首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We investigated the influence of rainfall attributes on litter decomposition over an 8-year period in a well-preserved tropical dry forest ecosystem in western Mexico. We examined the relationship between the size and number of rainfall events and rainy-season litter decomposition rates and determined if this relationship varied along a landscape gradient. A mass balance approach was used to estimate decomposition rate in four permanent 2,400 m2 plots located in two small watersheds. Watershed I included three plots in different landscape positions (upper, middle, and lower) in the elevation gradient, whereas Watershed IV included one plot in the middle position. Surface litter C mass was lower in the rainy than in the dry season in all plots in response to seasonal fluctuations in rainfall. The frequency of small (≤5 mm) and medium (5.1–9.9 mm) size rainfall events largely did not correlate with litter decomposition, but the frequency of large events (≥10 mm) had a positive correlation with decomposition rates (P < 0.05), except in plot IV (P < 0.1). Decomposition rates were similar among plots at the different landscape positions within Watershed I (P > 0.05). The relevance of large rainfall events (≥10 mm) in rainy-season litter decomposition suggests that changes in the precipitation regime which alter the frequency of these rainfall pulses or increase their variability would affect the vulnerability of the litter C and nutrient pools to extreme events.  相似文献   

2.
N cycling in tropical dry forests is driven by rainfall seasonality but the mechanisms involved are not well understood. We studied the seasonal variation in N dynamics and microbial biomass in the surface litter of a tropical dry forest ecosystem in Mexico over a 2-year period. Litter was collected at 4 different times of the year to determine changes in total, soluble, and microbial C and N concentrations. Additionally, litter from each sampling date was incubated under laboratory conditions to determine potential C mineralization rate, net N mineralization, net C and N microbial immobilization, and net nitrification. Litter C concentrations were highest in the early-dry season and lowest in the rainy season, while the seasonal changes in N concentrations varied between years. Litter P was higher in the rainy than in the early-dry season. Water-soluble organic C (WSOC) and water-soluble N concentrations were highest during the early- and late-dry seasons and represented up to 4.1 and 5.9% of the total C and N, respectively. NH4+ and NO3 showed different seasonal and annual variations. They represented an average 23% of soluble N. Microbial C was generally higher in the dry than in the wet seasons, while microbial N was lowest in the late-dry and highest in the early-rainy seasons. Incubations showed that lowest potential C mineralization rates and C and N microbial immobilization occurred in rainy season litter, and were positively correlated to WSOC. Net nitrification was highest in rainy season litter. Our results showed that the seasonal pattern in N dynamics was influenced by rainfall seasonality and labile C availability, and not by microbial biomass. We propose a conceptual model to hypothesize how N dynamics in the litter layer of the Chamela tropical dry forest respond to the seasonal variation in rainfall.  相似文献   

3.
The dynamics of Rhizophora mangle litter production and decomposition were studied in a tropical coastal lagoon on the Gulf of Mexico in Veracruz, Mexico over a year (October 2002–October 2003). This region is characterized by three seasons: northerly winds (called ‘nortes’), dry, and rainy. Annual litter production (1116 g m−2) followed a seasonal pattern with leaf litter as the main fraction (70%) with two peaks in the dry and one in the rainy season. Leaf decomposition was evaluated with two types of litter bag in each season: fine mesh (1×1 mm) and coarse mesh (3×7 mm). Decomposition data were adjusted to a single negative exponential model. The results indicated faster decomposition rates in the coarse litter bag and significant differences among seasons. However these differences occurred after the 60th day of decomposition, indicating that leaching and microbial action were responsible for more than 50% of mass loss. After this period, the effects of aquatic invertebrates were evident but depended on climatic conditions. In the rainy season, the gastropod Neritina reclivata was associated with increasing leaf decomposition rate. In the ‘nortes’ season, the effect of aquatic invertebrates was smaller, and there were no differences in the decay constants calculated for the two litter bag types. High litter production represents an important input of organic matter which, through decomposition, may represent an important source of C, N, and P in this aquatic system.  相似文献   

