首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 477 毫秒
1.
Developing efficient organic solar cells (OSCs) with relatively thick active layer compatible with the roll to roll large area printing process is an inevitable requirement for the commercialization of this field. However, typical laboratory OSCs generally exhibit active layers with optimized thickness around 100 nm and very low thickness tolerance, which cannot be suitable for roll to roll process. In this work, high performance of thick‐film organic solar cells employing a nonfullerene acceptor F–2Cl and a polymer donor PM6 is demonstrated. High power conversion efficiencies (PCEs) of 13.80% in the inverted structure device and 12.83% in the conventional structure device are achieved under optimized conditions. PCE of 9.03% is obtained for the inverted device with active layer thickness of 500 nm. It is worth noting that the conventional structure device still maintains the PCE of over 10% when the film thickness of the active layer is 600 nm, which is the highest value for the NF‐OSCs with such a large active layer thickness. It is found that the performance difference between the thick active layer films based conventional and inverted devices is attributed to their different vertical phase separation in the active layers.  相似文献   

2.
A novel wide‐bandgap electron‐donating copolymer containing an electron‐deficient, difluorobenzotriazole building block with a siloxane‐terminated side chain is developed. The resulting polymer, poly{(4,8‐bis(4,5‐dihexylthiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene‐co‐4,7‐di(thiophen‐2‐yl)‐5,6‐difluoro‐2‐(6‐(1,1,1,3,5,5,5‐heptamethyltri‐siloxan‐3‐yl)hexyl)‐2H‐benzo[d][1,2,3]triazole} (PBTA‐Si), is used to successfully fabricate high‐performance, ternary, all‐polymer solar cells (all‐PSCs) insensitive to the active layer thickness. An impressively high fill factor of ≈76% is achieved with various ternary‐blending ratios. The optimized all‐PSCs attain a power conversion efficiency (PCE) of 9.17% with an active layer thickness of 350 nm and maintain a PCE over 8% for thicknesses over 400 nm, which is the highest reported efficiency for thick all‐PSCs. These results can be attributed to efficient charge transfer, additional energy transfer, high and balanced charge transport, and weak recombination behavior in the photoactive layer. Moreover, the photoactive layers of the ternary all‐PSCs are processed in a nonhalogenated solvent, 2‐methyltetrahydrofuran, which greatly improves their compatibility with large‐scale manufacturing.  相似文献   

3.
A new 2D‐conjugated medium bandgap donor–acceptor copolymer, J81 , based on benzodifuran with trialkylsilyl thiophene side chains as donor unit and fluorobenzothiazole as acceptor, is synthesized and successfully used in nonfullerene polymer solar cells (PSCs) with low bandgap n‐type organic semiconductor (n‐OS) 3,9‐bis(2‐methylene‐ (3‐(1,1‐dicyanomethylene)‐indanone)‐5,5,11,11‐tetrakis(4‐ hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]‐ dithiophene (ITIC) and m ‐ITIC as acceptor. J81 possesses a lower‐lying highest occupied molecular orbital (HOMO) energy level of ?5.43 eV and medium bandgap of 1.93 eV with complementary absorption in the visible–near infrared region with the n‐OS acceptor. The PSCs based on J81 :ITIC and J81 :m ‐ITIC yield high power conversion efficiency of 10.60% and 11.05%, respectively, with high V oc of 0.95–0.96 V benefit from the lower‐lying HOMO energy level of J81 donor. The work indicates that J81 is another promising polymer donor for the nonfullerene PSCs.  相似文献   

