首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heteranthery is thought to reflect a division of labor, with some anthers serving a pollinator-feeding function and others serving a pollinating function. Mutualism theory predicts that each participant should try to maximize the benefit it receives from its partner: plants should allocate more pollen to pollination, and pollinators should collect more pollen. Accordingly, plant and pollinator may engage in a ‘tug of war’ with respect to pollen from each anther type, resulting in incomplete division of labor. Here, we explored this idea by conducting a fully factorial manipulation of the availability of pollen in long and short anthers of staminate flowers of Solanum houstonii. We found the following: (1) Bumble bees (Bombus impatiens) preferred to sonicate (collect pollen from) short anthers over long anthers, consistent with a role as feeding and pollinating anthers, respectively; (2) Blocking short anther pores alone increased sonication of long anthers and resulted in collection of pollen from long anthers; (3) Blocking long anther pores alone did not influence sonication of short anthers; (4) The increase in sonication of long anthers, when short anther pores are blocked, was greater when pollen was available in long anthers; (5) Despite shifting sonication effort to long anthers, bees do not move their bodies closer to long anther pores where pollen could be collected more effectively; and (6) analysis of the growth of corbicular loads over time spent buzzing indicates that significant amounts of pollen are collected from long anthers as well as short anthers. We conclude that bees can flexibly increase pollen collection from pollinating anthers, but are constrained from fully exploiting this pollen. This results in checks and balances between plant and bee that may help maintain heteranthery.  相似文献   

2.
  • The tropical Melastomataceae are characterized by poricidal anthers which constitute a floral filter selecting for buzz‐pollinating bees. Stamens are often dimorphic, sometimes with discernible feeding and pollinating functions. Rhynchanthera grandiflora produces nectarless flowers with four short stamens and one long stamen; all anthers feature a narrow elongation with an upwards facing pore.
  • We tested pollen transfer by diverse foraging bees and viability of pollen from both stamen types. The impact of anther morphology on pollen release direction and scattering angle was studied to determine the plant's reproductive strategy.
  • Medium‐sized to large bees sonicated flowers in a specific position, and the probability of pollen transfer correlated with bee size even among these legitimate visitors. Small bees acted as pollen thieves or robbers. Anther rostrum and pore morphology serve to direct and focus the pollen jet released by floral sonication towards the pollinator's body. Resulting from the ventral and dorsal positioning of the short and long stamens, respectively, the pollinator's body was widely covered with pollen. This improves the plant's chances of outcrossing, irrespective of which bee body part contacts the stigma. Consequently, R. grandiflora is also able to employ bee species of various sizes as pollen vectors.
  • The strategy of spreading pollen all over the pollinator's body is rather cost‐intensive but counterbalanced by ensuring that most of the released pollen is in fact transferred to the bee. Thus, flowers of R. grandiflora illustrate how specialized morphology may serve to improve pollination by a functional group of pollinators.
  相似文献   

3.
In many nectarless flowering plants, pollen serves as both the carrier of male gametes and as food for pollinators. This can generate an evolutionary conflict if the use of pollen as food by pollinators reduces the number of gametes available for cross‐fertilization. Heteranthery, the production of two or more stamen types by individual flowers reduces this conflict by allowing different stamens to specialize in ‘pollinating’ and ‘feeding’ functions. We used experimental studies of Solanum rostratum (Solanaceae) and theoretical models to investigate this ‘division of labour’ hypothesis. Flight cage experiments with pollinating bumble bees (Bombus impatiens) demonstrated that although feeding anthers are preferentially manipulated by bees, pollinating anthers export more pollen to other flowers. Evolutionary stability analysis of a model of pollination by pollen consumers indicated that heteranthery evolves when bees consume more pollen than should optimally be exchanged for visitation services, particularly when pollinators adjust their visitation according to the amount of pollen collected.  相似文献   