4.
Phosphorus cycling in rainfed lowland rice ecosystems on sandy soils   总被引:3,自引:0,他引:3  
Phosphorus cycling in rainfed lowland rice ecosystems is poorly understood. Soil drying and grazing of rice straw during the long dry season, the growth of volunteer pastures during the early wet season, and intermittent loss of soil-water saturation while the rice crop is growing are important distinguishing characteristics of the rainfed lowlands in relation to P cycling. We studied P cycling in an acid sandy rainfed lowland soil that covers about 30% of the rice growing area of Cambodia. Soils with similar properties in comparable rainfed sub- ecosystems occur in Laos and northeast Thailand. We developed a general schema of P pools and fluxes in the crop and soil for rice-based cropping systems in the rainfed lowlands of Cambodia. The schema was derived from a number of field experiments carried out over five consecutive cropping seasons to quantify the residual value of P fertiliser, P mass balances, soil P fractions, the effect on subsequent rice crops of crop residues and volunteer pastures incorporated into the soils, and the dynamics of P turnover in the soil. With a single rice crop yielding 2.5–3 t ha−1, application of 8–10 kg P ha−1 maintained yields and a small positive P balance in the soil. However, the soil P balance was sensitive to the proportion of rice straw returned to the soil. Volunteer pastures growing during the early wet season accumulated significant amounts of P, and increased their P uptake when soils were previously fertilised with P. These pastures recycled 3–10 kg P ha−1 for the succeeding rice crops. While inorganic soil P pools extractable with ion exchange resins and 0.1 M NaOH appeared to be the main source of P absorbed by rice, microbial and organically-bound P pools responded dynamically to variation in soil water regimes of the main wet, dry and early wet seasons. The schema needs to be developed further to incorporate site-specific conditions and management factors that directly or indirectly affect P cycling, especially loss of soil-water saturation during the rice cropping cycle. The paper discusses the application of results for acid sandy soils to other significant rice soils in the rainfed lowlands of southeast Asia.  相似文献   

5.
From 1996 to 2002, we measured litterfall, standing litter crop, and litter turnover rates in scrub, basin, fringe and riverine forests in two contrasting mangrove ecosystems: a carbonate-dominated system in the Southeastern Everglades and a terrigenous-dominated system in Laguna de Terminos (LT), Mexico. We hypothesized that litter dynamics is driven by latitude, geomorphology, hydrology, soil fertility and soil salinity stress. There were significant temporal patterns in LT with litterfall rates higher during the rainy season (2.4 g m−2 day−1) than during the dry season (1.8 g m−2 day−1). Total annual litterfall was significantly higher in the riverine forest (12.8 Mg ha−2 year−1) than in the fringe and basin forests (9.7 and 5.2 Mg ha−2 year−1, respectively). In Southeastern Everglades, total annual litterfall was also significantly higher during the rainy season than during the dry season. Spatially, the scrub forest had the lowest annual litterfall (2.5 Mg ha−2 year−1), while the fringe and basin had the highest (9.1 and 6.5 Mg ha−2 year−1, respectively). In LT, annual standing litter crop was 3.3 Mg ha−1 in the fringe and 2.2 Mg ha−1 in the basin. Litter turnover rates were significantly higher in the fringe mangrove forest (4.1 year−1) relative to the basin forests (2.2 year−1). At Southeastern Everglades there were significant differences in annual standing litter crop: 1.9, 3.3 and 4.5 Mg ha−1 at scrub, basin and fringe mangrove sites, respectively. Furthermore, turnover rates were similar at both basin and fringe mangrove types (2.1 and 2.0 year−1, respectively) but significantly higher than scrub mangrove forest (1.3 year−1). These findings suggest that litter export is important in regulating litter turnover rates in frequently flooded riverine and fringe forests, while in infrequently flooded basin forests, in situ litter decomposition controls litter turnover rates.  相似文献   