4.
Nonfullerene polymer solar cells (PSCs) are fabricated by using one wide bandgap donor PBDB‐T and one ultranarrow bandgap acceptor IEICO‐4F as the active layers. One medium bandgap donor PTB7‐Th is selected as the third component due to the similar highest occupied molecular orbital level compared to that of PBDB‐T and their complementary absorption spectra. The champion power conversion efficiency (PCE) of PSCs is increased from 10.25% to 11.62% via incorporating 20 wt% PTB7‐Th in donors, with enhanced short‐circuit current (JSC) of 24.14 mA cm?2 and fill factor (FF) of 65.03%. The 11.62% PCE should be the highest value for ternary nonfullerene PSCs. The main contribution of PTB7‐Th can be summarized as the improved photon harvesting and enhanced exciton utilization of PBDB‐T due to the efficient energy transfer from PBDB‐T to PTB7‐Th. Meanwhile, PTB7‐Th can also act as a regulator to adjust PBDB‐T molecular arrangement for optimizing charge transport, resulting in the enhanced FF of ternary PSCs. This experimental result may provide new insight for developing high‐performance ternary nonfullerene PSCs by selecting two well‐compatible donors with different bandgap and one ultranarrow bandgap acceptor.  相似文献   

5.
Polymer solar cells (PSCs) are fabricated without solvent additives using a low‐bandgap polymer, PBDTTT‐C‐T, as the donor and [6,6]‐phenyl‐C61‐butyric‐acid‐methyl‐ester (PC61BM) as the acceptor. Donor‐acceptor blend and layer‐by‐layer (LL) solution process are used to form active layers. Relative to the blend devices, the LL devices exhibit stronger absorption, better vertical phase separation, higher hole and electron mobilities, and better charge extraction at correct electrodes. As a result, after thermal annealing the LL devices exhibit an average power conversion efficiency (PCE) of 6.86%, which is much higher than that of the blend devices (4.31%). The best PCE of the LL devices is 7.13%, which is the highest reported for LL processed PSCs and among the highest reported for PC61BM‐based single‐junction PSCs.  相似文献   

6.
Photovoltaic performance of polymer solar cells based on poly(3‐hexylthiophene) (P3HT) as the donor and indene‐C70 bisadduct (IC70BA) as the acceptor is improved by adding 3 vol% 3‐methylthiophene (MT) or 3‐hexylthiophene (HT) as processing additives. The results of UV‐vis absorption spectroscopy, X‐ray diffraction analysis and atomic force microscopy indicate that with the MT or HT processing additive, the active layer of the blend of P3HT/IC70BA showed strengthened absorbance, enhanced crystallinity and improved film morphology. The power conversion efficiency (PCE) of the PSCs was improved from 5.80% for the device without the additive to 6.35% for the device with HT additive and to 6.69% with MT additive. The PCE of 6.69% is the top value reported so far for the PSCs based on P3HT.  相似文献   

7.
The development of nonfullerene acceptors has brought polymer solar cells into a new era. Maximizing the performance of nonfullerene solar cells needs appropriate polymer donors that match with the acceptors in both electrical and morphological properties. So far, the design rationales for polymer donors are mainly borrowed from fullerene‐based solar cells, which are not necessarily applicable to nonfullerene solar cells. In this work, the influence of side chain length of polymer donors based on a set of random terpolymers PTAZ‐TPD10‐Cn on the device performance of polymer solar cells is investigated with three different acceptor materials, i.e., a fullerene acceptor [70]PCBM, a polymer acceptor N2200, and a fused‐ring molecular acceptor ITIC. Shortening the side chains of polymer donors improves the device performance of [70]PCBM‐based devices, but deteriorates the N2200‐ and ITIC‐based devices. Morphology studies unveil that the miscibility between donor and acceptor in blend films depends on the side chain length of polymer donors. Upon shortening the side chains of the polymer donors, the miscibility between the donor and acceptor increases for the [70]PCBM‐based blends, but decreases for the N2200‐ and ITIC‐based blends. These findings provide new guidelines for the development of polymer donors to match with emerging nonfullerene acceptors.  相似文献   

