birds. Traditional stamping-out programs in poultry have resulted in eradication of most HPAI epizootics. However, vaccination of poultry was added as a control tool in 1995 and has been used during five epizootics. Over 113 billion doses of AI vaccine have been used in poultry from 2002 to 2010 as oil-emulsified, inactivated whole AIV vaccines (95.5%) and live vectored vaccines (4.5%). Over 99% of the vaccine has been used in the four H5N1 HPAI enzootic countries: China including Hong Kong (91%), Egypt (4.7%), Indonesia (2.3%), and Vietnam (1.4%) where vaccination programs have been nationwide and routine to all poultry. Ten other countries used vaccine in poultry in a focused, risk-based manner but this accounted for less than 1% of the vaccine used. Most vaccine “failures” have resulted from problems in the vaccination process; i.e., failure to adequately administer the vaccine to at-risk poultry resulting in lack of population immunity, while fewer failures have resulted from antigenic drift of field viruses away from the vaccine viruses. It is currently not feasible to vaccinate wild birds against H5N1 HPAI, but naturally occurring infections with H5 low pathogenicity avian influenza viruses may generate cross-protective immunity against H5N1 HPAI. The most feasible method to prevent and control H5N1 HPAI in wild birds is through control of the disease in poultry with use of vaccine to reduce environmental burden of H5N1 HPAIV, and eventual eradication of the virus in domestic poultry, especially in domestic ducks which are raised in enzootic countries on range or in other outdoor systems having contact with wild aquatic and periurban terrestrial birds.  相似文献   

12.
Wild birds, particularly waterfowl, are a key element of the viral ecology of avian influenza. Highly pathogenic avian influenza (HPAI) virus, subtype H5N1, was first detected in poultry in November 1996 in southeast China, where it originated. The virus subsequently dispersed throughout most of Asia, and also to Africa and Europe. Despite compelling evidence that the virus has been dispersed widely via human activities that include farming, and marketing of poultry, migratory birds have been widely considered to be the primary source of its global dispersal. Here we present a critical examination of the arguments both for and against the role of migratory birds in the global dispersal of HPAI H5N1. We conclude that, whilst wild birds undoubtedly contribute to the local spread of the virus in the wild, human commercial activities, particularly those associated with poultry, are the major factors that have determined its global dispersal.  相似文献   

13.
14.

Background  

The structure of contact between individuals plays an important role in the incursion and spread of contagious diseases in both human and animal populations. In the case of avian influenza, the movement of live birds is a well known risk factor for the geographic dissemination of the virus among poultry flocks. Live bird markets (LBM's) contribute to the epidemiology of avian influenza due to their demographic characteristics and the presence of HPAI H5N1 virus lineages. The relationship between poultry producers and live poultry traders (LPT's) that operate in LBM's has not been adequately documented in HPAI H5N1-affected SE Asian countries. The aims of this study were to document and study the flow of live poultry in a poultry trade network in northern Vietnam, and explore its potential role in the risk for HPAI H5N1 during 2003 to 2006.  相似文献   

15.
Lei F  Shi W 《Current Genomics》2011,12(7):466-474
The outbreak of highly pathogenic avian influenza (HPAI) H5N1 disease has led to significant loss of poultry and wild life and case fatality rates in humans of 60%. Wild birds are natural hosts for all avian influenza virus subtypes and over120 bird species have been reported with evidence of H5N1 infection. Influenza A viruses possess a segmented RNA genome and are characterized by frequently occurring genetic reassortment events, which play a very important role in virus evolution and the spread of novel gene constellations in immunologically naïve human and animal populations. Phylogenetic analysis of whole genome or sub-genomic sequences is a standard means for delineating genetic variation, novel reassortment events, and surveillance to trace the global transmission pathways. In this paper, special emphasis is given to the transmission and circulation of H5N1 among wild life populations, and to the reassortment events that are associated with inter-host transmission of the H5N1 viruses when they infect different hosts, such as birds, pigs and humans. In addition, we review the inter-subtype reassortment of the viral segments encoding inner proteins between the H5N1 viruses and viruses of other subtypes, such as H9N2 and H6N1. Finally, we highlight the usefulness of genomic sequences in molecular epidemiological analysis of HPAI H5N1 and the technical limitations in existing analytical methods that hinder them from playing a greater role in virological research.  相似文献   

16.
We report the molecular epidemiology of highly pathogenic avian influenza (HPAI) virus involved in an outbreak causing death in free-ranging wild birds at Mysore, Karnataka state of India. The virus was typed as HPAI A(H5N8) by conventional and TaqMan probe based real-time PCR assays. Six isolates of HPAI virus were recovered in 9-day-old embryonated chicken eggs. Haemagglutinin gene-based phylogeny of virus isolates showed >?99.9% nucleotide sequence identity with HPAI A(H5N8) isolates from migratory birds and domestic poultry from China and Korea indicating either these wild birds have routed their migration through Korea and/or eastern China or these dead birds must have directly or indirectly contacted with wild birds migrating from Eastern China and/or Korean regions. The study emphasises the role of migratory wild birds in spread of HPAI across the globe.  相似文献   