4.
  • Naturalists Fritz and Hermann Müller hypothesised that heteranthery often leads to a division of labour into ‘feeding’ and ‘pollinating’ stamens; the latter often being as long as the pistil so as to promote successful pollination on the bees’ back. In many buzz‐pollinated species of Senna, however, the so‐called pollinating stamens are short and not level with the stigma, raising the question of how pollen is shed on the bees’ back. Here we explore a mechanism called ‘ricochet pollination’. We test whether division of labour is achieved through the interaction between short lower stamens and strongly concave ‘deflector petals’.
  • We studied the arrangement and morphology of the floral organs involved in the ricochet pollination, functioning of the flowers through artificial sonication and observed the interactions between bees and flowers in the field.
  • The middle stamens are adapted to eject pollen downwards, which can be readily collected on the bee mid legs. Most of the pollen is ejected towards the deflector petal(s). Pollen from this set of stamens is more likely to contribute to pollination. The pollen grains seem to ricochet multiple times against the deflector petals to eventually reach the bee's back.
  • The pollen ricochet mechanism promotes a division of labour by involving additional floral organs, such as petals, reinforcing the Müllers’ division‐of‐labour hypothesis. However, alternative, non‐multiexclusive hypotheses could be explored in genus Senna and other angiosperm species.
  相似文献   

5.
Heteranthery, the presence of two or more anther types in the same flower, is taxonomically widespread among bee-pollinated angiosperms, yet has puzzled botanists since Darwin. We test two competing hypotheses for its evolution: the long-standing ‘division of labour'' hypothesis, which posits that some anthers are specialized as food rewards for bees whereas others are specialized for surreptitious pollination, and our new hypothesis that heteranthery is a way to gradually release pollen that maximizes pollen delivery. We examine the evolution of heteranthery and associated traits across the genus Clarkia (Onagraceae) and study plant–pollinator interactions in two heterantherous Clarkia species. Across species, heteranthery is associated with bee pollination, delayed dehiscence and colour crypsis of one anther whorl, and movement of that anther whorl upon dehiscence. Our mechanistic studies in heterantherous species show that bees notice, forage on and export pollen from each anther whorl when it is dehiscing, and that heteranthery promotes pollen export. We find no support for division of labour, but multifarious evidence that heteranthery is a mechanism for gradual pollen presentation that probably evolved through indirect male–male competition for siring success.  相似文献   

6.
Some pollination systems, such as buzz‐pollination, are associated with floral morphologies that require a close physical interaction between floral sexual organs and insect visitors. In these systems, a pollinator's size relative to the flower may be an important feature determining whether the visitor touches both male and female sexual organs and thus transfers pollen between plants efficiently. To date, few studies have addressed whether in fact the “fit” between flower and pollinator influences pollen transfer, particularly among buzz‐pollinated species. Here we use Solanum rostratum, a buzz‐pollinated plant with dimorphic anthers and mirror‐image flowers, to investigate whether the morphological fit between the pollinator's body and floral morphology influences pollen deposition. We hypothesized that when the size of the pollinator matches the separation between the sexual organs in a flower, more pollen should be transferred to the stigma than when the visitor is either too small or too big relative to the flower. To test this hypothesis, we exposed flowers of S. rostratum with varying levels of separation between sexual organs, to bumblebees (Bombus terrestris) of different sizes. We recorded the number of visits received, pollen deposition, and fruit and seed production. We found higher pollen deposition when bees were the same size or bigger than the separation between anther and stigma within a flower. We found a similar, but not statistically significant pattern for fruit set. In contrast, seed set was more likely to occur when the size of the flower exceeded the size of the bee, suggesting that other postpollination processes may be important in translating pollen receipt to seed set. Our results suggest that the fit between flower and pollinator significantly influences pollen deposition in this buzz‐pollinated species. We speculate that in buzz‐pollinated species where floral morphology and pollinators interact closely, variation in the visitor's size may determine whether it acts mainly as a pollinator or as a pollen thief (i.e., removing pollen rewards but contributing little to pollen deposition and fertilization).  相似文献   

7.
  • Pollination in Solanum (Solanaceae) species is commonly performed by female bees, which vibrate anthers to extract pollen. Another pollen removal type is by male euglossine bees, milking the anthers when searching for floral scents produced by secretory tissues (osmophorous) at the swollen connective of the anthers of species in the Cyphomandra clade. Some species of this clade, however, are buzz‐pollinated and present papillate anthers that should also have secretory activity, a hypothesis here tested.
  • The anthers of Solanum luridifuscescens were fixed at different stages of development and analysed under light microscopy, SEM and TEM. Histochemical tests for the detection of starch and lipids were done.
  • Epidermal cells of the abaxial surface of the anthers were visibly papillose, had large nuclei and dense cytoplasm rich in organelles such as mitochondria and plastids, typical features of secretory tissues. In this site, lipid droplets were detected, concomitantly with starch consumption, compatible with the secretory process in osmophores. No exudate or accumulation of substances was seen on the surface; in agreement with a previous pollination study performed in field conditions, where no pollinators were observed collecting floral scents, only pollen. The histochemical and structural analyses have evidenced the lipidic composition of the secretion, strongly pointing to terpenes as the secreted compounds.
  • Ours findings show that papillae of the anthers have secretory activities that produce lipophilic compounds. This does not result in resources for bees, but could be an evolutionary step to the development of more specialised anthers in the Cyphomandra clade.
  相似文献   

