首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Conductive 2D metal–organic frameworks (MOFs) have merits beyond traditional MOFs for electrochemical applications, but reports on using MOFs as electrodes for electrochemical microsupercapacitors (MSCs) are practically non‐existent. In this work, a Ni‐catecholate‐based MOF (Ni‐CAT MOF) having good conductivity and exhibiting redox chemistry in the positive and negative voltage windows is developed. A novel process is developed to selectively grow the conductive Ni‐CAT MOF on 3D laser scribed graphene (LSG). The LSG with its superior wettability serves as a functional matrix‐current collector for the hybridization of conductive Ni‐CAT MOF nanocrystals. Impressively, MSCs fabricated using the hybrid LSG/Ni‐CAT MOF show significant improvement compared with MOF‐free LSG electrodes. Specifically, the LSG/Ni‐CAT MOF electrodes can deliver MSCs with a wide operating voltage (1.4 V), high areal capacitance (15.2 mF cm?2), energy density (4.1 µWh cm?2), power density (7 mW cm?2), good rate performance, and decent cycling stability. This work opens up an avenue for developing electrochemical microsupercapacitors using conductive MOF electrodes.  相似文献   

2.
Microsupercapacitors (MSCs) with high energy densities offer viable miniaturized alternatives to bulky electrolytic capacitors if the former can respond at the kilo Hertz (kHz) or higher frequencies. Moreover, MSCs fabricated on a chip can be integrated into thin‐film electronics in a compatible manner, serving the function of ripple filtering units or harvesters of energy from high‐frequency sources. In this work, wafer‐scale fabrication is demonstrated of MXene microsupercapacitors with controlled flake sizes and engineered device designs to achieve excellent frequency filtering performance. Specifically, the devices (100 nm thick electrodes and 10 µm interspace) deliver high volumetric capacitance (30 F cm?3 at 120 Hz), high rate capability (300 V s?1), and a very short relaxation time constant (τ0 = 0.45 ms), surpassing conventional electrolytic capacitors (τ0 = 0.8 ms). As a result, the devices are capable of filtering 120 Hz ripples produced by AC line power at a frequency of 60 Hz. This study opens new avenues for exploring miniaturized MXene MSCs as replacements for bulky electrolytic capacitors.  相似文献   

3.
Developing advanced supercapacitors with both high areal and volumetric energy densities remains challenging. In this work, self‐supported, compact carbon composite electrodes are designed with tunable thickness using 3D printing technology for high‐energy‐density supercapacitors. The 3D carbon composite electrodes are composed of the closely stacked and aligned active carbon/carbon nanotube/reduced graphene oxide (AC/CNT/rGO) composite filaments. The AC microparticles are uniformly embedded in the wrinkled CNT/rGO conductive networks without using polymer binders, which contributes to the formation of abundant open and hierarchical pores. The 3D‐printed ultrathick AC/CNT/rGO composite electrode (ten layers) features high areal and volumetric mass loadings of 56.9 mg cm?2 and 256.3 mg cm?3, respectively. The symmetric cell assembled with the 3D‐printed thin GO separator and ultrathick AC/CNT/rGO electrodes can possess both high areal and volumetric capacitances of 4.56 F cm?2 and 10.28 F cm?3, respectively. Correspondingly, the assembled ultrathick and compact symmetric cell achieves high areal and volumetric energy densities of 0.63 mWh cm?2 and 1.43 mWh cm?3, respectively. The all‐component extrusion‐based 3D printing offers a promising strategy for the fabrication of multiscale and multidimensional structures of various high‐energy‐density electrochemical energy storage devices.  相似文献   