17.
Global wildlife trade is financially lucrative, frequently illegal and increases the risk for zoonotic disease transmission. This paper presents the first interdisciplinary study of Vietnam’s illegal wild bird trade focussing on those aspects which may contribute to the transmission of diseases such as Highly Pathogenic Avian Influenza (HPAI) H5N1. Comparing January 2009 data with that of May 2007, we found a five-fold increase to 9,117 birds on sale in Hanoi. Ninety-five percent of Hanoian bird vendors appear unaware of trade regulations and across Vietnam vendors buy birds sourced outside of their province. Approximately 25% of the species common to Vietnam’s bird trade are known to be HPAI H5N1 susceptible. The anthropogenic movement of birds within the trade chain and the range of HPAI-susceptible species, often traded alongside poultry, increase the risk Vietnam’s bird trade presents for the transmission of pathogens such as HPAI H5N1. These results will assist in the control and monitoring of emerging zoonotic diseases and conservation of Southeast Asia’s avifauna.  相似文献   

18.
高致病性禽流感(HPAI)H5N1病毒亚型已对人类健康、养殖业发展、野生鸟类及生态环境带来极大危害,引起国内外广泛关注。研究发现,禽流感病毒通过发生重组或者突变,可产生感染人类或其他生物的新病毒亚型,或产生更高的致病性,而人类亦具有丰富的与H5N1结合的受体。对候鸟迁徙停歇地禽流感调查表明,湿地、湖泊可能是HPAI病毒存活、散播的疫源地,病毒可随着鸟类的迁徙到处传播。因此,野生鸟类及其赖以生存的主要湿地环境处于感染HPAI的风险之中。  相似文献   

19.
Highly pathogenic avian influenza (HPAI) H5N1 viruses are now endemic in many Asian countries, resulting in repeated outbreaks in poultry and increased cases of human infection. The immediate precursor of these HPAI viruses is believed to be A/goose/Guangdong/1/96 (Gs/GD)-like H5N1 HPAI viruses first detected in Guangdong, China, in 1996. From 2000 onwards, many novel reassortant H5N1 influenza viruses or genotypes have emerged in southern China. However, precursors of the Gs/GD-like viruses and their subsequent reassortants have not been fully determined. Here we characterize low-pathogenic avian influenza (LPAI) H5 subtype viruses isolated from poultry and migratory birds in southern China and Europe from the 1970s to the 2000s. Phylogenetic analyses revealed that Gs/GD-like virus was likely derived from an LPAI H5 virus in migratory birds. However, its variants arose from multiple reassortments between Gs/GD-like virus and viruses from migratory birds or with those Eurasian viruses isolated in the 1970s. It is of note that unlike HPAI H5N1 viruses, those recent LPAI H5 viruses have not become established in aquatic or terrestrial poultry. Phylogenetic analyses revealed the dynamic nature of the influenza virus gene pool in Eurasia with repeated transmissions between the eastern and western extremities of the continent. The data also show reassortment between influenza viruses from domestic and migratory birds in this region that has contributed to the expanded diversity of the influenza virus gene pool among poultry in Eurasia.  相似文献   

20.
Italy has experienced recurrent incursions of H5N2 avian influenza (AI) viruses in different geographical areas and varying sectors of the domestic poultry industry. Considering outbreak heterogeneity rather than treating all outbreaks of low pathogenicity AI (LPAI) viruses equally is important given their interactions with the environment and potential to spread, evolve and increase pathogenicity. This study aims at identifying potential environmental drivers of H5N2 LPAI outbreak occurrence in time, space and poultry populations. Thirty-four environmental variables were tested for association with the characteristics of 27 H5N2 LPAI outbreaks (i.e. time, place, flock type, number and species of birds affected) occurred among domestic poultry flocks in Italy in 2010–2012. This was done by applying a recently proposed analytical approach based on a combined non-metric multidimensional scaling, clustering and regression analysis. Results indicated that the pattern of (dis)similarities among the outbreaks entailed an underlying structure that may be the outcome of large-scale, environmental interactions in ecological dimension. Increased densities of poultry breeders, and increased land coverage by industrial, commercial and transport units were associated with increased heterogeneity in outbreak characteristics. In areas with high breeder densities and with many infrastructures, outbreaks affected mainly industrial turkey/layer flocks. Outbreaks affecting ornamental, commercial and rural multi-species flocks occurred mainly in lowly infrastructured areas of northern Italy. Outbreaks affecting rural layer flocks occurred mainly in areas with low breeder densities in south-central Italy. In savannah-like environments, outbreaks affected mainly commercial flocks of galliformes. Suggestive evidence that ecological ordination makes sense genetically was also provided, as virus strains showing high genetic similarity clustered into ecologically similar outbreaks. Findings were informed by hypotheses about how ecological interactions among poultry populations, viruses and their environments can be related to the observed patterns of H5N2 LPAI occurrence. This may prove useful in enhancing future interventions by developing site-specific, ecologically-grounded strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号