8.
The effects of floral morphology on rates of pollen removal and deposition by different pollinators in generalist plant species are not well known. We studied pollination dynamics in wild radish, Raphanus raphanistrum, a plant visited by four groups of pollinators: honey bees, small native bees, butterflies, and syrphyd flies. The effects of anther position and other factors on pollen removal during single visits by all four pollinator taxa were measured. Flowers with high anther exsertion (i.e., anthers placed higher above the opening of the corolla tube) tended to have the highest numbers of pollen grains removed, but this effect was strongest for honey bees and butterflies. For all pollinator taxa, pollen removal increased with the number of pollen grains available on a flower and whowed a positive, decelerating relationship with the duration of the visit. The effects of stigma position and other factors on pollen deposition during single visits by honey bees and butterflies were also studied. The nectar-feeding butterflies had a higher pollination efficiency (percentage of pollen grains removed from anthers that were subsequently deposited on a stigma) than the nectar- and pollen-feeding honey bees. Flowers with intermediate stigma exsertion had the highest numbers of pollen grains deposited on their stigmas by butterflies, but stigma exsertion had no effect on deposition by honey bees. For both butterflies and honey bees, pollen deposition on the recipient flower increased with the amount of pollen removed from the donor flower, and there was a positive, decelerating relationship between deposition and time spent at the flower; these results are analogous to those for pollen removal. The effects of anther and stigma exsertion on pollen removal and denosition did not fit predictions based on patterns of floral correlations, but results for morphology, pollen availability, time spent per visit, and pollinator efficiency are in broad agreement with previous studies, suggesting the possible emergence of some general rules of pollen transfer.  相似文献   

9.
  • Pollinator specialisation through exploitation barriers (such as long floral tubes) does not necessarily mean a lack of pollination when the favoured pollinator is rare or absent. Theory predicts that suboptimal visitors will contribute to plant reproduction in the absence of the most effective pollinator. Here I address these questions with Chasmanthe floribunda a long‐tubed plant species in the Cape Floristic Region, which is reliant on one species of pollinator, the long‐billed Malachite Sunbird. In contrast to short‐billed sunbirds, the Malachite Sunbird occurs in lower abundance or is absent in transformed landscapes. Short‐billed sunbirds rob and thieve nectar from long‐tubed flowers, but their potential contribution towards pollination is unknown.
  • Experiments assessing seed set after single flower visits were performed to determine whether thieving short‐billed sunbirds can act as substitute pollinators. To determine whether short‐billed sunbirds reduce pollen limitation in transformed areas, pollen supplementation was done by hand and compared to natural fruit set.
  • Short billed sunbirds are unable to act as substitute pollinators, and seed set is significantly lower in the flowers that they visited, compared to flowers visited by long‐billed sunbirds. This is substantiated on a landscape scale, where fruit production in Chasmanthe floribunda could artificially be increased by 35% in transformed landscapes, but not so in natural areas.
  • These findings have important consequences for the management and conservation of long‐tubed bird‐pollinated plant species that exist in recently transformed landscapes. The potential vulnerability of specialised plant species in transformed landscapes is highlighted.
  相似文献   

10.
Cyperaceae are characteristically anemophilous, but there are some reports of species re‐adapted to entomophily, such as Rhynchospora ciliata. Our objective was to investigate: (1) the distribution pattern of flowers in inflorescences of Rhynchospora ciliata; (2) the dynamics of its anthesis; and (3) whether R. ciliata is pollinated by bees, by wind or by both. Additionally, we tested the hypotheses: (i) the hypsophylls and/or anthers attract pollinators, and (ii) biotic vectors enhance the reproductive success of R. ciliata. We analysed floral biology, dynamics of anthesis, frequency and behaviour of insects visiting flowers; we also carried out experiments on flower attractiveness, pollination by wind and reproductive success. Rhynchospora ciliata has flowers with anemophilous attributes, including anthers exposed during anthesis; however, the anthers (here considered a mixed trait) together with the white hypsophylls can be considered as attributes that favour entomophily. Both wind and four species of bee were considered as pollen vectors of R. ciliata. Through flower attractiveness tests, we observed that the hypsophylls do not affect the frequency of pollinating bees and that the absence of exposed anthers affects the average number of visits, probably because pollen is the only floral resource. Reproductive tests indicate that R. ciliata is self‐incompatible and that ambophily enhances its reproductive success.  相似文献   