4.
A facile two‐step strategy is developed to design the large‐scale synthesis of hierarchical, unique porous architecture of ternary metal hydroxide nanowires grown on porous 3D Ni foam and subsequent effective sulfurization. The hierarchical Zn–Co–S nanowires (NWs) arrays are directly employed as an electrode for supercapacitors application. The as‐synthesized Zn–Co–S NWs deliver an ultrahigh areal capacity of 0.9 mA h cm?2 (specific capacity of 366.7 mA h g?1) at a current density of 3 mA cm?2, with an exceptional rate capability (≈227.6 mA h g?1 at a very high current density of 40 mA cm?2) and outstanding cycling stability (≈93.2% of capacity retention after 10 000 cycles). Most significantly, the assembled Zn–Co–S NWs//Fe2O3@reduced graphene oxide asymmetric supercapacitors with a wide operating potential window of ≈1.6 V yield an ultrahigh volumetric capacity of ≈1.98 mA h cm?3 at a current density of 3 mA cm?2, excellent energy density of ≈81.6 W h kg?1 at a power density of ≈559.2 W kg?1, and exceptional cycling performance (≈92.1% of capacity retention after 10 000 cycles). This general strategy provides an alternative to design the other ternary metal sulfides, making it facile, free‐standing, binder‐free, and cost‐effective ternary metal sulfide‐based electrodes for large‐scale applications in modern electronics.  相似文献   

5.
High energy density and power density within a limited volume of flexible solid‐state supercapacitors are highly desirable for practical applications. Here, free‐standing high‐quality 3D nanoporous duct‐like graphene (3D‐DG) films are fabricated with high flexibility and robustness as the backbones to deposit flower‐like MnO2 nanosheets (3D‐DG@MnO2). The 3D‐DG is the ideal support for the deposition of large amount of active materials because of its large surface area, appropriate pore structure, and negligible volume compared with other kinds of carbon backbones. Moreover, the 3D‐DG preserve the distinctive 2D coherent electronic properties of graphene, in which charge carriers move rapidly with a small resistance through the high‐quality and continuous chemical vapor deposition‐grown graphene building blocks, which results in a high rate performance. Marvelously, ultrathin (≈50 μm) flexible solid‐state asymmetric supercapacitors (ASCs) using 3D‐DG@MnO2 as the positive electrode and 3D hierarchical nanoporous graphene films as the negative electrode display ultrahigh volumetric energy density (28.2 mW h cm?3) and power density (55.7 W cm?3) at 2.0 V. Furthermore, as‐prepared ASCs show high cycle stability clearly demonstrating their broad applications as power supplies in wearable electronic devices.  相似文献   

6.
The charge storage characteristics of a composite nanoarchitecture with a highly functional 3D morphology are reported. The electrodes are formed by the electropolymerization of aniline monomers into a nanometer‐thick polyaniline (PANI) film that conformally coats graphitic petals (GPs) grown by microwave plasma chemical vapor deposition (MPCVD) on conductive carbon cloth (CC). The hybrid CC/GPs/PANI electrodes yield results near the theoretical maximum capacitance for PANI of 2000 F g?1 (based on PANI mass) and a large area‐normalized specific capacitance of ≈2.6 F cm?2 (equivalent to a volumetric capacitance of ≈230 F cm?3) at a low current density of 1 A g?1 (based on PANI mass). The specific capacitances remain above 1200 F g?1 (based on PANI mass) for currents up to 100 A g?1 with correspondingly high area‐normalized values. The hybrid electrodes also exhibit a high rate capability with an energy density of 110 Wh kg?1 and a maximum power density of 265 kW kg?1 at a current density of 100 A g?1. Long‐term cyclic stability is good (≈7% loss of initial capacitance after 2000 cycles), with coulombic efficiencies >99%. Moreover, prototype all‐solid‐state flexible supercapacitors fabricated from these hybrid electrodes exhibit excellent energy storage performance.  相似文献   

