首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Using the Counce-Meyer spreading technique, in over 70 spermatocytes it was possible consistently to obtain whole, flattened nuclei containing complete sets of pachytene SCs. The SCs are visible in both the phase and electron microscopes. Each SC is morphologically intact, preferentially stained, and attached to the nuclear envelope by a dense, terminal plaque. It is thus possible to trace each SC for its entire length. Also, a structure representing the kinetochore is clearly visible in each autosomal SC. Karyotypes comparable to the somatic karyotype can be constructed by arranging SCs according to length and kinetochore position. The observed regularity of SC morphology implies structural stability sufficient to withstand the stresses imposed by the procedure.— A coarse network of closely packed nuclear annuli connecting SC attachment plaques often provides end-to-end associations and may tend to immobilize SCs during processing.— Three kinds of perturbation of SC structure are encountered. Twists in the SC frequently occur, but no regular pattern or correspondence with chiasma distribution is observed. SCs occasionally hook around each other without disruption, but in two instances the unpaired axis of the X apparently was interlocked within an autosomal SC. Stretching of the SC is infrequent; it is conspicuous when it occurs and is usually associated with other obvious distortions of the nucleus.— Distinctive morphologies of the X and Y chromosomes facilitate their identification in all preparations. — During zygotene, autosomal synapsis, i.e., the formation of SCs from the pairing of single axial elements, initiates at distal ends and terminates at the kinetochore region; neither initiation nor termination is synchronous among all autosomes.  相似文献   

2.
肌动蛋白存在于金黄地鼠(Mesocricetus auratus)联会复合体中   总被引:1,自引:1,他引:0  
以金黄地鼠精母细胞为材料,以抗肌动蛋白抗体为探针,应用免疫荧光和免疫胶体金技术对SC有无肌动蛋白的问题进行了研究。免疫荧光结果表明:经抗肌动蛋白抗体标记后,减数分裂粗线期标本中SC发出特异性荧光,说明肌动蛋白存在于SC中。免疫电镜结果表明:实验组SC的胶体金颗粒密度远高于对照组的金颗粒密度,说明SC含有肌动蛋白。观察到,常染色体SC和性染色体SC以及偶线期和粗线期SC中都含有肌动蛋白,肌动蛋白分布于SC的端部和侧生组分上,代表肌动蛋白的胶体金颗粒在SC上往往成簇存在。对SC含有肌动蛋白的意义进行了讨论。  相似文献   

3.
The nucleus of spermatocytes provides during the first meiotic prophase an interesting model for investigating relationships of the nuclear envelope (NE) with components of the nuclear interior. During the pachytene stage, meiotic chromosomes are synapsed via synaptonemal complexes (SCs) and attached through both ends to the nuclear periphery. This association is dynamic because chromosomes move during the process of synapsis and desynapsis that takes place during meiotic prophase. The NE of spermatocytes possesses some peculiarities (e.g., lower stability than in somatic cells, expression of short meiosis-specific lamin isoforms called C2 and B3) that could be critically involved in this process. For better understanding of the association of chromosomes with the nuclear periphery, in the present study we have investigated the distribution of NE proteins in relation to SC attachment sites. A major outcome was the finding that lamin C2 is distributed in the form of discontinuous domains at the NE of spermatocytes and that SC attachment sites are embedded in these domains. Lamin C2 appears to form part of larger structures as suggested by cell fractionation experiments. According to these results, we propose that the C2-containing domains represent local reinforcements of the NE that are involved in the proper attachment of SCs.  相似文献   

4.
Klein C  Wolf KW 《Tissue & cell》1997,29(3):283-291
Electron microscopy of ultrathin sections was used to study the restructuring of primary spermatocytes in a caddisfly, Potamophylax rotundipennis (Limnephilidae). Spindle structure was also examined using light microscopy of dividing spermatocytes lysed in a microtubule-stabilizing buffer. The bulk of pachytene spermatocytes was usual in that the nuclei contained tripartite synaptonemal complexes (SCs). The SCs were attached end-on to the inner face of the nuclear envelope and loosely surrounded by electron-dense chromatin. Cells of this type gave rise to late prophase I spermatocytes, where SCs were missing and chromatin condensation was advanced. By metaphase I, a conventional bipolar spindle apparatus assembled, bivalents were aligned at the spindle equator, and membrane sheets were scattered throughout the spindle matrix. Prominent interzone spindles were typical of telophase spermatocytes. However, a subset of prophase I spermatocytes possessed unusual forms of SCs. The analysis of short series of ultrathin sections through the nuclei revealed plates composed of synaptonemal complex material. These elements will be referred to as 'SC plates'. Within the SC plates, the tripartite organization typical of regular SCs was preserved. The chromatin surrounding the SC plates was highly condensed. The SC plates ended abruptly within the nuclear lumen and did not reach the nuclear envelope. Finally, branching of SC plates was common. In light of the bizarre organization of SC material and its relation to the chromatin, and because spermatocytes with SC plates do not readily fit into the regular development of male germ cells in the caddisfly, we venture the suggestion that the SC plates are not physiological intermediates of SC disassembly. The affected cells most probably fail to complete meiosis.  相似文献   