6.
We studied soil phosphorus (P) fractionation and P-use efficiencies (PUEs) of rainforests along altitudinal gradients (700–3100 m) on two types of parental rocks (sedimentary versus ultrabasic) on Mount Kinabalu, Borneo. Sedimentary rocks were known to contain more quartz (which does not adsorb P) than ultrabasic rocks. The pool (top 30 cm) of total P was always greater on sedimentary (ranging from 34.9 to 72.6 g m–2) than on ultrabasic (9.0–29.2 g m–2) rocks at comparable altitudes. Accordingly, the pools of organic P and labile inorganic P were always greater on sedimentary than on ultrabasic rocks. The pool of primary mineral, calcium P increased upslope from 1.7 to 4.3 g m–2 on sedimentary rock, suggesting that the altitudinal sequence of the sites reflected a decreasing magnitude of soil weathering upslope. The pool of calcium P on ultrabasic rock did not vary consistently with altitude (1.2–2.8 g m–2), probably reflecting the greater between-site variability of primary mineral P in parent rocks. When all sites were compared, the pool of most labile, bicarbonate-extracted inorganic P increased (ranging from 0.02 to 1.85 g m–2) with increasing calcium P. Calcium P was therefore considered to be an important P source to the biota on Kinabalu. Gross patterns in the variation of PUE (indexed as the reciprocal of the P concentration in litter) were best explained by the pool size of actively cycling P (total P minus occluded inorganic P). PUE, however, demonstrated distinct altitudinal patterns to generate an intricate conrol of P use pattern by soil P pools and altitude. Received: 2 August 1998 / Accepted: 28 November 1999  相似文献   

7.
《Acta Oecologica》2002,23(1):41-50
The dynamics of nutrient accumulation were studied between two annual fires in a herbaceous savanna of the Congolese littoral region. Trees and shrubs were not studied because of their very low density. After fire the aboveground biomass increased for 10 months up to a maximum of 520 g m–2. The underground biomass amounted to roughly 630 g m–2 during the dry season and increased after the fire up to a maximum of 870 g m–2 during the rainy season. In the aerial parts, the accumulation dynamics differed according to the type of nutrient: Ca accumulation was steady until the following dry season in proportion to the total biomass, while the pattern of K accumulation was similar to the living biomass dynamic and reached a maximum four months after the fire. N, P and Mg followed a middle course. For the underground biomass, N accumulation reached a maximum value at the end of the rainy season (10 g m–2) and decreased at the beginning of the dry season. Most of this element was incorporated into the root system. During the rainy season, accumulation in the root system was of the same order of magnitude as in the aerial parts for P and Ca, whereas it was much lower for K and Mg. Transfers of nutrients to the atmosphere during the annual burning amounted, respectively, to 85, 25, 39, 21 and 28% of the amounts of N, P, K, Ca and Mg accumulated in the aerial biomass and litter components. Losses during fire were small for P, K, Ca and  Mg compared to the available soil reserves, but not for N. The legume Eriosema erici-rosenii ought to play an important role in N input in this ecosystem.  相似文献   

8.
We aimed to investigate the pattern of utilisation of torpor and its impact on energy budgets in free-living grey mouse lemurs (Microcebus murinus), a small nocturnal primate endemic to Madagascar. We measured daily energy expenditure (DEE) and water turnover using doubly labelled water, and we used temperature-sensitive radio collars to measure skin temperature (T sk) and home range. Our results showed that male and female mouse lemurs in the wild enter torpor spontaneously over a wide range of ambient temperatures (T a) during the dry season, but not during the rainy season. Mouse lemurs remained torpid between 1.7–8.9 h with a daily mean of 3.4 h, and their T sk s fell to a minimum of 18.8 °C. Mean home ranges of mouse lemurs which remained normothermic were similar in the rainy and dry season. During the dry season, the mean home range of mouse lemurs showing daily torpor was significantly smaller than that of animals remaining normothermic. The DEE of M. murinus remaining normothermic in the rainy season (122 ± 65.4 kJ day−1) was about the same of that of normothermic mouse lemurs in the dry season (115.5 ± 27.3 kJ day−1). During the dry season, the mean DEE of M. murinus that utilised daily torpor was 103.4 ± 32.7 kJ day−1 which is not significantly different from the mean DEE of animals remaining normothermic. We found that the DEE of mouse lemurs using daily torpor was significantly correlated with the mean temperature difference between T sk and T a (r 2=0.37) and with torpor bout length (r 2 =0.46), while none of these factors explained significant amounts of variation in the DEE of the mouse lemurs remaining normothermic. The mean water flux rate of mouse lemurs using daily torpor (13.0 ± 4.1 ml day−1) was significantly lower than that of mouse lemurs remaining normothermic (19.4 ± 3.8 ml day−1), suggesting the lemurs conserve water by entering torpor. Thus, this first study on the energy budget of free-ranging M. murinus demonstrates that torpor may not only reflect its impact on the daily energy demands, but involve wider adaptive implications such as water requirements. Accepted: 29 August 2000  相似文献   