7.
The fabrication of fully printable, flexible micro‐supercapacitors (MSCs) with high energy and power density remains a significant technological hurdle. To overcome this grand challenge, the 2D material MXene has garnered significant attention for its application, among others, as a printable electrode material for high performing electrochemical energy storage devices. Herein, a facile and in situ process is proposed to homogeneously anchor hydrous ruthenium oxide (RuO2) nanoparticles on Ti3C2Tx MXene nanosheets. The resulting RuO2@MXene nanosheets can associate with silver nanowires (AgNWs) to serve as a printable electrode with micrometer‐scale resolution for high performing, fully printed MSCs. In this printed nanocomposite electrode, the RuO2 nanoparticles contribute high pseudocapacitance while preventing the MXene nanosheets from restacking, ensuring an effective ion highway for electrolyte ions. The AgNWs coordinate with the RuO2@MXene to guarantee the rheological property of the electrode ink, and provide a highly conductive network architecture for rapid charge transport. As a result, MSCs printed from the nanocomposite inks demonstrate volumetric capacitances of 864.2 F cm?3 at 1 mV s?1, long‐term cycling performance (90% retention after 10 000 cycles), good rate capability (304.0 F cm?3 at 2000 mV s?1), outstanding flexibility, remarkable energy (13.5 mWh cm?3) and power density (48.5 W cm?3).  相似文献   

8.
While stretchable micro‐supercapacitors (MSCs) have been realized, they have suffered from limited areal electrochemical performance, thus greatly restricting their practical electronic application. Herein, a facile strategy of 3D printing and unidirectional freezing of a pseudoplastic nanocomposite gel composed of Ti3C2Tx MXene nanosheets, manganese dioxide nanowire, silver nanowires, and fullerene to construct intrinsically stretchable MSCs with thick and honeycomb‐like porous interdigitated electrodes is introduced. The unique architecture utilizes thick electrodes and a 3D porous conductive scaffold in conjunction with interacting material properties to achieve higher loading of active materials, larger interfacial area, and faster ion transport for significantly improved areal energy and power density. Moreover, the oriented cellular scaffold with fullerene‐induced slippage cell wall structure prompts the printed electrode to withstand large deformations without breaking or exhibiting obvious performance degradation. When imbued with a polymer gel electrolyte, the 3D‐printed MSC achieves an unprecedented areal capacitance of 216.2 mF cm?2 at a scan rate of 10 mV s?1, and remains stable when stretched up to 50% and after 1000 stretch/release cycles. This intrinsically stretchable MSC also exhibits high rate capability and outstanding areal energy density of 19.2 µWh cm?2 and power density of 58.3 mW cm?2, outperforming all reported stretchable MSCs.  相似文献   

9.
A facile approach to synthesize porous disordered carbon layers as energy storage units coating on graphene sheets to form interconnected frameworks by one‐step pyrolysis of the mixture of graphene oxide/polyaniline and KOH is presented. As effective energy storage units, these porous carbon layers play an important role in enhancing the electrochemical performances. The obtained porous carbon material exhibits a high specific surface area (2927 m2 g?1), hierarchical interconnected pores, moderate pore volume (1.78 cm3 g?1), short ion diffusion paths, and a high nitrogen level (6 at%). It displays both unparalleled gravimetric (481 F g?1) and outstanding volumetric capacitance (212 F cm?3) in an aqueous electrolyte. More importantly, the assembled symmetrical supercapacitor delivers not only high gravimetric (25.7 Wh kg?1 based on total mass of electroactive materials) but also high volumetric energy densities (11.3 Wh L?1) in an aqueous electrolyte. Furthermore, the assembled asymmetric supercapacitor yields a maximum energy density up to 88 Wh kg?1, which is, to the best of our knowledge, the highest value so far reported for carbon//MnO2 asymmetric supercapacitors in aqueous electrolytes. Therefore, this novel carbon material holds great promise for potential applications in energy‐related technological fields.  相似文献   

