首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Schwann cells (SCs), the supporting cells of the peripheral nerves, are indispensable for regenerating the peripheral and central nervous system. Copious preparation of these cells in a well-defined manner is to be a privileged position. SCs cultivation is overwhelmed by contaminating fibroblasts which are often outgrowing as the predominant cell type in an in vitro culture. This study introduces a technically simple and efficient procedure for SCs isolation and enrichment based on implementing recombinant and defined supplements. Collected adult rat sciatic nerves were cultured for 10 days as in vitro predegeneration. After dissociation and plating, the medium changed to knockout serum replacement supplemented DMDM/F12 medium containing various growth factors. The whole procedure took 3 weeks and SCs purity was then evaluated through implementing specific cytoplasmic and membranous markers. The viability of enriched SCs were evaluated by MTT assay. Within 10 days, over 99 % homogenous SCs were achieved and confirmed through immunofluorescence staining and flow-cytometry for P75NTR and S100 markers, respectively. MTT data revealed that the viability and metabolic activities of purified SCs were increased in expansion medium. This study provides a technically easy and efficient method with the benefits of not utilizing bovine serum or other animal products for SCs isolation and enrichment.  相似文献   

2.
The major difficulty in Schwann cell (SC) purification is contamination by fibroblasts, which usually become the predominant cell type during SC enrichment in vitro. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. Our objectives have been to develop an efficient, easily applicable, rapid method to obtain highly purified SC from the sciatic nerve of newborn rats. The method involves two rounds of purification to eliminate fibroblasts with the novel combined use of cytosine-B-arabinoside hydrochloride (Ara-C) action and differential cell detachment. Cultured cells were first treated with Ara-C for 24 h. The medium was replaced with the growth medium containing 20 ng/ml human heregulin1-β1 extracellular domain (HRG1-β1 ECD). After another 48 h in culture, the cells were treated with 0.05% trypsin, following which SCs, but not fibroblasts, were easily detached from the dishes. The advantage of this method is that the two steps can eliminate the fibroblasts complementarily. Ara-C eliminates most of the fibroblasts growing among SCs, whereas the differential cell detachment technique removes the remainder growing under or interacting with the SC layer. A purity of more than 99% SCs has been obtained, as confirmed by cell morphology and immunostaining. The purified SCs have a spindle-shaped, bipolar, and sometimes tripolar morphology, align in fascicles, and express S-100. The whole procedure takes about 10 days from primary culture to the purified SCs growing to confluence (only half the time reported previously). This protocol provides an alternative method for investigating peripheral nerve regeneration and potentially could be used to produce enough SCs to construct artificial nerve scaffolds in vitro. This work was supported by Tsinghua-Yue-Yuen Medical Sciences Fund, the National Natural Science Foundation of China (contract grant numbers: 30670528, 30700848, 30772443), Beijing Municipal Science & Technology Commission (BMSTC, contract grant number: H060920050430), National Basic Research Program of China (also called the 973 Program, contract grant number: 2005CB623905), and the National Natural Science Foundation of Beijing (contract grant number: 7082090).  相似文献   

3.
Schwann cells (SCs) are basic elements for cell therapy and tissue engineering in the central and peripheral nervous system. Therefore, the development of a reliable method to obtain SC cultures is required. For possible therapeutic applications the cultures need to produce a sufficiently large number of SCs with a high level of purity in a relatively short period of time. To increase SC yield and purity we pre-degenerated pieces of 1-2 mm of adult rabbit sciatic nerves by incubating them for seven days in Dulbecco's Modified Eagle's Medium supplemented with 10% fetal bovine serum, penicillin/streptomycin and NRG1-β1. Following pre-degeneration the nerve pieces were dissociated and then cultured for 6 or 15 days in the same culture medium. After 6 days of culture we obtained around 9.5x103 cells/mg with approximately 94% SCs (S-100 positive) purity. After 15 days of culture the yield was about 80x103 cells/mg and the purity was approximately 75%. Pre-degeneration and subsequent culture of small pieces of adult nerve with NRG1-β1 supplemented medium increased the number of SCs and restricted the overgrowth of fibroblast-like cells.  相似文献   