9.
该研究2011年1月开始在鼎湖山针阔叶混交林(混交林)进行模拟酸雨实验,设置4个不同处理水平,即对照(CK)(pH为4.5左右的天然湖水)、T_1(pH=4.0)、T_2(pH=3.25)和T_3(pH=2.5)。2013年1—12月对不同酸雨强度处理下的森林凋落物CO_2释放速率进行为期1 a的连续观测,探讨酸雨对混交林凋落物C排放的影响。结果表明:凋落物CO2释放通量在对照样方为(1 507.41±155.19) g CO_2·m~(-2)·a~(-1),其中湿季和旱季分别占年通量的68.7%和31.3%。模拟酸雨抑制了森林凋落物CO_2释放,与CK相比,T_2和T_3处理下的CO_2释放通量分别显著降低15.4%和42.7%(P0.05);且这种抑制作用具有季节差异性,处理间的显著差异只出现在湿季。凋落物CO_2释放速率与土壤温度和土壤湿度分别呈显著指数相关和显著直线相关,同时,酸雨处理降低了凋落物CO_2释放的温度敏感性。混交林凋落物CO_2释放在模拟酸雨下的抑制效应与土壤累积酸化而导致的土壤微生物活性变化有关,表现为模拟酸雨作用下土壤pH值和微生物量碳显著下降。上述结果说明酸雨是影响混交林土壤碳循环的重要因子之一。  相似文献   

10.
马志良  高顺  杨万勤  吴福忠  谭波  张玺涛 《生态学报》2015,35(22):7553-7561
地处长江上游的四川盆地亚热带常绿阔叶林具有典型雨热同季的气候特点,季节性干湿交替可能显著影响凋落物分解,但迄今缺乏相应的报道。因此,采用凋落物分解袋法,研究了常绿阔叶林区最具代表性的马尾松(Pinus massoniana)、柳杉(Cryptomeria fortunei)、杉木(Cunninghamia lanceolata)、香樟(Cinnamomum camphora)、红椿(Toona ciliata)、麻栎(Quercus acutissima)等6种凋落叶在第1年不同雨热季节的分解特征。结果表明,经历1a的分解,6种凋落叶质量残留率大小顺序依次为:红椿(27.90%)柳杉(41.39%)杉木(48.93%)麻栎(49.62%)马尾松(68.82%)香樟(72.23%),6种凋落叶在不同干湿季节质量损失差异显著(P0.05)。阔叶树种在旱季(MRS、SRS和WRS)的质量损失显著高于针叶树种。雨季(ERS和LRS)对6种凋落叶质量损失的贡献率(69.73%—89.68%)均明显大于旱季(10.32%—30.27%)。6种凋落叶在不同时期中质量损失速率差异显著(P0.05),且6种凋落叶在雨季的质量损失速率明显高于旱季。相关分析结果表明,凋落叶质量损失及其速率均与降雨量和温度呈极显著(P0.01)正相关关系。凋落叶质量损失与初始C、木质素含量及C/N、木质素/N极显著(P0.01)负相关,与N含量极显著(P0.01)正相关。这些结果表明亚热带地区森林凋落物分解的质量损失主要发生在雨季,雨季温湿度的改变可显著影响凋落物分解过程。  相似文献   