10.
To overcome the low energy density bottleneck of graphene‐based supercapacitors and to organically endow them with high‐power density, ultralong‐life cycles, etc., one rational strategy that couple graphene sheets with multielectron, redox‐reversible, and structurally‐stable organic compounds. Herein, a graphene‐indanthrone (IDT) donor–π–acceptor heterojunction is conceptualized for efficient and smooth 6H+/6e? transfers from pseudocapacitive IDT molecules to electrochemical double‐layer capacitive graphene scaffolds. To construct this, water‐processable graphene oxide (GO) is employed as a graphene precursor, and to in situ exfoliate IDT industrial dyestuff, followed by a hydrothermally‐induced reduction toward GO and self‐assembly between reduced GO (rGO) donors (D) and IDT acceptors (A), affording rGO‐π‐IDT D–A heterojunctions. Electrochemical tests indicate that rGO‐π‐IDT heterojunctions deliver a gravimetric capacitance of 535.5 F g?1 and an amplified volumetric capacitance of 685.4 F cm?3. The assembled flexible all‐solid‐state supercapacitor yields impressive volumetric energy densities of 31.3 and 25.1 W h L?1, respectively, at low and high power densities of 767 and 38 554 W L?1, while exhibiting an exceptional rate capability, cycling stability, and enduring mechanically‐challenging bending and distortions. The concept and methodology may open up opportunities for other two‐dimensional materials and other energy‐related devices.  相似文献   

11.
A flexible asymmetric supercapacitor (ASC) with high energy density is designed and fabricated using flower‐like Bi2O3 and MnO2 grown on carbon nanofiber (CNF) paper as the negative and positive electrodes, respectively. The lightweight (1.6 mg cm?2), porous, conductive, and flexible features make the CNF paper an ideal support for guest active materials, which permit a large areal mass of 9 mg cm?2 for Bi2O3 (≈85 wt% of the entire electrode). Thus, the optimal device with an operation voltage of 1.8 V can deliver a high energy density of 43.4 μWh cm?2 (11.3 W h kg?1, based on the total electrodes) and a maximum power density of 12.9 mW cm?2 (3370 W kg?1). This work provides an example of large areal mass and flexible electrode for ASCs with high areal capacitance and high energy density, holding great promise for future flexible electronic devices.  相似文献   

12.
Highly conductive and ultrathin 2D nanosheets are of importance for the development of portable electronics and electric vehicles. However, scalable production and rational design for highly electronic and ionic conductive 2D nanosheets still remain a challenge. Herein, an industrially adoptable fluid dynamic exfoliation process is reported to produce large quantities of ionic liquid (IL)‐functionalized metallic phase MoS2 (m‐MoS2) and defect‐free graphene (Gr) sheets. Hybrid 2D–2D layered films are also fabricated by incorporating Gr sheets into compact m‐MoS2 films. The incorporated IL functionalities and Gr sheets prevent aggregation and restacking of the m‐MoS2 sheets, thereby creating efficient and rapid ion and electron pathways in the hybrid films. The hybrid film with a high packing density of 2.02 g cm?3 has an outstanding volumetric capacitance of 1430.5 F cm?3 at 1 A g?1 and an extremely high rate capability of 80% retention at 1000 A g?1. The flexible supercapacitor assembled using a polymer‐gel electrolyte exhibits excellent resilience to harsh electrochemical and mechanical conditions while maintaining an impressive rate performance and long cycle life. Successful achievement of an ultrahigh volumetric energy density (1.14 W h cm?3) using an organic electrolyte with a wide cell voltage of ≈3.5 V is demonstrated.  相似文献   

13.
The search for earth‐abundant and high‐performance electrode materials for sodium‐ion batteries represents an important challenge to current battery research. 2D transition metal dichalcogenides, particularly MoS2, have attracted increasing attention recently, but few of them so far have been able to meet expectations. In this study, it is demonstrated that another phase of molybdenum sulfide—amorphous chain‐like MoS3—can be a better choice as the anode material of sodium‐ion batteries. Highly compact MoS3 particles infiltrated with carbon nanotubes are prepared via the facile acid precipitation method in ethylene glycol. Compared to crystalline MoS2, the resultant amorphous MoS3 not only exhibits impressive gravimetric performance—featuring excellent specific capacity (≈615 mA h g?1), rate capability (235 mA h g?1 at 20 A g?1), and cycling stability but also shows exceptional volumetric capacity of ≈1000 mA h cm?3 and an areal capacity of >6.0 mA h cm?2 at very high areal loadings of active materials (up to 12 mg cm?2). The experimental results are supported by density functional theory simulations showing that the 1D chains of MoS3 can facilitate the adsorption and diffusion of Na+ ions. At last, it is demonstrated that the MoS3 anode can be paired with an Na3V2(PO4)3 cathode to afford full cells with great capacity and cycling performance.  相似文献   