4.
Transplantation of cell suspensions containing olfactory ensheathing cells (OECs) has been reported to remyelinate demyelinated axons in the spinal cord with a Schwann cell (SC)-like pattern of myelination. However, questions have been raised recently as to whether OECs can form SC-like myelin. To address this issue we prepared SCs and OECs from transgenic rats in which a marker gene, human placental alkaline phosphatase (hPAP), is linked to the ubiquitously active promoter of the R26 gene. SCs were prepared from the sciatic nerve and OECs from the outer nerve-fiber layer of the olfactory bulb. Positive S100 and p75 immunostaining indicated that >95% of cells in culture displayed either SC or OEC phenotypes. Suspensions of either SCs or OECs were transplanted into an X-irradiation/ethidium bromide demyelinating lesion in the spinal cord. We observed extensive SC-like remyelination following either SC or OEC transplantation 3 weeks after injection of the cells. Alkaline phosphatase (ALP) chromagen reaction product was associated clearly with the myelin-forming cells. Thus, cell suspensions that are enriched in either SCs or OECs result in peripheral-like myelin when transplanted in vivo.  相似文献   

5.
Background: Sertoli cells (SCs) have been described as the ‘nurse cells’ of the testis whose primary function is to provide essential growth factors and create an appropriate environment for development of other cells [for example, germinal and nerve stem cells (NSCs), used here]. However, the greatest challenge at present is that it is difficult to obtain sufficient SCs of normal physiological function for cell transplantation and biological medicine, largely due to traditional static culture parameter difficult to be monitored and scaled up. Objective: Operational stirred culture conditions for in vitro expansion and differentiation of SCs need to be optimized for large‐scale culture. Materials and methods: In this study, the culturing process for primary SC expansion and maintaining lack of differentiation was optimized for the first time, by using microcarrier bead technology in spinner flask culture. Effects of various feeding/refreshing regimes, stirring speeds, seed inoculum levels of SCs, and concentrations of microcarrier used for expansion of mouse SCs were also explored. In addition, pH, osmotic pressure and metabolic variables including consumption rates of glucose, glutamine, amino acids, and formation rates of lactic acid and ammonia, were investigated in culture. Results: After 6 days, maximal cell densities achieved were 4.6 × 106 cells/ml for Cytodex‐1 in DMEM/FBS compared to 4.8 × 105 cells/ml in static culture. Improved expansion was achieved using an inoculum of 1 × 105 cells/ml and microcarrier concentration of 3 mg/ml at stirring speed of 30 rpm. Results indicated that medium replacement (50% changed everyday) resulted in supply of nutrients and removal of waste products inhibiting cell growth, that lead to maintenance of cultures in steady state for several days. These conditions favoured preservation of SCs in the undifferentiated state and significantly increased their physiological activity and trophic function, which were assessed by co‐culturing with NSCs and immunostaining. Conclusion: Data obtained in this study demonstrate the vast potential of this stirred culture system for efficient, reproducible and cost‐effective expansion of SCs in vitro. The system has advantages over static culture, which has major obstacles such as lower cell density, is time‐consuming and susceptible to contamination.  相似文献   

6.
7.
Wei Y  Gong K  Zheng Z  Liu L  Wang A  Zhang L  Ao Q  Gong Y  Zhang X 《Cell proliferation》2010,43(6):606-616
Objectives: Schwann cell (SC) transplantation is a promising therapy for peripheral nerve transaction, however, clinical use of SCs is limited due to their very limited availability. Adipose‐derived stem cells (ADSCs) have been identified as an alternative source of adult stem cells in recent years. The aim of this study was to evaluate the feasibility of using ADSCs as a source of stem cells for differentiation into Schwann‐like cells by an indirect co‐culture approach, in vitro. Materials and methods: Multilineage differentiation potential of the obtained ADSCs was assayed by testing their ability to differentiate into osteoblasts and adipocytes. The ADSCs were co‐cultured with SCs to be induced into Schwann‐like cells through proximity, using a Millicell system. Expression of typical SC markers S‐100, GFAP and P75NTR of the treated ADSCs was determined by immunocytochemical staining, western blotting and RT‐PCR. Myelination capacity of the differentiated ADSCs (dADSCs) was evaluated in dADSC/dorsal root ganglia neuron (DRGN) co‐cultures. Results: The treated ADSCs adopted a spindle shaped‐like morphology after co‐cultured with SCs for 6 days. All results of immunocytochemical staining, western blotting and RT‐PCR showed that the treated cells expressed S‐100, GFAP and P75NTR, indications of differentiation. dADSCs could form Schwann‐like cell myelin in co‐culture with DRGNs. Undifferentiated ADSCs (uADSCs) did not form myelin compared to DRGNs cultured alone, but could produce neurite extension. Conclusions: These results demonstrate that this indirect co‐culture microenvironment could induce ADSCs to differentiate into Schwann‐like cells in vitro, which may be beneficial for treatment of peripheral nerve injuries in the near future.  相似文献   