11.
Biological soil crusts composed of cyanobacteria, green algae, bryophytes, and lichens colonize soils in arid and semiarid ecosystems worldwide and are responsible for significant N input to the soils of these ecosystems. Soil crusts also colonize active sand dunes in more humid regions, but studies of structure and function of such sand dune crusts are lacking. We identified the cyanobacterial, algal, and bryophytic constituents and N production and leachates of biological soil crusts that colonize beach dunes at the Indiana Dunes National Lakeshore along southern Lake Michigan in Indiana, USA. To determine the role of these crusts in this system, we conducted a greenhouse experiment in which intact soil cores with biological crusts were subjected to artificial rainfall over a full growing season. The volume and N content of leachate from the cores were quantified in relation to degree of crust development, taxonomic composition, rainfall volume and intensity, light intensity, and the presence of plant litter. Net N throughput significantly exceeded N inputs to cores in rainwater. Net N outputs from crusts to subsurface soil ranged from 0. 01 to 0.19 g NH 4 + -N m−2 yr−1 and 0.01 to 0.61 g NO 3 N m−2 yr−1. Thus, total inorganic N inputs associated with biological soil crusts ranged from 0.02 g N m−2 yr−1 to 0.8 g N m−2 yr−1. High volume (≥2 cm) rainfall resulted in more N leaching than low volume events, and plant litter added over the surface of crusted soil cores significantly increased the amount of N in leachate. Exploratory path analysis revealed direct and indirect linkages among environmental factors, crust development, and crust composition in regulating the throughput of H2O and N from these intact soil cores. Biological soil crusts at this site, combined with other properties of the soil surface, substantially increase N inputs to this water- and nutrient-limited sand dune ecosystem.  相似文献   

12.
以我国南亚热带格木人工纯林为研究对象,采用气压过程分离(BaPS)技术和磷脂脂肪酸(PLFAs)法研究了不同枯落物处理(对照、枯落物去除、枯落物加倍)下土壤碳氮转化速率和微生物群落结构的季节变化.结果表明:不同枯落物处理土壤呼吸和总硝化速率均呈现明显的季节动态,雨季显著高于旱季.枯落物处理初期,土壤呼吸和总硝化速率均随枯落物输入量的增加呈下降趋势,但随着枯落物处理时间的延长,二者随枯落物输入量的增加而增加.旱季不同枯落物处理土壤微生物PLFAs总量和各菌群PLFAs量均显著高于雨季,而雨季真菌PLFAs/细菌PLFAs明显高于旱季.在旱季,枯落物去除处理土壤微生物PLFAs总量、细菌PLFAs量、真菌PLFAs量和丛枝菌根真菌PLFAs量分别显著提高30.9%、28.8%、44.4%和31.6%.在雨季,枯落物去除处理细菌PLFAs量和丛枝菌根真菌PLFAs量分别显著降低10.6%和33.3%.土壤微生物群落结构受枯落物输入量处理和季节的双重影响,土壤微生物群落结构主要受土壤温度和铵态氮的影响.枯落物输入量处理在短期内显著影响了格木林土壤碳氮转化速率和微生物群落结构,这种影响因季节的不同而存在差异.  相似文献   

13.
We investigated the impacts of forest thinning, prescribed fire, and contour ripping on community level physiological profiles (CLPP) of the soil microbial population in postmining forest rehabilitation. We hypothesized that these management practices would affect CLPP via an influence on the quality and quantity of soil organic matter. The study site was an area of Jarrah (Eucalyptus marginata Donn ex Sm.) forest rehabilitation that had been mined for bauxite 12 years previously. Three replicate plots (20 × 20 m) were established in nontreated forest and in forest thinned from 3,000–8,000 stems ha−1 to 600–800 stems ha−1 in April (autumn) of 2003, followed either by a prescribed fire in September (spring) of 2003 or left nonburned. Soil samples were collected in August 2004 from two soil depths (0–5 cm and 5–10 cm) and from within mounds and furrows caused by postmining contour ripping. CLPP were not affected by prescribed fire, although the soil pH and organic carbon (C), total C and total nitrogen (N) contents were greater in burned compared with nonburned plots, and the coarse and fine litter mass lower. However, CLPP were affected by forest thinning, as were fine litter mass, soil C/N ratio, and soil pH, which were all higher in thinned than nonthinned plots. Furrow soil had greater coarse and fine litter mass, and inorganic phosphorous (P), organic P, organic C, total C, total N, ammonium, microbial biomass C contents, but lower soil pH and soil C/N ratio than mound soil. Soil pH, inorganic P, organic P, organic C, total C and N, ammonium, and microbial biomass C contents also decreased with depth, whereas soil C/N ratio increased. Differences in CLPP were largely (94%) associated with the relative utilization of gluconic, malic (greater in nonthinned than thinned soil and mound than furrow soil), l-tartaric, succinic, and uric acids (greater in thinned than nonthinned, mound than furrow, and 5–10 cm than 0–5 cm soil). The relative utilization of amino acids also tended to increase with increasing soil total C and organic C contents but decreased with increasing nitrate content, whereas the opposite was true for carboxylic acids. Only 45% of the variance in CLPP was explained using a multivariate multiple regression model, but soil C and N pools and litter mass were significant predictors of CLPP. Differences in soil textural components between treatments were also correlated with CLPP; likely causes of these differences are discussed. Our results suggest that 1 year after treatment, CLPP from this mined forest ecosystem are resilient to a spring prescribed fire but not forest thinning. We conclude that differences in CLPP are likely to result from complex interactions among soil properties that mediate substrate availability, microbial nutrient demand, and microbial community composition.  相似文献   