5.
Synaptonemal complex karyotype of zebrafish   总被引:4,自引:0,他引:4  
Wallace BM  Wallace H 《Heredity》2003,90(2):136-140
Meiotic cells of zebrafish have been prepared to show synaptonemal complexes (SCs) by light and electron microscopy. Completely paired SCs from both spermatocytes and oocytes were measured to produce an SC karyotype. The SC karyotype resembles the somatic karyotype of zebrafish and has no recognisable sex bivalent. Measurements of total SC length indicate that SCs grow longer and develop centromeres during pachytene. Oocytes consistently have longer SCs than spermatocytes, presumably correlated with the reported higher recombination frequency in females than in males.  相似文献   

6.
In this paper we describe an analysis of the tissue distribution of two recently identified components of synaptonemal complexes (SCs), an Mr 125000 and an Mr 190000 protein, in the male rat by immunoblot analysis and immunocytochemical techniques. We compared the tissue distribution of these antigens with that of two earlier identified SC components, an Mr 30000 and an Mr 33000 polypeptide. For this purpose we used monoclonal antibodies (Mabs) that react exlusively with SCs in lysed spermatocytes, and that recognize the above mentioned antigens specifically in immunoblots of SC proteins or of nuclear proteins from spermatocytes: these were Mab IX9D5 (anti-190000), Mab IX5B2 (anti-125000), Mab II52F10 (anti-30000+33000), and Mab IX8G9 (anti-30000+33000). In the immunoblot experiments, we could detect the Mr 190000 and 125000 antigens exclusively in blots of SC proteins or nuclear proteins from spermatocytes; these antigens were not detectable in blots of nuclear proteins from liver, brain, spermatogonia or spermatids or in blots of proteins from mitotic chromosomes or nuclear laminae. With the anti-30000+33000 Mabs we obtained essentially the same result, except that Mab IX8G9, but not II52F10, recognizes a small amount of Mr 30000 antigen in blots of nuclear proteins from spermatids and spermatogonia. Although this might be ascribed to contamination of the isolated spermatids and spermatogonia, we cannot exclude that a small amount of Mr 30000 antigen is present in these cells. In the immunofluorescence analysis, the testis was the only tissue that reacted detectably with the above antibodies. Within the testis, spermatocytes and some early spermatids were the only cell types that contained detectable amounts of antigen. The Mr 125000 antigen was exclusively observed in nuclei of spermatocytes, from zygotene up to and including diplotene, in paired segments of SCs. The Mr 30000+33000 and 190000 antigens were present in paired as well as unpaired segments of SCs in nuclei of permatocytes, from zygotene up to and including diplotene and in the nuclei of some early spermatids in presumed remnants of SCs. We conclude that SCs consist largely of meiosisspecific proteins.by U. Scheer  相似文献   

7.
Synaptonemal complexes (SCs) (structures involved in chromosome pairing during meiosis) were isolated and purified from rat spermatocytes for the purpose of biochemical and morphological analysis. Spermatocytes were lysed in a medium, containing Triton X-100, EDTA and DTT; the resulting swollen nuclei were disrupted by DNAse II, and the suspension was centrifuged through 1.5 M sucrose. The resulting preparation consisted for at least 60% of free SCs, as judged from electron micrographs of agar filtrates. The purified SCs still possessed lateral and transversal elements and attachment plaques. A small fraction also contained a central element. Particularly in diplotene SCs, the lateral elements clearly consisted of two subelements, which are connected by thinner fibres. The lateral elements may fall apart into a network of thinner fibres, presumably as a result of degradation during isolation. On SDS-polyacrylamide gels, the major protein components of purified SCs had relative mobilities (Mrs) of 67 to 60 and 57 to 55 kDa; in addition, there were minor proteins with Mrs of 90, 35, 33, 28, and 26 kDa, and varying amounts of histones. The 67 to 60 kDa proteins comigrate with lamins of rat liver pore complexes and laminae. A possible relationship between SCs and pore complexes and laminae is discussed.  相似文献   

