首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Newly-synthesized, high molecular weight RNA from salivary gland polytene chromosomes and from the nuclear sap was investigated by RNA/DNA hybridization. Salivary glands were incubated for 90 min with radioactive nucleosides and afterwards fixed. Chromosomes and nuclear sap were subsequently isolated by microdissection. Labelled RNA, extracted from three different chromosomal fractions and from the nuclear sap, was subjected to different hybridization procedures under conditions which primarily allow repeated nucleotide sequences to interact.In one type of experiments RNA was hybridized by a microtechnique to filter-bound DNA at increasing RNA/DNA input ratios. Nuclear sap RNA saturated 0.25−0.30% of the DNA, while the chromosomal RNA fractions had not reached a plateau even after hybridization with 0.5−1% of the DNA. Thus chromosomal RNA appears to contain sequences which are absent from, or present in only low concentration in, the nuclear sap. Nuclear sap RNA hybrids also showed a higher thermal stability than chromosomal RNA hybrids, which may reflect a higher precision of base-pairing in hybrids formed by nuclear sap RNA.In a second type of experiments the time dependence of hybrid formation was investigated. The hybridization rate for nuclear sap RNA was about three times as high as the corresponding rate for chromosomal RNA. This result indicates a relative enrichment of rapidly hybridizing RNA sequences in the nuclear sap.The difference in hybridization properties between chromosomal and nuclear sap RNA may be due to a predominance in the nuclear sap of RNA from a special chromosomal puff, the Balbiani Ring 2 (BR2), which has been shown to contain highly repeated DNA sequences. A comparison between the hybridization properties of nuclear sap RNA and BR2 RNA indicated that 55–70% of nuclear sap RNA may be derived from BR2.The specific hybridization rate of chromosomal RNA points to an average multiplicity of about 30 for its complementary DNA sequences. On the basis of the present and previous results it is suggested that the repeated DNA is arranged in families of related sequences and that sequences belonging to a particular family are distributed in different chromosomes.  相似文献   

4.
5.
Mapping the spliced and unspliced late lytic SV40 RNAs.   总被引:63,自引:0,他引:63  
C J Lai  R Dhar  G Khoury 《Cell》1978,14(4):971-982
  相似文献   

6.
We have compared the total single-copy sequences transcribed as nuclear RNA in blastula and pluteus stage embryos of the sea urchin Tripneustes gratilla by hybridization of excess nuclear RNA with purified radioactive single-copy DNA. The kinetics of hybridization of either blastula or pluteus nuclear RNA with single-copy DNA show a single pseudo-first-order reaction with 34% of the single-copy genome. From the rate of the reaction and the purity of the nuclear RNA, it can be estimated that the reacting RNAs are present on the average at a concentration of one molecule per 14 nuclei. A mixture of blastula and pluteus RNA also hybridizes with 34% of the single-copy genome, indicating that the total complexity of RNAs transcribed at both stages is no greater than transcribed at each stage alone. The identity of the sequences transcribed by blastula and pluteus embryos was further examined by fractionation of the labeled DNA into sequences complementary and not complementary to pluteus RNA. This was achieved by hybridization of single-copy DNA to high pluteus RNA Cot, and separation of the hybridized and nonhybridized DNA on hydroxylapatite. Using either the DNA complementary or noncomplementary with pluteus RNA, essentially identical amounts of RNA:DNA hybrids are formed at high RNA Cot with blastula or pluteus RNA. Gross changes in the total RNA sequences transcribed do not appear to be involved in the developmental changes between blastula and pluteus, even though 45% of the mRNA sequences change between these two stages (Galau et al., 1976).  相似文献   

7.
8.
9.
10.
11.
12.
13.
RNA extracted from cat cells contains sequences homologous to RD-114 viral RNA. The sequences are measured by molecular hybridization with a single-stranded DNA probe synthesized by the virion polymerase using the endogenous viral RNA as template. Viral-specific RNA has been detected in all cells of cat origin tested thus far, but not in cells of other animals, except for the virus-producing human rhabdomyosarcoma cell, RD-114. The extent of hybridization of the DNA probe to cellular RNA was equivalent to that obtained with viral 70S RNA indicating that an equal extent of viral specific sequences is present in all cat cells as well as in RD-114 cells. The amounts of this viral RNA reach approximately 100 copies per cell in cat cells, while virus-producing RD-114 cells contain about 1,000 copies per cell. The viral RNA is present in cat cells in two distinct sizes of about 35S and 18S, whereas in RD-114 cells virus-specific RNA is quite heterogeneous in size.  相似文献   

14.
The subcellular localization in chicken Rous sarcoma of nucleotide sequence, complementary to Rous sarcoma virus RNA was examined by RNA/RNA molecular hybridization. The preparations of radioiodinated virion RNA were annealed with RNAs from different fractions (nuclei, mitochondria, free and membrane-bound polyribosomes) isolated from chicken Rous sarcoma. Formation of RNA-ase resistant hybrids between the viral 125I-RNA and RNA from the mitochondria and membrane-bound polyribosomes was revealed. The latter were characterized by a higher relative redundancy of nucleotide sequences complementary to virion RNA than that in the former, by factor 446. The role of complementary ribonucleotide sequences is discussed.  相似文献   