14.
Smidt  S.  Oswood  M.W. 《Hydrobiologia》2002,472(1-3):95-105
Many wetlands of the Swan Coastal Plain in southwestern Australia have catchments with significant areas of native vegetation. The dynamics of P release from their litter and its significance as a P source for wetlands have not been previously investigated. Litterfall of common plant species were collected before the local rainy season, and examined for P leaching properties under inundated conditions. Inundation of `intact' litter materials for 24 hours leached 30±7.5% (95% confidence level) of this Tot-P in litter, measured by anion exchange membrane extraction. This increased to 46.9% of `apparent' P release at 115 days. The released P was incorporated into microbial biomass during leaching so modifying leachate concentrations. Using liquid chloroform `fumigation' it was estimated that 36.2 ± 15.6% (95% confidence level) of Tot-P leached during the 115-day inundation was in the microbial biomass pool, not directly measured by AEM extraction. P leaching during initial and prolonged inundation correlated with litter Ca, Mg and total base concentration, but the initial Tot-P concentration of litter was the best predictor for P leaching, in both short-term and prolonged inundation (R 2 = 0.80 and 0.93, p < 0.0001). The high P leaching rate during 24 hours suggested that P from litter during `first storm' events could produce a significant P flux from local catchments and contribute nutrients to downstream wetlands.  相似文献   

15.
We used sugar maple litter double-labeled with 13C and 15N to quantify fluxes of carbon (C) and nitrogen (N) between litter and soil in a northern hardwood forest and the retention of litter C and N in soil. Two cohorts of litter were compared, one in which the label was preferentially incorporated into non-structural tissue and the other structural tissue. Loss of 13C from this litter generally followed dry mass and total C loss whereas loss of 15N (20–30% in 1 year) was accompanied by large increases of total N content of this decaying litter (26–32%). Enrichment of 13C and 15N was detected in soil down to 10–15 cm depth. After 6 months of decay (November–May) 36–43% of the 13C released from the litter was recovered in the soil, with no differences between the structural and non-structural labeled litter. By October the percentage recovery of litter 13C in soil was much lower (16%). The C released from litter and remaining in soil organic matter (SOM) after 1 year represented over 30 g C m−2 y−1 of SOM accumulation. Recovery of litter 15N in soil was much higher than for C (over 90%) and in May 15N was mostly in organic horizons whereas by October it was mostly in 0–10 cm mineral soil. A small proportion of this N was recovered as inorganic N (2–6%). Recovery of 15N in microbial biomass was higher in May (13–15%) than in October (about 5%). The C:N ratio of the SOM and microbial biomass derived from the labeled litter was much higher for the structural than the non-structural litter and for the forest floor than mineral SOM, illustrating the interactive role of substrates and microbial activity in regulating the C:N stoichiometry of forest SOM formation. These results for a forest ecosystem long exposed to chronically high atmospheric N deposition (ca. 10 kg N ha−1 y−1) suggest possible mechanisms of N retention in soil: increased organic N leaching from fresh litter and reduced fungal transport of N from soil to decaying litter may promote N stabilization in mineral SOM even at a relatively low C:N ratio.  相似文献   