8.
A thread-like (more than 70 cm long) testis of Ascaris suum, when examined under the light and electron microscope, reveals the linear succession of meiotic stages. Beginning from, at least, late leptotene, the spermatocytes are synchronous in their development. Thus within each transverse section of the testis all the spermatocytes are in the same stage. The spermatocytes at each stage of prophase I occupies several (4 to 10) cm of the whole testis length. — At leptotene, synaptonemal-like polycomplexes of lateral and central stacked elements are formed in the cytoplasm of spermatocytes. At late leptotene, the polycomplexes are attached to the external nuclear membrane. The polycomplexes disappear at zygotene. Slightly discernable axial cores are observed in the late leptotene chromosomes. The synaptonemal complexes (SCs) are formed at the zygotene stage, their structure being characteristically tripartite. The SCs disappear from the nuclei at the diffuse stage of prophase I. In other organisms completely developed polycomplexes of stacked lateral and central elements were never found during the presynaptic period of meiosis, although single or two parallel layers of aggregated central regions of SC were found in Neottiella meiocytes at the stage prior to chromosome pairing (Westergaard and von Wettstein, 1970, 1972). — First appearance of the polycomplexes in the cytoplasm insetead of the nucleus is also a novel fact. It is concluded that the polycomplexes at leptotene are formed by a self-assembly of the SC molecular material precociously synthesized in the cytoplasm. Two hypotheses regarding possible function and the further fate for leptotene polycomplexes are discussed.  相似文献   

9.
The behavior of the X and Y chromosomes in somatic and testicular cells of the sand rat (P. obesus) has been investigated with light and electron-microscope procedures. The Y chromosome has been identified as the fourth longest of the complement, both by C-banding and by its meiotic behavior. The X chromosome is the longest of the complement and carries two major C-heterochromatic blocks, one in the distal part of the long arm and the other forming most of the short arm. During presynaptic stages in spermatocytes, separate C-heterochromatic blocks, representing the sex chromosomes, are observed in the nuclei. An XY body is regularly formed at pachytene. During first meiotic metaphase the X and Y chromosomes show variable associations, none of them chiasmatic. Second meiotic metaphases contain, as in other mammals, a single sex chromosome, suggesting normal segregation between the X and the Y. — Electron microscopic observations of the autosomal synaptonemal complexes (SCs) and the single axes of the X and Y chromosomes during pachytene permit accurate, statistically significant identification of each of the largest chromosomes of the complement and determination of the mean arm ratios of the X and Y axes. The X and Y axes always lie close to each other but do not form a SC. The ends of the X and Y axes are attached to the nuclear envelope and associate with each other in variable ways, both autologously (X with X or Y with Y) and heterologously (X with Y), with a tendency to form a maximum number (four) of associated ends. Analysis of 36 XY pairs showed no significant preference for any single specific attachment between arm ends. The eighth longest autosomal bivalent is frequently partially asynaptic during early pachytene, and only at that time is often near or touching one end of the X axis. — It is concluded that while axis formation and migration of the axes along the plane of the nuclear envelope proceed normally in the X and Y chromosomes, true synapsis (with SC formation) does not occur because the pairing region of the X chromosome has probably been relocated far from the chromosome termini by the insertion of distal C-heterochromatic blocks.  相似文献   

10.
Synaptonemal complexes (SCs) are intranuclear structures that facilitate the reversible lateral synapsis of homologous chromosomes in the course of meiosis. It is still unclear which DNA nucleotide sequences are responsible for the attachment of chromatin to SC lateral elements. Considering the features of the dispersed repeated sequences (RSs), it is possible to assume that they participate in the structure and functional organization of the meiotic chromosomes. Using numerical analysis, we have investigated the relationship between the RS and the distribution of meiotic recombination events in mouse chromosome 1. Using in situ hybridization on spread mouse spermatocytes, we have examined the arrangement of different types of RSs relative to SCs. Hybridization signals of B1(Alu), B2, and minisatellite probes were localized predominantly in SCs regions. Based on the results, we proposed a model of meiotic chromosome organization. According to the model, RSs participate in the attachment of chromatin loops to SCs.  相似文献   