8.
Muscle-derived stem cells (MDSCs) are multipotent stem cells with a remarkable long-term self-renewal and regeneration capacity. Here, we show that postnatal MDSCs could be transdifferentiated into Schwann cell-like cells upon the combined treatment of three neurotrophic factors (PDGF, NT-3 and IGF-2). The transdifferentiation of MDSCs was initially induced by Schwann cell (SC) conditioned medium. MDSCs adopted a spindle-like morphology similar to SCs after the transdifferentiation. Immunocytochemistry and immunoblot showed clearly that the SC markers S100, GFAP and p75 were expressed highly only after the transdifferentiation. Flow cytometry assay showed that the portion of S100 expressed cells was more than 60 percent and over one fourth of the transdifferentiated cells expressed all the three SC markers, indicating an efficient transdifferentiation. We then tested neurotrophic factors in the conditioned medium and found it was PDGF, NT-3 and IGF-2 in combination that conducted the transdifferentiation. Our findings demonstrate that it is possible to use specific neurotrophic factors to transdifferentiate MDSCs into Schwann cell-like cells, which might be therapeutically useful for clinical applications.  相似文献   

9.
The availability of cultures of normal cells (NCs) and Schwann cells (SCs) with and without fibroblasts has allowed us to investigate the sources of endoneurial and perineurial constituents of peripheral nerve. NCs cultured alone, devoid of ensheathment but healthy in appearance, lack basal lamina and extracellular fibrils. In contrast, when SCs accompany NCs, basal lamina and extracellular fibrils are consistently visible around SCs in outgrowth areas formed de novo in culture. These fibrils average 18 nm in diameter, exhibit a repeating banding pattern, and are trypsin-resistant and collagenase-sensitive. Collagen synthesis is also indicated by the incorporation of [14C]proline into peptide-bound hydroxy-proline in NC + SC or SC cultures. That the [14C]hydroxyproline polypeptides formed in NC + SC cultures are collagenous was determined in part by pepsin digestion- ammonium sulfate precipitation-polyacrylamide gel electrophoresis techniques; the 14C-polypeptides migrate to the positions of alpha 1 (I), alpha 2, alpha 1 (III), and alpha B chains of type I, type III, and A-B collagens. Also formed are thin, ruthenium red-preserved strands interconnecting basal laminae. SC ensheathment of axons is similar to that found in the animal; one SC is related to a number of unmyelinated axons or a single myelinated axon. This proclivity to ensheathe and myelinate axons indicates that SC function is not lost during the preparative procedures or after lengthy isolation in culture and provides the most reliable means for SC identification. Perineurial ensheathment and macrophages are lacking in NC + SC culture preparations divested of fibroblasts. We conclude that SCs do not form perineurium or the larger diameter collagen fibrils typical of endoneurium but that in combination with neurons they generate biochemically detectable collagens and morphologically visible basal lamina and thin collagenous fibrils.  相似文献   

10.
成年猴雪旺细胞的在体增殖和体外迁移的研究   总被引:1,自引:0,他引:1  
杨勤  邱云芳等 《细胞生物学杂志》2001,23(3):182-184,F003
为了探讨成年猴雪旺氏细胞的在体增殖和体外迁移的能力,我们对用神经结扎术结扎的A组6只3-13岁雄性恒河猴的腓肠神经进行植块培养,部分细胞培养在聚酯纤维上,2-4周后作抗S-100抗体免疫组化染色和电镜观察;B组2只未做结扎的新生猴腓肠神经培养作为对照.结果显示A组雪旺氏细胞平均在培养的第5天从神经段中迁出,年幼者早于成年猴;细胞在纤维上以螺旋状向前迁移;雪旺氏细胞抗S-100蛋白抗体染色阳性;电镜显示,雪旺氏细胞包卷纤维,但是,未见髓鞘形成.B组神经段培养2周仍无雪旺氏细胞迁出.研究表明,结扎神经使其发生瓦勒氏变性,经植块培养、纯化,能够获得可用于移植的成年猴的雪旺氏细胞.  相似文献   