15.
Isolation and Characterization of Simian Virus 40 Ribonucleic Acid   总被引:50,自引:22,他引:28       下载免费PDF全文
Deoxyribonucleic acid-ribonucleic acid (RNA) hybridization in formamide was used to isolate simian virus 40-specific RNA. Early in the lytic cycle, a 19S viral RNA species was observed. Late in the lytic cycle, 16S and 19S viral species were found. The 16S and 19S species of viral RNA were localized in the cytoplasm. High-molecular-weight heterogeneous RNA, containing viral sequences, was isolated from the nuclear fraction of infected cells late in the lytic cycle. This RNA may contain non-viral sequences linked to viral sequences. The formamide hybridization technique can be used to isolate intact late lytic viral RNA which is at least 99% pure.  相似文献   

16.
17.
Poly(A)-containing RNAs from cytoplasm and nuclei of adult Xenopus liver cells are compared. After denaturation of the RNA by dimethysulfoxide the average molecule of nuclear poly(A)-containing RNA has a sedimentation value of 28 S whereas the cytoplasmic poly(A)-containing RNA sediments slightly ahead of 18 S. To compare the complexity of cytoplasmic and nuclear poly(A)-containing RNA, complementary DNA (cDNA) transcribed on either cytoplasmic or nuclear RNA is hybridized to the RNA used as a template. The hybridization kinetics suggest a higher complexity of the nuclear RNA compared to the cytoplasmic fraction. Direct evidence of a higher complexity of nuclear poly(A)-containing RNA is shown by the fact that 30% of the nuclear cDNA fails to hybridize with cytoplasmic poly(A)-containing RNA. An attempt to isolate a specific probe for this nucleus-restricted poly(A)-containing RNA reveals that more than 10(4) different nuclear RNA sequences adjacent to the poly(A) do not get into the cytoplasm. We conclude that a poly(A) on a nuclear RNA does not ensure the transport of the adjacent sequence to the cytoplasm.  相似文献   

18.
19.
The concentrations, in copies per cell, of viral RNA sequences complementary to different regions of the genome were determined at 8, 18 and 32 hours after infection of human cells with adenovirus type 2: separated strands of fragments of 32P-labelled adenovirus 2 DNA, generated by cleavage with restriction endonucleases EcoR1, Hpa1 and BamH1, were added to reaction mixtures at sufficient concentrations to drive hybridizations with infected or transformed cell RNA. Under these conditions, the fraction of 32P-labelled DNA entering hybrid is directly proportional to the absolute amount of complementary RNA in the reaction.At 8 hours after infection in the presence of cytosine arabinoside, “early” viral messenger RNA sequences are present at a frequency of 300 to 1000 copies per cell. The abundance of early mRNA sequences in different lines of adenovirus 2-transformed rat cells is markedly lower than their concentration in lytically infected cells. Moreover, the abundance of early mRNA in a given transformed rat cell line reflects the number of copies of its template DNA sequences per diploid quantity of cell DNA. After the onset of the late phase of the lytic cycle, the abundance of one early mRNA species, that coding for a single-stranded DNA binding protein required for viral DNA replication, is amplified. Viral RNA sequences complementary to regions of the genome coding for other early mRNA sequences remain at the level observed at 8 hours after infection.Exclusively “late” viral mRNA sequences are present over a range of concentrations, 500 to 10,000 copies per cell, depending on the region of the genome. By 18 hours after infection, the nucleus contains approximately three times as much total, viral RNA as the cytoplasm. The abundant nuclear, viral RNA sequences at 18 hours are transcribed from a contiguous region, 65% of the genome in length. In some cases, viral RNA sequences complementary to mRNA sequences are very abundant in the nucleus. When cytoplasmic and nuclear fractions are mixed and incubated under annealing conditions, some mRNA sequences will anneal with more abundant, anti-messenger nuclear RNA sequences to form double-stranded RNA. Such annealing of nuclear, viral RNA to early, cytoplasmic mRNA sequences probably accounts for the inability to detect, by filter hybridization, certain classes of early mRNA sequences during the late stage of infection.  相似文献   

20.
M Kann  A Bischof    W H Gerlich 《Journal of virology》1997,71(2):1310-1316
Hepadnaviruses contain a DNA genome, but they replicate via an RNA intermediate, synthesized by the cellular RNA polymerase II in the nucleus of the infected cell. Thus, nuclear transport of the viral DNA is required in the viral life cycle. Protein-free DNA is only poorly imported into the nucleus, so one or more of the viral proteins must be involved in the transport of the viral genome. In order to identify these viral proteins, we purified woodchuck hepadnavirus (WHV) core particles from infected woodchuck liver, isolated WHV DNA, and extracted the covalent complex of viral polymerase from the particles using urea. Intact core particles, the polymerase-DNA complex, or protein-free WHV DNA from core particles was added to digitonin-permeabilized HuH-7 cells, in which the cytosol was substituted by rabbit reticulocyte lysate (RRL) and an ATP-generating system. The distribution of the viral genome was analyzed by semiquantitative PCR or by hybridization in total nuclei, RRL, nuclear membranes, and nucleoplasm. The polymerase-DNA complex was efficiently transported into the nucleus, as indicated by the resistance of the nucleus-associated DNA to a short-term treatment with DNase I of the intact nuclei. The DNA within core particles stayed mainly in the cytosol and remained protected against DNase I. A minor part of the encapsidated DNA was bound to nuclei. It was protected against DNase I but became accessible after disruption of the nuclei. Deproteinized viral DNA completely remained in the cytosol. These data show that the viral polymerase is probably sufficient for mediating the transport of a hepadnavirus genome into the nucleus and that the viral core particles may release the genome at the nuclear membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号