11.
六种鱼的精母细胞联会复合体的电镜观察   总被引:6,自引:0,他引:6  
刘雅娟  余其兴 《遗传学报》1991,18(5):407-414
我们以界面铺张——硝酸银染色技术,对鲈形目三种鱼(尼罗罗非鱼、莫桑比克罗非鱼、刺鳅)和鲤形目(鱼句)亚科三种鱼(花(鱼骨)、黑鳍鳈、麦穗鱼)的精母细胞联会复合体进行了电镜观察研究。系统考察了鱼类常染色体SC的亚显微结构、形成过程和配对行为,比较分析了刺鳅的性染色体SC的异配形态和行为,并绘制了鲈形目三种鱼的SC组型模式图。  相似文献   

12.
家鸡联会复合体的亚显微结构分析   总被引:1,自引:0,他引:1  
刘冬梅  张传善 《动物学报》1990,36(4):360-365
本文以表面铺展——硝酸银染色技术,对家鸡的联会复合体(Syneptonemal Complex,SC)作亚显微结构分析。根据对10个精母细胞和10个卵母细胞SC的测量结果,绘制组型图。发现雌雄家鸡的常染色体的SC组型相同。在精母细胞中,性染色体(ZZ)的行为与常染色体相似。在卵母细胞中,性染色体ZW的长度不同,长轴为Z,短轴为W,两者之间只有部分配对,形成SC。从早粗线期到晚粗线期,由同源配对调整为非同源配对。另外,在一只雌鸡中,第一次观察到,有些细胞的常染色体能正常配对,而性染色体完全不配对的现象。  相似文献   

13.
Synatonemal complexes (SCs) are the intranuclear structures which facilitate reversible lateral synapsis of the homologous chromosomes in the course of meiosis. It is still unclear which DNA nucleotide sequences are responsible for the chromatin attachment to the SC lateral elements. Considering the features of the dispersed repeated sequences (RS) it is worth to assume their participation in the structure functional organization of the meiotic chromosome. Using numerical analysis we have investigated the relationship between RS and the distribution of events of the meiotic recombination in mouse chromosome 1. Using in situ hybridization on spread mouse spermatocytes, we have demonstrated the arrangement of different types of RS relative to SCs. Hybridization signals of B1(Alu), B2, and minisatellite probes were localizating predominantly in the SCs regions. Our results allow us to suggest the model of the meiotic chromosome organization with the RS as the sequences, participating in the attachment of chromatin loops and SCs.  相似文献   

14.
Synaptonemal complexes (SCs), X and Y axes, and various nucleolar structures stain preferentially with silver in surface microspread preparations and are analyzable by both light and electron microscopy. Central elements, kinetochore region material and nuclear annuli which stain with ethanolic phosphotungstic acid are seldom visible after silver staining. SCs can be characterized by length measurements equally well in light and electron micrographs, from which stages of pachytene can also be determined by differentiation of the axes of the XY pair. By electron microscopy, the lateral elements appear as single strands at zygotene and early pachytene, then become double in a plane perpendicular to that of the SC and appear denser and thicker until late pachytene when they become progressively more attenuated and again appear single. These transitions are difficult to explain in terms of separation of associated chromatids. Identification of various silver stained bodies as nucleoli is supported by their orange-red fluorescence with acridine orange. SCs, X and Y axes and associated sex body material are, with a few exceptions, virtually indistinguishable from the background yellow-green fluorescence of the chromatin. Comet-shaped nucleolar bodies are regularly associated with five (in one animal) or six (in two animals) SCs; their positions along particular SCs identifiable by relative lengths indicate these bodies to be expressions of nucleolus organizer regions. They first appear at leptotene in association with unpaired axes and undergo progressive changes through late pachytene, at which time they redistribute their contents coincident with disappearance of the SCs. A characteristic nucleolar double dense body appears at zygotene; unlike the comet-shaped nucleoli, it is unassociated with other nuclear structures, and is assumed to arise from coalescence of previously existing smaller dense bodies. — The silver staining method described is remarkable for the speed and simplicity with which large numbers of spermatocyte nuclei are obtainable for light and electron microscopy. The fidelity of the light microscopic counterpart of the electron microscopic image has been directly assessed at different stages of pachytene. For cytogenetic analysis, critical information often lies beyond the limits of light optical resolution; the correlated electron microscopy required for verification is easily obtained with this method.This paper is warmly dedicated to Professor Hans Bauer on the occasion of his seventy-fifth birthday and as our expression of gratitude and admiration for his lasting contributions to chromosome biology  相似文献   