8.
Two n‐type organic semiconductor (n‐OS) small molecules m‐ITIC‐2F and m‐ITIC‐4F with fluorinated 2‐(2,3‐dihydro‐3‐oxo‐1H‐inden‐1‐ylidene)propanedinitrile (IC) terminal moieties are prepared, for the application as an acceptor in polymer solar cells (PSCs), to further improve the photovoltaic performance of the n‐OS acceptor 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene) indanone) ‐5,5,11,11‐tetrakis(3‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐sindaceno[1,2‐b:5,6‐b′]‐dithiophene (m‐ITIC). Compared to m‐ITIC, these two new acceptors show redshifted absorption, higher molecular packing order, and improved electron mobilities. The power conversion efficiencies (PCE) of the as‐cast PSCs with m‐ITIC‐2F or m‐ITIC‐4F as an acceptor and a low‐cost donor–acceptor (D–A) copolymer PTQ10 as a donor reach 11.57% and 11.64%, respectively, which are among the highest efficiency for the as‐cast PSCs so far. Furthermore, after thermal annealing treatment, improved molecular packing and enhanced phase separation are observed, and the higher PCE of 12.53% is achieved for both PSCs based on the two acceptors. The respective and unique advantage with the intrinsic high degree of order, molecular packing, and electron mobilities of these two acceptors will be suitable to match with different p‐type organic semiconductor donors for higher PCE values, which provide a great potential for the PSCs commercialization in the near future. These results indicate that rational molecular structure optimization is of great importance to further improve photovoltaic properties of the photovoltaic materials.  相似文献   

9.
Copolymers based on dithieno[3,2‐b:2′,3′‐d]silole (DTS) and dithienylthiazolo[5,4‐d]thiazole (TTz) are synthesized and tested in an all‐solution roll process for polymer solar cells (PSCs). Fabrication of polymer:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) solar cells is done on a previously reported compact coating/printing machine, which enables the preparation of PSCs that are directly scalable with full roll‐to‐roll processing. The positioning of the side‐chains on the thiophene units proves to be very significant in terms of solubility of the polymers and consequently has a major impact on the device yield and process control. The most successful processing is accomplished with the polymer, PDTSTTz‐4 , that has the side‐chains situated in the 4‐position on the thiophene units. Inverted PSCs based on PDTSTTz‐4 demonstrate high fill factors, up to 59%, even with active layer thicknesses well above 200 nm. Power conversion efficiencies of up to 3.5% can be reached with the roll‐coated PDTSTTz‐4 :PCBM solar cells that, together with good process control and high device yield, designate PDTSTTz‐4 as a convincing candidate for high‐throughput roll‐to‐roll production of PSCs.  相似文献   

10.
The room temperature (RT) processability of the photoactive layers in polymer solar cells (PSCs) from halogen‐free solvent along with their highly reproducible power conversion efficiencies (PCEs) and intrinsic thickness tolerance are extremely desirable for the large‐area roll‐to‐roll (R2R) production. However, most of the photoactive materials in PSCs require elevated processing temperatures due to their strong aggregation, which are unfavorable for the industrial R2R manufacturing of PSCs. These limiting factors for the commercialization of PSCs are alleviated by synthesizing random terpolymers with components of (2‐decyltetradecyl)thiophen‐2‐yl)naphtho[1,2‐c:5,6‐c′]bis[1,2,5]thiadiazole and bithiophene substituted with methyl thiophene‐3‐carboxylate (MTC). In contrast to the temperature‐dependent PNTz4T polymer, the resulting random terpolymers (PNTz4T‐MTC) show better solubility, slightly reduced crystallinity and aggregation, and weaker intermolecular interaction, thus enabling PNTz4T‐MTC to be processed at RT from a halogen‐free solvent. Particularly, the PNTz4T‐5MTC‐based photoactive layer exhibits an excellent PCE of 9.66%, which is among the highest reported PCEs for RT and ecofriendly halogen‐free solvent processed fullerene‐based PSCs, and a thickness tolerance with a PCE exceeding 8% from 100 to 520 nm. Finally, large‐area modules fabricated with the PNTz4T and PNTz4T‐5MTC polymer have shown 4.29% and 6.61% PCE respectively, with an area as high as 54.45 cm2 in air.  相似文献   