11.
Abstract Animal‐pollinated plant species modulate the presentation of pollinator rewards to maximize reproductive success. In plants providing pollen as the only reward for pollinators, it is usually difficult to unravel the dual roles of reward presentation and the realization of male and female functions (pollen removal and deposition). Exploiting the two types of anther in the androecia of Melastoma malabathricum L., we examined whether the removal of pollen for reward is regulated primarily to favor male function or female function. Pollen removal by carpenter bees from the feeding and pollination anthers, as well as pollen deposition on the stigmas, were quantified during anthesis of M. malabathricum. There was no significant difference in pollen removal rates from the feeding and pollination anthers of M. malabathricum between the onset of anthesis and flower wilting. The stigmatic pollen loads exceeded the ovule number after three sonication bouts, and female function was satisfied earlier than male function. The results support the hypothesis that the presentation of pollination reward in this species is regulated primarily to favor the expression of male function, rather than female function, in agreement with the pollen‐donation hypothesis. A cooperative relationship between the feeding and pollination anthers was demonstrated in heterantherous flowers, which optimizes the balance in investments between pollinator rewards and “functional pollen” for gene transfer.  相似文献   

12.
  • Although common among orchids, pollination by perfume‐gathering male euglossine bees is quite rare in other Neotropical families. In Gesneriaceae, for example, it is reported in two genera only, Drymonia and Gloxinia. Flowers of G. perennis are known to emit perfume, thereby attracting male euglossine bees as pollinators. However, detailed reports on the pollination ecology, as well as on chemistry of floral perfume of individuals in natural populations, are still missing. In this study, we report on the pollination ecology of G. perennis, focusing on the ecological significance of its floral perfume.
  • In natural populations in Peru, we documented the floral biology and breeding system of G. perennis, as well as its interaction with flower visitors. We also characterised the chemical composition of floral perfume, as well as its timing of emission.
  • Gloxinia perennis is self‐compatible and natural pollination success is high. Spontaneous self‐pollination occurs as a ‘just in case strategy’ when pollinators are scarce. Perfume‐collecting males of Eulaema cingulata and Elmeriana were identified as pollinators. The perfume bouquet of G. perennis consists of 16 compounds. (E)‐Carvone epoxide (41%) and limonene (23%) are the major constituents. Perfume emission is higher at 09:00 h, matching the activity peak of Eulaema pollinators.
  • Flowers of G. perennis have evolved a mixed strategy to ensure pollination (i.e. self‐ and cross‐pollination), but cross‐pollination is favoured. The size and behaviour of Eulaema males enables only these bees to successfully cross‐pollinate G. perennis. Furthermore, G. perennis floral perfume traits (i.e. chemistry and timing of emission) have evolved to optimise the attraction of these bees.
  相似文献   

13.
  • Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci.
  • We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents.
  • The flowers of cambuci were self‐incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds.
  • This study describes the first scent‐mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees.
  相似文献   

14.
Aims In heterantherous plants, 'division of labor' among structurally different stamens, i.e. pollinating and feeding functions, has been thought to reduce the evolutionary conflict of relying on pollen both as the carrier of male gametes and as the food for pollinators. The key to successful division of labor among different sets of stamens is the size match between stamens and legitimate pollinators, which results in the precise deposition of pollen onto specific locations on pollinator's body and facilitates cross pollination. However, the potential impact of small illegitimate insects that are ubiquitous during the pollination process on the plant reproduction in heterantherous species has been largely neglected in previous studies and never been demonstrated experimentally.Methods Here, we investigated the functions of three different types of stamens in Commelina communis. The pollinator visitation, pollen removal and deposition were compared among flowers with different types of anthers emasculated at two natural populations. Moreover, the mating systems of C. communis in wild populations were estimated using microsatellite markers.Important findings Our data showed that the main floral visitors for C. communis at the two studied populations were small illegitimate bees rather than legitimate pollinators, accounting for 77.5 and 92.2% of total flower visits, respectively. Flower manipulations in C. communis demonstrated that the two types of brightly yellow stamens separately functioned as 'deceptive attraction' and 'feeding' functions. Although the brown inconspicuous stamens of C. communis with the largest amount of fertile pollen had the potential function in offering pollen for cross pollination, the high ratio of illegitimate visitation by small bees significantly affected the dispersal and deposition of pollen from the pollinating anthers, and subsequently decreased the levels of outcrossing (t m = 0.23–0.32) in wild populations. Our work further confirmed that the size match between pollinators and the floral morphology is the prerequisite to successfully fulfill the functional differentiation among different sets of stamens in heterantherous plants. Local high ratio of illegitimate visitation by size unmatched insects could significantly weaken the potential functions of heteranthery, affecting the dispersal and deposition of functional pollen in heterantherous plants and further the whole mating systems.  相似文献   