11.
Oxidative stress plays a pivotal role in ischemic injury, and p66(ShcA)ko mice exhibit both lower oxidative stress and decreased tissue damage following hind limb ischemia. Thus, it was investigated whether tissue regeneration following acute hind limb ischemia was altered in p66(ShcA)ko mice. Upon femoral artery dissection, muscle regeneration started earlier and was completed faster than in wild-type (WT) control. Moreover, faster regeneration was associated with decreased oxidative stress. Unlike ischemia, cardiotoxin injury induced similar skeletal muscle damage in both genotypes. However, p66(ShcA)ko mice regenerated faster, in agreement with the regenerative advantage upon ischemia. Since no difference between p66(ShcA)wt and knock-out (ko) mice was found in blood perfusion recovery after ischemia, satellite cells (SCs), a resident population of myogenic progenitors, were examined. Similar SCs numbers were present in WT and ko mice. However, in vitro cultured p66(ShcA)ko SCs displayed lower oxidative stress levels and higher proliferation rate and differentiated faster than WT. Furthermore, when exposed to sublethal H(2)O(2) doses, p66(ShcA)ko SCs were resistant to H(2)O(2)-induced inhibition of differentiation. Finally, myogenic conversion induced by MyoD overexpression was more efficient in p66(ShcA)ko fibroblasts compared with WT. The present work demonstrates that oxidative stress and p66(ShcA) play a crucial role in the regenerative pathways activated by acute ischemia.  相似文献   

12.
13.
14.
The wild boar is a natural inhabitant of Europe, Asia, and North Africa and is phylogenetically the ancestor of the domestic pig. Because of its phylogenetic and economic importance, this species is an interesting model for studying testis function in boars. Therefore, the present study was performed to investigate the testis structure, spermatogenic cycle length, and Sertoli cell (SC) and spermatogenic efficiencies in eight adult wild boars. Each spermatogenic cycle lasted 9.05 days, and the total duration of spermatogenesis was estimated as lasting approximately 41 days. The percentages of testis volume occupied by seminiferous tubules and by Leydig cells were 87% and 6%, respectively. The mean number of SCs per gram of testis was 42 million. The SC (round spermatids per SC) and spermatogenic (daily sperm production per gram of testis) efficiencies were 6.6 cells and 28.6 million, respectively. In general, the testis structure, overall germ cell associations at the different stages of the seminiferous epithelium cycle, and duration of spermatogenesis in the wild boar were similar to those in domestic pigs. Probably because of the small size of Leydig cells (400 microm3), their number per gram of testis (157 million) was the highest among investigated mammalian species. Although the SC efficiency in wild boars was low, their spermatogenic efficiency was comparable to that observed in domestic pigs, mainly because of the higher number of SCs per gram of testis in wild boars. These data suggest that SCs became more efficient during evolution, genetic selection, and domestication in pigs.  相似文献   

15.
Testicular compartment that includes rete testis and the adjacent transitional zone (TZ) of seminiferous tubules has been examined only by light and electron microscopy until now. However, recent data suggest that adult Sertoli cells (SCs) located in this compartment are capable to commence active proliferation both in vitro and in vivo, and hence, are not completely differentiated. The present study is first to investigate mouse rete testis and TZ during the postembryonic development and is intended to determine new protein markers for cells of this compartment, the state of their differentiation, and also their proliferative activity. It was demonstrated that rete testis cells were stained for SC marker Wt1 transiently, until day 25 of postembryonic development, then the staining disappeared. Another SC marker Dmrt1 that involved in the process of SC differentiation was not expressed in the rete testis cells during the postnatal development and in the adult state. One more feature that distinguished rete testis cells from SCs was lower proliferative activity of rete testis cells in 2–6 days old mice. SCs from TZ expressed Wt1 at all ages examined. However, at earlier ages, they were heterogeneous on Dmrt1 expression, and only by day 25, Dmrt1 expression was completely disappeared from TZ SCs. It is interesting that on day 18 when SCs in seminiferous tubules complete differentiation and exit from cell cycle proliferation of TZ SCs was at significantly higher level. It is also showed that in 3D culture, Wt1+ cells isolated from rete testis and TZ of 60 days old GFP male mice were capable to form seminiferous tubules de novo in cooperation with testicular cells from 6 days old mice.  相似文献   

16.
17.
Krüppel-like factor 6 (KLF6) is a tumor suppressor gene and play a role in the regulation of cell proliferation and apoptosis. After the peripheral nerve injury (PNI), the microenvironment created by surrounding Schwann cells (SCs) is a critical determinant of its regenerative potential. In this study, we examined the effects of KLF6 on SCs responses during PNI. Both KLF6 mRNA and protein expression levels were upregulated in the injured sciatic nerve, and immunofluorescence results showed that many KLF6-positive cells simultaneously expressed the SC markers S-100 and p75NTR. The apoptosis inducers TNFα and cisplatin upregulated KLF6 expression in primary cultured SCs and the SC line RSC96. Although KLF6 overexpression exacerbated cisplatin- and TNFα-induced apoptosis, expression levels of the apoptosis regulators Bcl2 and Bax were not significantly affected in either KLF6-overexpressing or KLF6-depleted RSC96 cells. Realtime PCR arrays and qRT-PCR demonstrated that KLF6 overexpression upregulated four pro-apoptotic genes, FAS, TNF, TNFSF12, and PYCARD, and inhibited expression of the anti-apoptotic IL10 gene expression. Further analysis revealed that FAS protein expression was positively correlated with KLF6 expression in SCs. These data suggest that KLF6 upregulation may render SCs more vulnerable to apoptosis after injury via upregulating FAS expression.  相似文献   