14.
Poor quality and insufficient productivity are two main obstacles for the practical application of graphene in electrochemical energy storage. Here, high‐quality crumpled graphene microflower (GmF) for high‐performance electrodes is designed. The GmF possesses four advantages simultaneously: highly crystallized defect‐free graphene layers, low stacking degree, sub‐millimeter continuous surface, and large productivity with low cost. When utilized as carbon host for sulfur cathode, the GmF‐sulfur hybrid delivers decent areal capacities of 5.2 mAh cm?2 at 0.1 C and 3.8 mAh cm?2 at 0.5 C. When utilized as cathode of Al‐ion battery, the GmF affords a high capacity of 100 mAh g?1 with 100% capacity retention after 5000 cycles and excellent rate capability from 0.1 to 20 A g?1. This facile and large‐scale producible GmF represents a meaningful high‐quality graphene powder for practical energy storage technology. Meanwhile, this unique high‐quality graphene design provides an effective route to improve electrochemical properties of graphene‐based electrodes.  相似文献   

15.
Miniaturization of energy storage devices with enhanced performance metrics can reduce the footprint of microdevices being used in our daily life. Micro‐­supercapacitor architectures with planar geometry provides several advantages, such as, the ability to control and reduce the distances ions travel between two electrodes, easy integration to microdevices, and offer the potential of being extended into 3D without compromising the interelectrode distances. Here, focused ion beam (FIB) technology is used to directly write miniaturized planar electrode systems of reduced graphene oxide (FIB‐rGO) on films of graphene oxide. Using optimized ion beam irradiation, interdigitated FIB‐rGO electrode designs with 40 μm long and 3.5 μm wide fingers with ultrasmall interelectrode spacing of 1 μm demonstrate a large capacitance (102 mF cm?2), ultrasmall time response (0.03 ms), low equivalent series resistance (0.35 mΩ cm2), and retain 95% of the capacitance after 1000 cycles at an ultrahigh current density of 45 mA cm?2. These performance metrics show remarkable improvements on several counts of supercapacitor performance over existing reports due to the miniaturized electrode dimensions and minimal damage to the graphene sheets. It is believed that these results can provide avenues for large‐scale fabrication of arrayed, planar, high‐performance micro‐supercapacitors with a small environmental footprint.  相似文献   

16.
Tuning heterointerfaces between hybrid phases is a very promising strategy for designing advanced energy storage materials. Herein, a low‐cost, high‐yield, and scalable two‐step approach is reported to prepare a new type of hybrid material containing MoS2/graphene nanosheets prepared from ball‐milling and exfoliation of commercial bulky MoS2 and graphite. When tested as an anode material for a sodium‐ion battery, the as‐prepared MoS2/graphene nanosheets exhibit remarkably high rate capability (284 mA h g?1 at 20 A g?1 (≈30C) and 201 mA h g?1 at 50 A g?1 (≈75C)) and excellent cycling stability (capacity retention of 95% after 250 cycles at 0.3 A g?1). Detailed experimental measurements and density functional theory calculation reveal that the functional groups in 2D MoS2/graphene heterostructures can be well tuned. The impressive rate capacity of the as‐prepared MoS2/graphene hybrids should be attributed to the heterostructures with a low degree of defects and residual oxygen containing groups in graphene, which subsequently improve the electronic conductivity of graphene and decrease the Na+ diffusion barrier at the MoS2/graphene interfaces in comparison with the acid treated one.  相似文献   