15.
  • The incredible pollination mechanisms displayed by orchid flowers has inspired biologists over the centuries. Based on the intriguing flower structures, the relationship among orchid species and their pollinators has been frequently regarded as very specialised.
  • Given that visits on flowers pollinated by oil‐collecting bees are regularly rare, and in Oncidiinae the flowers frequently attractexclusively species that act as effective pollinators, the comparative reproductive biology and pollinator specificity of two sympatric Gomesa (G. varicosa and G. montana; Oncidiinae) were analysedbased on records of floral morphology, production of floral rewards, pollinators and pollination mechanisms. Furthermore, experimental pollinations were carried out in order to examine the breeding systems.
  • The results have show that in the studied population, both Gomesa are visited by several bee species, but these orchids present a specific pollination system.Pollinaria are deposited on the head of Centridini (G. varicosa and G. montana) and Epicharitini (G. varicosa) bees when landed on the central callus of the labellumto collect lipoidal substances produced by glandular elaiophores on lateral lobes of the labellum. Both species are dependent on a biotic pollen vector to set fruits. Gomesamontana is completely self‐incompatible, while G. varicosa is partially self‐compatible.
  • Our results indicate that although the occurrence of self‐sterile species seems to be common in Oncidiinae, in partially self‐incompatible species, as is the case of G. varicosa, self‐compatibility has been considered as an important factor favouring reproductive assurance in populations with low visitation frequencies, despite occurrence of inbreeding depression.
  相似文献   

16.
The interplay between insect and plant traits outlines the patterns of pollen transfer and the subsequent plant reproductive fitness. We studied the factors that affect the pollination efficiency of a pollinator community of Dictamnus albus L. by evaluating insect behaviour and morphological characteristics in relation to flowering phenology. In order to extrapolate the pollinator importance of single taxa and of the whole pollinator guild, we calculated an index distinguishing between potential (PPI) and realized (RPI) pollinator importance. Although the pollinator species spectrum appeared rather constant, we found high intra‐ and inter‐annual variability of pollinator frequency and importance within the insect community. Flower visitation rate strictly depended on insect abundance and on the overlap between their flying period and flower blooming. All the pollinators visited flowers from the bottom to the top of the racemes, excluding intra‐plant geitonogamous pollination, and most of them showed high pollen fidelity. Only medium large‐sized bees could contact the upward bending stiles while feeding on nectar, highlighting a specialisation of the plant towards bigger pollinators. Moreover, we found evidence of functional specialisation, since all pollinators were restricted to a single taxonomic group (order: Hymenoptera; superfamily: Apoidea). Both the PPI and RPI indices indicate Habropoda tarsata as the most important pollinator of D. albus. Following hand cross‐pollination experiments we revealed the presence of pollination limitation in 1 of the 3 years of field study. We discuss this result in relation to flowering abundance and to possible mismatches of phenological periods between plants and insects.  相似文献   

17.
  • In explosive pollination, many structures and mechanisms have evolved to achieve high‐speed stamen movement. The male flower of the submerged plant Hydrilla verticillata is reported to be able to release pollen explosively some time after leaving the mother plant time, but the mechanism of stamen movement and the related functional structure in this species are unclear.
  • In this study, we observed the male flower structure and pollen dispersal process of H. verticillata. We analysed the stamen movements during the pollen dispersal process and conducted several controlled experiments to study the process of storage and release of elastic potential energy in explosive pollination.
  • When the male flower of H. verticillata is bound to the united bracts, the sepals accumulate elastic potential energy through the expansion of basal extensor cells. After the male flower is liberated from the mother plant, the stamens unfold rapidly with the sepals under adhesion and transfer the elastic potential energy to the filament in seconds. Once stamens unfold to a critical angle, at which the elasticity of the filament just exceeds the adhesion between sepals and anthers, the stamens automatically rebound and release pollen in milliseconds.
  • These results reveal that Catapult‐like stamens, spoon‐shaped sepals and enclosed united bracts in the spathe together constitute the functional structure in rapid stamen movement of H. verticillata. They ensure that the pollen can be released on the water surface, and thus adapt successfully to the pollen‐epihydrophilous pollination.
  相似文献   