15.
The analysis of whole-mount preparations of synaptonemal complexes (SCs) from surface-spread spermatocytes of A. peninsulae (2n = 48A + 1, 2, ... 12 B) had revealed SCs of 23 autosomal bivalents, sex bivalent XY, axial cores and SCs of the B-chromosomes. The intercellular and interindividual variability of the number of B-chromosomes varied from 1 to 12 per cell. The SCs of autosomal bivalents were shown to have a typical structure. The structure and behaviour of SCs of sex bivalent throughout meiotic prophase I appeared to be similar to those observed in other species of this order. Mainly B-univalents and less frequently B-bivalents containing SCs were found to be formed in meiotic prophase I. The full homologues appear to be rarely seen among B-chromosomes of the East-Asiatic mouse. A tendency of forming clusters of B-univalents near the sex bivalent was found, in addition to B-bivalents with lateral elements, having the form of bi- and tri-stranded elements with rare synaptic fragments. Besides this, the SCs of the autosomes of pachytene cells were found to contain structures resembling the recombination nodules.  相似文献   

16.
Human spermatocytes processed with a modified microspreading technique which involves the use of sodium dodecyl-sulphate (SDS) have been used to construct synaptonemal complex (SC) karyotypes. Twenty two pachytene spermatocytes were selected for length quantitation. The mean values of relative lengths and centromeric indexes of each SC agree closely with values obtained by three-dimensional reconstructions (Holm and Rasmussen, 1977), except for SCs #4–5, 6–7 and 19–20. Absolute lengths are consistently longer in spreads (10.7% longer than in sections, on average). The mean total length of the SC complement is 258.7 m. Six morphological types of XY paris have been described. On the basis of the relationships between the XY pair, nucleolar development and autosome behavior, these six XY types are assumed to develop in succession. Type O XY pairs occur during late zygotene, types I and II XY pairs occur during early to midpachytene, and types III, IV and V occur during later pachytene substages. Alignment of the X and Y axes is observed at late zygotene, and formation of the SC occurs in relation with type I XY pairs. Progressive desynapsis occurs in types II and III. Splitting and fusion of the X and Y axes attain a maximum in types IV and V. The breakdown of the dense bodies associated with the X and Y axes occurs during stage V. — Bar-like structures, having a mean length of 2,100 Å are associated with SCs in all the pachytene substages defined by the XY types. The average number of bars per nucleus is 46.2 (SD=8.4, N=20), and the average SC length per bar is 5.57 m. The distribution along the SCs of 923 bars shows that near-termini locations are preferred (SC length per bar, 2.98 m) and centromere regions are avoided (SC length per bar, 16.9 m). — On the basis of these data, bars are similar to recombination nodules described in other organisms. The availability of a standard SC karyotype for microspreads and a temporal sequence given by the XY pair provide a basis for rapid screening of chromosome aberrations in human testicular biopsies.  相似文献   

17.
《The Journal of cell biology》1983,96(6):1717-1726
Synaptonemal complexes (SCs) have been isolated as integral components of the nuclear matrix from purified mouse pachytene spermatocytes. These nuclear synaptonemal complex-matrices are prepared by extracting Triton X-100-treated nuclei with low (0.2 M) and high (1.0 or 2.0 M) NaCl, DNase I, and RNase A to remove 85% of the nuclear proteins, 97% of the RNA, and 99% of the DNA. Studies with the light and electron microscopes indicate that these matrices, while lacking a distinct lamina, contain nuclear pores interconnected by a fiber network, residual nucleoli, and interchromatin fibers. In addition, the pachytene spermatocyte matrices contain residual XY heterochromatin and the principal components of the SCs, including two lateral elements, a central element, a presumptive centromere, and attachment plaques. These SCs are preserved within the matrix and retain their structural association with the pore-fiber complex, even when subjected to strong dissociating conditions. Nuclear matrices from pachytene spermatocytes and spermatids (steps 1-8), when analyzed by SDS PAGE, contain an array of polypeptides distinct from those of mouse liver nuclear matrices. Proteins of spermatogenic matrices range in Mr from 8,000 to approximately 150,000. The prominent lamina proteins (Mr approximately 60,000-70,000) of somatic nuclear matrices are either absent or represent only a minor part of the spermatogenic matrix. The polypeptide composition of the pachytene spermatocyte and spermatid matrices are similar, although minor quantitative and qualitative differences are evident. These observations suggest that the SC constituents may consist of a heterogeneous group of proteins present in low proportion relative to total matrix proteins, or they may be retained, but in a different form, within the spermatid matrix.  相似文献   