11.
Compared with nonfullerene‐based polymer solar cells, all‐small‐molecule solar cells normally show low power conversion efficiencies (PCEs) due to their low fill factors (FFs). Molecular stacking orientation and phase separation are the main factors affecting the performance of all‐small‐molecule solar cells. In this work, two liquid‐crystalline small‐molecule donors are designed and synthesized and a novel nonfullerene acceptor with good crystallinity developed. Owing to the face‐on orientation of the component molecules and appropriate phase separation in the active layer, a high FF of over 70% and a PCE of 10.7% are obtained from the resulting solar cells; these values are among the best obtained thus far for all‐small‐molecule solar cells. The high FF reported here is significant for a further design of high‐performance all‐small‐molecule solar cells.  相似文献   

12.
Development of high‐performance donor–acceptor (D–A) copolymers is vital in the research of polymer solar cells (PSCs). In this work, a low‐bandgap D–A copolymer based on dithieno[3,2‐b:2′,3′‐d]pyridin‐5(4H)‐one unit (DTP), PDTP4TFBT, is developed and used as the donor material for PSCs with PC71BM or ITIC as the acceptor. PDTP4TFBT:PC71BM and PDTP4TFBT:ITIC solar cells give power conversion efficiencies (PCEs) up to 8.75% and 7.58%, respectively. 1,8‐Diiodooctane affects film morphology and device performance for fullerene and nonfullerene solar cells. It inhibits the active materials from forming large domains and improves PCE for PDTP4TFBT:PC71BM cells, while it promotes the aggregation and deteriorates performance for PDTP4TFBT:ITIC cells. The ternary‐blend cells based on PDTP4TFBT:PC71BM:ITIC (1:1.2:0.3) give a decent PCE of 9.20%.  相似文献   

13.
The structure evolution of oligomer fused‐ring electron acceptors (FREAs) toward high efficiency of as‐cast polymer solar cells (PSCs) is reported. First, a series of FREAs (IC‐(1‐3)IDT‐IC) based on indacenodithiophene (IDT) oligomers as cores are designed and synthesized, effects of IDT number (1–3) on their basic optical and electronic properties are investigated, and more importantly, the relationship between device performance of as‐cast PSCs and donor(D)/acceptor(A) matching (absorption, energy level, morphology, and charge transport) of IC‐(1‐3)IDT‐IC acceptors and two representative polymer donors, PTB7‐Th and PDBT‐T1 is surveyed. Then, the most promising D/A system (PDBT‐T1/IC‐1IDT‐IC) with the best D/A harmony among the six D/A combinations, which yields a power conversion efficiency (PCE) of 7.39%, is found. Finally, changing the side‐chains in IC‐1IDT‐IC from alkylphenyl to alkyl enhances the PCE from 7.39% to 9.20%.  相似文献   

14.
A new weak electron‐deficient building block, bis(2‐ethylhexyl) 2,5‐bis(5‐bromothiophen‐2‐yl) thieno[3,2‐b]thiophene‐3,6‐dicarboxylate ( TT‐Th ), is incorporated to construct a wide‐bandgap (1.88 eV) polymer PBDT‐TT for nonfullerene polymer solar cells (NF‐PSCs). PBDT‐TT possesses suitable energy levels and complementary absorption when blended with both ITIC analogues ( ITIC and IT‐M ) and a near‐infrared (NIR) acceptor ( 6TIC ). Moreover, PBDT‐TT exhibits good conjugated planarity and preferable face‐on orientation in the blended thin film, which are beneficial for charge transfer and carrier transport. The PSCs based on PBDT‐TT : IT‐M and PBDT‐TT : 6TIC blend films yield high power conversion efficiencies of 11.38% and 11.03%, respectively. To the best of the authors' knowledge, the PCE of 11.03% for PBDT‐TT : 6TIC‐ based device is one of the highest values reported for NIR NF‐PSCs. This work demonstrates that TT‐Th is a useful new electron‐accepting building block for making p‐type wide bandgap polymers for efficient NIR NF‐PSCs.  相似文献   