18.
The two widespread tropical Solanum species S. paniculatum and S. stramoniifolium are highly dependent on the visits of large bees that pollinate the flowers while buzzing them. Both Solanum species do not offer nectar reward; the rewarding of bees is thus solely dependent on the availability of pollen. Flower visitors are unable to visually assess the amount of pollen, because the pollen is hidden in poricidal anthers. In this study we ask whether and how the amount of pollen determines the attractiveness of flowers for bees. The number of pollen grains in anthers of S. stramoniifolium was seven times higher than in S. paniculatum. By contrast, the handling time per five flowers for carpenter bees visiting S. paniculatum was 3.5 times shorter than of those visiting S. stramoniifolium. As a result foraging carpenter bees collected a similar number of pollen grains per unit time on flowers of both species. Experimental manipulation of pollen availability by gluing the anther pores showed that the carpenter bees were unable to detect the availability of pollen by means of chemical cues before landing and without buzzing. Our study shows that the efficiency of pollen collecting on S. paniculatum is based on large inflorescences with short between‐flower search times and short handling time of individual flowers, whereas that of S. stramoniifolium relies on a large amount of pollen per flower. Interestingly, large carpenter bees are able to adjust their foraging behaviour to drastically different strategies of pollen reward in otherwise very similar plant species.  相似文献   

19.
  • Studies of floral polymorphisms have focused on heterostyly, while stigma‐height dimorphism has received considerably less attention. Few studies have examined the reproductive biology of species with stigma‐height dimorphism to understand how factors influencing mate availability and pollen transfer are related to morph ratios in populations.
  • Floral morphological traits, especially herkogamy and reciprocity, pollinator visitation, breeding system and spatiotemporal mate availability, are known to affect inter‐morph pollination and morph ratios in species with stigma‐height dimorphism. In this study, we investigated the presence of stigma‐height dimorphism and estimated morph ratios in four naturally occurring populations of Jasminum malabaricum. We quantified morph‐ and population‐specific differences in the abovementioned factors in these populations to understand the observed morph ratios.
  • The positions of anthers and stigmas were characteristic of stigma‐height dimorphism, the first report of this polymorphism in the genus. All study populations were isoplethic, implying equal fitness of both morphs. Herkogamy was higher in the short‐styled morph, while reciprocity was higher between the long‐styled stigma and short‐styled anthers. Long‐ and short‐tongued pollinators were common floral visitors, and we observed no differences between morphs in spatiotemporal mate availability or pollinator visitation. Neither morph exhibited self‐ or heteromorphic incompatibility.
  • The short‐styled stigma had lower reciprocity but likely receives sufficient inter‐morph pollen from long‐tongued pollinators, and also by avoiding self‐pollination due to higher herkogamy. These results highlight the importance of sufficient effective pollinators and floral morphological features, particularly herkogamy, in maintaining isoplethy in species with stigma‐height dimorphism.
  相似文献   

20.
  • Plant species that are effective colonisers of transient habitats are expected to have a capacity for uniparental reproduction and show flexibility in pollination systems. Such traits may enable populations to be established from a small number of founding individuals without these populations succumbing to reductions in fecundity arising from pollinator limitation.
  • We tested these predictions for Aloe thraskii (Xanthorrhoeaceae), a succulent treelet that colonises shifting coastal dunes and has both bird and bee pollinators. We performed hand‐pollination experiments, and selectively excluded bird visitors to determine differences in pollinator effectiveness. We measured pollinator visitation rates and fecundity in populations varying in their size, density and isolation distance.
  • Controlled hand‐pollinations revealed that unlike most other Aloe species, A. thraskii is self‐compatible and thus capable of uniparental reproduction. The species does however depend on pollinators and is visited by various bird species as well as by bees. Fruit and seed set are not affected by selective exclusion of birds, thus indicating that bees are effective pollinators. Bird visitation rates increased with increasing plant height and population size, while bee visitation rates increased with increasing population size and density. We found that seed set per flower was lower in large populations than in small populations.
  • These results suggest that establishment of populations of A. thraskii from a small number of individuals is unlikely to be limited by the fecundity of individual plants.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号