16.
The study compared the species composition of phytoperiphyton (“lab-lab”) present in ponds when gradually filled with water weekly to depths of 5, 10, 15 and 30 cm between the wet and dry seasons, for one month before the stocking of fish was studied. This was done during the dry season (March–April, 2003) and wet season (June–July, 2002). Periphyton was allowed to grow on 24 artificial substrates set at equal distances in a 1000 m2 pond. “Lab-lab” that colonized the artificial substrates and that on the pond surrounding the substrates were scraped off from a measured surface area. Simultaneously, water was collected for the analysis of physical, chemical and biological parameters. Sampling was done bi-weekly coinciding with 2 and 7 days submergence at a desired depth before adjusting the water level. The major algae consisted of the diatoms (Bacilliarophyta), the blue green algae (Cyanobacteria), and the green algae (Chlorophyta). The diatoms were dominant during the dry season while the cyanobacteria dominated during the wet season. Twenty eight genera were observed during the dry season and 25 genera were noted in the wet season. Variation in genera and density that were observed every sampling period, was influenced by environmental conditions and the incoming water. The total algal density ranged from 100.7 × 108 – 855.1 × 108 and to 24.7 × 108 – 83.9 × 108 organisms.m−2 during the dry and wet seasons, respectively. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

17.
In forest ecosystems, the effects of litter or understory on soil properties are far from being fully understood. We conducted a study in a pure Acacia mangium Willd. plantation in southern China, by removing litter or understory or both components and then comparing these treatments with a control (undisturbed), to evaluate their respective effects on soil physical, chemical and biological properties. In addition, a litter decomposition experiment was conducted to understand the effects of understory on litter decomposition. Our data showed that the presence of understory favored litter decomposition to a large extent. In 1 year, 75.2 and 37.2% of litter were decomposed in the control and understory removal treatment (UR), respectively. Litter had a profound significance in retaining soil water and contributing to soil fertility, including organic matter (OM), available phosphorus (P) and alkali-hydrolyzable nitrogen (N), but understory exerted less influence than litter on soil physical and chemical properties. Both litter and understory played an important role in soil biological activity as indicated by microbial biomass carbon (MBC), while there were no significant impacts on soil exchangeable potassium (K) after either or both were removed. Contrary to our hypothesis, the effects of understory or litter removal were not always negative. A significant soil pH increase with litter removal was a positive factor for acid soil in the studied site. Except for soil moisture, significant effects, caused by removal of litter or/and understory, on measured soil chemical characteristics were only observed in the top 10 cm soil layer, but not in the 10–20 cm layer. Soil available P and exchangeable K contents were significantly higher in the rainy season than in the dry season, however, for the other soil properties, not substantially affected by season.  相似文献   

18.
Plant nutrient responses to 4 years of CO2 enrichment were investigated in situ in calcareous grassland. Beginning in year 2, plant aboveground C:N ratios were increased by 9% to 22% at elevated CO2 (P < 0.01), depending on year. Total amounts of N removed in biomass harvests during the first 4 years were not affected by elevated CO2 (19.9 ± 1.3 and 21.1 ± 1.3 g N m−2 at ambient and elevated CO2), indicating that the observed plant biomass increases were solely attained by dilution of nutrients. Total aboveground P and tissue N:P ratios also were not altered by CO2 enrichment (12.5 ± 2 g N g−1 P in both treatments). In contrast to non-legumes (>98% of community aboveground biomass), legume C/N was not reduced at elevated CO2 and legume N:P was slightly increased. We attribute the less reduced N concentration in legumes at elevated CO2 to the fact that virtually all legume N originated from symbiotic N2 fixation (%Ndfa ≈ 90%), and thus legume growth was not limited by soil N. While total plant N was not affected by elevated CO2, microbial N pools increased by +18% under CO2 enrichment (P = 0.04) and plant available soil N decreased. Hence, there was a net increase in the overall biotic N pool, largely due increases in the microbial N pool. In order to assess the effects of legumes for ecosystem CO2 responses and to estimate the degree to which plant growth was P-limited, two greenhouse experiments were conducted, using firstly undisturbed grassland monoliths from the field site, and secondly designed `microcosm' communities on natural soil. Half the microcosms were planted with legumes and half were planted without. Both monoliths and microcosms were exposed to elevated CO2 and P fertilization in a factored design. After two seasons, plant N pools in both unfertilized monoliths and microcosm communities were unaffected by CO2 enrichment, similar to what was found in the field. However, when P was added total plant N pools increased at elevated CO2. This community-level effect originated almost solely from legume stimulation. The results suggest a complex interaction between atmospheric CO2 concentrations, N and P supply. Overall ecosystem productivity is N-limited, whereas CO2 effects on legume growth and their N2 fixation are limited by P. Received: 12 July 1997 / Accepted: 15 April 1998  相似文献   