18.
The main sites of longitudinal growth in skeletal muscle are the ends of the fibers. This study tests the hypothesis that satellite cells (SCs) are at a greater frequency (#SC nuclei/all nuclei within basal laminae) and concentration (closer together) within growing fiber ends of posthatch chicken pectoralis. SCs were localized by their Pax7 expression, and fiber ends were identified by their retention of neonatal myosin heavy chains and small cross-sectional profiles. Whereas SC frequency decreased from about 20% at 9 days posthatch to <5% at 115 days, fiber ends retained a frequency of approximately 16%. Calculated mean area of sarcolemma per SC revealed higher concentrations of SCs at fiber ends. There was also a strong inverse correlation between SC frequency and fiber profile cross-sectional size throughout development. This study suggests that SCs at fiber ends play a key role in the longitudinal growth of muscle fibers, and that fiber profile size may impact SC distribution.  相似文献   

19.

Schwann cells (SCs) have important roles in supporting and repairing peripheral neurons, and thus have great potential for nerve injury treatment. Adipose tissue-derived stem cells (ADSCs) can be reliably induced to differentiate into SCs. However, the underlying molecular mechanisms are unclear. We explored the roles of MEG3/let-7a-5p/RBPJ axis in the differentiation into SCs from ADSCs. Primary ADSCs were induced to differentiate into SCs by appropriate reagents. ELISA, immunostaining, Western blotting, and qRT-PCR were employed to examine levels of SC-markers such as S100, GFAP, SOX10, p75NTR, GAP43, MPZ, β-NGF, BDNF, and NCAM and let-7 family, MEG3, RBPJ, and Notch signaling related proteins. Dual luciferase assay and RNA immunoprecipitation were performed to validate interactions of let-7a-5p/RBPJ mRNA and MEG3/let-7a-5p. Cultured ADSCs could be induced to differentiate into functional SCs. Let-7a-5p and let-7d-5p were elevated during the differentiation while MEG3 and RBPJ/Notch-signaling were suppressed. Let-7a-5p mimics promoted ADSC differentiation into SCs and up-regulated the levels of SC-related markers including S100, GFAP, SOX10, p75NTR, GAP43, MPZ, β-NGF, and NCAM, while RBPJ or MEG3 overexpression retarded the differentiation and reduced those levels. Let-7a-5p directly targeted RBPJ and MEG3 disinhibited Notch-RBPJ signaling via sponging let-7a-5p. RBPJ overexpression reversed the acceleration of let-7a-5p mimics on SC differentiation while let-7a-5p mimics blocked MEG3-mediated suppression on SC differentiation. Let-7a-5p sponged by MEG3 promotes differentiation of ADSCs into SCs via suppressing Notch signaling by targeting RBPJ. These findings shed light on mechanisms underlying the differentiation of ADSCs to SCs and provide avenues to accelerate the process.

  相似文献   

20.
Nuclei from Chinese hamster testicular cells in suspension were prepared in a sucrose gradient. Following the basic procedure of Blobel and co-workers for separating a fibrous lamina-nuclear pore complex, synaptonemal complexes (SCs) from spermatocytes were isolated free of other nuclear structures, except for fibrillar tufts at the attachment plaques in which annuli were observed. All the major morphological components of the SC appeared to be intact, showing that the structure could survive the procedure and was not dispersed by the removal of DNA with DNase and solubilization of membranes and some proteins with Triton X-100. Isolated sex bodies were also well preserved, as were various structures from other cell types in the mixed cell suspension, such as spermatid manchettes, acrosomal ‘ghosts’, axonemes, etc. While no nuclear matrix was found associated with autosomal SCs, a residual material was present in the sex body, in which the X and Y axes were embedded. The results indicate the feasibility of isolating and fractionating SCs from testicular cell suspensions enriched for pachytene spermatocytes. The association between SC attachment plaques and annuli that is seen in spreads of whole nuclei persists through the isolation procedure and implies an integrated structural relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号