18.
联会复合体免疫荧光技术在全基因减数分裂遗传重组研究中具有精确和直观的优势.本研究通过免疫荧光染色方法制备小鼠精母细胞联会复合体,研究其形态组成与遗传重组特征,展示雄性小鼠遗传重组图谱并分析其重组位点(MLH1位点)的分布特征.4只小鼠共145个精母细胞在平均每个细胞的MLH1位点数为23.3±2.4;在常染色体联会复合体中,未发现有3个MLH1位点的联会复合体,具有1个MLH1位点的联会复合体较多,平均为14.2;无XY联会复合体的细胞占所有细胞的4.1%,XY联会复合体上有MLH1位点的细胞占30.2%;联会复合体上有裂缝的细胞占0.7%.通过联会复合体免疫荧光染色可以清晰地分辨出联会复合体(红色)、着丝粒(蓝色)和MLH1位点(绿色),是遗传重组分析的一种强有力工具.  相似文献   

19.
Eijpe M  Offenberg H  Goedecke W  Heyting C 《Chromosoma》2000,109(1-2):123-132
Synaptonemal complexes (SCs) are zipperlike structures that are assembled between homologous chromosomes during meiotic prophase. They consist of two axial elements (AEs) (one along each of the two homologous chromosomes), which, in mature SCs, are connected by numerous transverse filaments along their length. Several proteins involved in the later steps of meiotic recombination most probably function in close association with the AEs of SCs, because the proteins involved in these steps have all been localised along AEs or SCs by immunocytochemical methods. It is not known at which step in meiotic recombination this association with the AEs is established. In order to shed some light on this issue, we analysed the localisation of two proteins that are involved in early steps of meiotic recombination, RAD50 and MRE11, relative to AEs and SCs by immunofluorescence labelling of paraffin sections of the mouse testis, using affinity-purified polyclonal antibodies against RAD50 and MRE11, and monoclonal and polyclonal antibodies against SC components. The localisation patterns of MRE11 and RAD50 within spermatocytes were very similar. MRE11 and RAD50 appeared in high abundance in preleptotene spermatocytes, just before SC components could be detected. From preleptotene until early zygotene they were present throughout the nucleus. In mid and late zygotene, MRE11 and RAD50 concentrated in distinct areas; in early pachytene the two proteins had almost disappeared from the nucleus, except from the sex vesicle (the chromatin of the XY bivalent), where they persisted in high abundance until diplotene. We propose that MRE11 and RAD50, together with other proteins, prepare chromatin throughout the early meiotic prophase nucleus for the initiation of meiotic recombination. Possibly, only a small fraction of the RAD50- and MRE11-containing (pre)recombination complexes associates transiently with AEs, where further steps in meiotic recombination can take place. Received: 16 November 1999; in revised form: 29 December 1999 / Accepted: 3 January 2000  相似文献   

20.
Summary Electron microscopic examination of normal human testicular tissue revealed annulate lamellae (AL) in the cytoplasm of primary spermatocytes and spermatids. AL of primary spermatocytes are encountered in the perinuclear region, parallel to the nuclear envelope and form single or multiple membranous profiles containing numerous annuli (500–600 Å in diameter) frequently associated with a fibrillar electron dense material. Spermatids contain numerous layers of AL either continuous with the nuclear envelope and caudal to the acrosome or peripherally positioned in the cytoplasm. Individual lamellae possess terminal dilations and display continuities with the endoplasmic reticulum. The interlamellar space in spermatid AL is entirely filled with a fine granular electron dense material. Additionally, the break-down of AL in spermatozoan residual bodies is indicated by a dilation of AL cisternae to form vacuoles following the dissolution of pore complexes.Supported in part by grant (AT-(40-1)-4002) from the U.S. Atomic Energy Commission  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号