17.
Conventional graphite anodes can hardly intercalate sodium (Na) ions, which poses a serious challenge for developing Na‐ion batteries. This study details a novel method that involves single‐step laser‐based transformation of urea‐containing polyimide into an expanded 3D graphene anode, with simultaneous doping of high concentrations of nitrogen (≈13 at%). The versatile nature of this laser‐scribing approach enables direct bonding of the 3D graphene anode to the current collectors without the need for binders or conductive additives, which presents a clear advantage over chemical or hydrothermal methods. It is shown that these conductive and expanded 3D graphene structures perform exceptionally well as anodes for Na‐ion batteries. Specifically, an initial coulombic efficiency (CE) up to 74% is achieved, which exceeds that of most reported carbonaceous anodes, such as hard carbon and soft carbon. In addition, Na‐ion capacity up to 425 mAh g?1 at 0.1 A g?1 has been achieved with excellent rate capabilities. Further, a capacity of 148 mAh g?1 at a current density of 10 A g?1 is obtained with excellent cycling stability, opening a new direction for the fabrication of 3D graphene anodes directly on current collectors for metal ion battery anodes as well as other potential applications.  相似文献   

18.
Capacitive carbons are attractive for energy storage on account of their superior rate and cycling performance over traditional battery materials, but they usually suffer from a far lower volumetric energy density. Starting with expanded graphene, a simple, multifunctional molten sodium amide treatment for the preparation of high‐density graphene with high capacitive performance in both aqueous and lithium battery electrolytes is reported. The molten sodium amide can condense the expanded graphene, lead to nitrogen doping and, what is more important, create moderate in‐plane nanopores on graphene to serve as ion access shortcuts in dense graphene stacks. The resulting high‐density graphene electrode can deliver a volumetric capacitance of 522 F cm?3 in a potassium hydroxide electrolyte; and in a lithium‐ion battery electrolyte, it exhibits a gravimetric and volumetric energy density of 618 W h kg?1 and 740 W h L?1, respectively, and even outperforms commercial LiFePO4.  相似文献   

19.
A unique 3D hybrid sponge with chemically coupled nickel disulfide‐reduced graphene oxide (NiS2‐RGO) framework is rationally developed as an effective polysulfide reservoir through a biomolecule‐assisted self‐assembly synthesis. An optimized amount of NiS2 (≈18 wt%) with porous nanoflower‐like morphology is uniformly in situ grown on the RGO substrate, providing abundant active sites to adsorb and localize polysulfides. The improved polysulfide adsorptivity from sulfiphilic NiS2 is confirmed by experimental data and first‐principle calculations. Moreover, due to the chemical coupling between NiS2 and RGO formed during the in situ synthesis, the conductive RGO substrate offers a 3D electron pathway to facilitate charge transfer toward the NiS2‐polysulfide adsorption interface, triggering a fast redox kinetics of polysulfide conversion and excellent rate performance (C/20–4C). Therefore, the self‐assembled hybrid structure simultaneously promotes static polysulfide‐trapping capability and dynamic polysulfide‐conversion reversibility. As a result, the 3D porous sponge enables a high sulfur content (75 wt%) and a remarkably high sulfur loading (up to 21 mg cm?2) and areal capacity (up to 16 mAh cm?2), exceeding most of the reported values in the literature involving either RGO or metal sulfides/other metal compounds (sulfur content of <60 wt% and sulfur loading of <3 mg cm?2).  相似文献   

20.
Supercapacitors, also known as electrochemical capacitors, can provide much faster charge–discharge, greater power density, and cyclability than batteries, but they are still limited by lower energy densities (or the amount of energy stored per unit volume). Here, a novel strategy for the synthesis of functional pillared graphene frameworks, in which graphene fragments in‐between graphene sheets, through simple thermal‐treatment of ozone (O3)‐treated graphene oxide at very low temperature of 200 °C is reported. Due to its high packing density, high content of stable oxygen species, and continues ion transport network in‐between graphene sheets, the functional pillared‐graphene framework delivers not only high gravimetric capacitance (353 F g?1 based on the mass of the active material) and ultrahigh volumetric capacitance (400 F cm?3 based on total mass of electrode material) in aqueous electrolyte but also excellent cyclic stability with 104% of its initial capacitance retention after 10 000 cycles. Moreover, the assembled symmetric supercapacitor achieves as high as 27 Wh L?1 of volumetric energy density at a power density of 272 W L?1. This novel strategy holds great promise for future design of high volumetric capacitance supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号