19.
Quantification of the role of fine roots in the biological cycle of nutrients necessitates understanding root distribution, estimating root biomass, turnover rate and nutrient concentrations, and the dynamics of these parameters in perennial systems. Temporal dynamics, vertical distribution, annual production and turnover, and nitrogen use of fine roots (≤2 mm in diameter) were studied in mature (5-year-old) stands of two enset (Ensete ventricosum) clones using the in-growth bag technique. Live fine root mass generally decreased with increasing depth across all seasons except the dry period. Except for the dry period, more than 70% of the fine root mass was in the above 0-20 cm depth, and the fine root mass in the upper 0–10 cm depth was significantly higher than in the lowest depth (20–30 cm). Live fine root mass showed a seasonal peak at the end of the major rainy season but fell to its lowest value during the dry or short rainy season. The difference between the peak and low periods were significant (p ≤ 0.05). Fine root nitrogen (N) use showed significant seasonal variation where the mean monthly fine root N use was highest during the major rainy season. There were significant effects on N use due to depths and in-growth periods, but not due to clones. Enset fine root production and turnover ranged from 2,339 to 2,451 kg ha−1 year−1 and from 1.55 to 1.80 year−1, respectively. Root N return, calculated from fine root turnover, was estimated at 64–65 kg ha−1 year−1. Fine root production, vertical distribution and temporal dynamics may be related to moisture variations and nutrient (N) fluxes among seasons and along the soil depth. The study showed that fine root production and turnover can contribute considerably to the carbon and nitrogen economy of mature enset plots.  相似文献   

20.
Abstract Climatic conditions should not hinder nutrient release from decomposing leaf‐litter (mineralization) in the humid tropics, even though many tropical forests experience drought lasting from several weeks to months. We used a dry‐season irrigation experiment to examine the effect of seasonal drought on nutrient concentrations in leaf‐fall and in decomposing leaf‐litter. In the experiment, soil in two 2.25‐ha plots of old‐growth lowland moist forest on Barro Colorado Island, Republic of Panama, was watered to maintain soil water potential at or above field capacity throughout the 4‐month dry season. Wet‐season leaf‐fall had greater concentrations of nitrogen (N, 13.5 mg g?1) and calcium (Ca, 15.6 mg g?1) and lower concentrations of sulfur (S, 2.51 mg g?1) and potassium (K, 3.03 mg g?1) than dry‐season leaf‐fall (N = 11.6 mg g?1, Ca = 13.6 mg g?1, S = 2.98 mg g?1, K = 5.70 mg g?1). Irrigation did not affect nutrient concentrations or nutrient return from forest trees to the forest floor annually (N = 18 g m?2, phosphorus (P) = 1.06 g m?2, S = 3.5 g m?2, Ca = 18.9 g m?2, magnesium = 6.5 g m?2, K = 5.7 g m?2). Nutrient mineralization rates were much greater during the wet season than the dry season, except for K, which did not vary seasonally. Nutrient residence times in forest‐floor material were longer in control plots than in irrigated plots, with values approximately equal to that for organic matter (210 in control plots vs 160 in irrigated plots). Calcium had the longest residence time. Forest‐floor material collected at the transition between seasons and incubated with or without leaching in the laboratory did not display large pulses in nutrient availability. Rather, microorganisms immobilized nutrients primarily during the wet season, unlike observations in tropical forests with longer dry seasons. Large amounts of P moved among different pools in forest‐floor material, apparently mediated by microorganisms. Arylsulfatase and phosphatase enzymes, which mineralize organically bound nutrients, had high activity throughout the dry season. Low soil moisture levels do not hinder nutrient cycling in this moist lowland forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号