15.
To realize high power conversion efficiencies (PCEs) in green‐solvent‐processed all‐polymer solar cells (All‐PSCs), a long alkyl chain modified perylene diimide (PDI)‐based polymer acceptor PPDIODT with superior solubility in nonhalogenated solvents is synthesized. A properly matched PBDT‐TS1 is selected as the polymer donor due to the red‐shifted light absorption and low‐lying energy level in order to achieve the complementary absorption spectrum and matched energy level between polymer donor and polymer acceptor. By utilizing anisole as the processing solvent, an optimal efficiency of 5.43% is realized in PBDT‐TS1/PPDIODT‐based All‐PSC with conventional configuration, which is comparable with that of All‐PSCs processed by the widely used binary solvent. Due to the utilization of an inverted device configuration, the PCE is further increased to over 6.5% efficiency. Notably, the best‐performing PCE of 6.58% is the highest value for All‐PSCs employing PDI‐based polymer acceptors and green‐solvent‐processed All‐PSCs. The excellent photovoltaic performance is mainly attributed to a favorable vertical phase distribution, a higher exciton dissociation efficiency (Pdiss) in the blend film, and a higher electrode carrier collection efficiency. Overall, the combination of rational molecular designing, material selection, and device engineering will motivate the efficiency breakthrough in green‐solvent‐processed All‐PSCs.  相似文献   

16.
The record efficiency of the state‐of‐the‐art polymer solar cells (PSCs) is rapidly increasing, due to the discovery of high‐performance photoactive donor and acceptor materials. However, strong questions remain as to whether such high‐efficiency PSCs can be produced by scalable processes. This paper reports a high power conversion efficiency (PCE) of 13.5% achieved with single‐junction ternary PSCs based on PTB7‐Th, PC71BM, and COi8DFIC fabricated by slot‐die coating, which shows the highest PCE ever reported in PSCs fabricated by a scalable process. To understand the origin of the high performance of the slot‐die coated device, slot‐die coated photoactive films and devices are systematically investigated. These results indicate that the good performance of the slot‐die PSCs can be due to a favorable molecule‐structure and film‐morphology change by introducing 1,8‐diiodooctane and heat treatment, which can lead to improved charge transport with reduced carrier recombination. The optimized condition is then used for the fabrication of large‐area modules and also for roll‐to‐roll fabrication. The slot‐die coated module with 30 cm2 active‐area and roll‐to‐roll produced flexible PSC has shown 8.6% and 9.6%, respectively. These efficiencies are the highest in each category and demonstrate the strong potential of the slot‐die coated ternary system for commercial applications.  相似文献   

17.
Highly crystalline conjugated polymers represent a key material for producing high‐performance thick‐active‐layer polymer solar cells (PSCs). However, despite their potential, a limited number of crystalline polymers are used in PSCs because of the lack of highly coplanar acceptor building blocks and insufficient light absorptivity (α < 105) of most donor (D)–acceptor (A)‐type polymers. This study reports a series of novel 3,7‐di(thiophen‐2‐yl)‐1,5‐naphthyridine‐2,6‐dione (NTDT) acceptor‐based conjugated polymers, PNTDT‐2T, PNTDT‐TT, and PNTDT‐2F2T, synthesized with 2,2′‐bithiophene (2T), thieno[3,2‐b]thiophene (TT), and 3,3′‐difluoro‐2,2′‐bithiophene (2F2T) donor units, respectively. PNTDT‐2F2T exhibits superior polymer crystallinity and a much higher absorption coefficient than those of PNTDT‐2T or PNTDT‐TT because of adequate matching between highly coplanar A (NTDT) and D (2F2T) building blocks. A bulk heterojunction solar cell based on PNTDT‐2F2T exhibits a power conversion efficiency of up to 9.63%, with a high short circuit current of 18.80 mA cm?2 and fill factor of 0.70, when a thick active layer (>200 nm) is used, without postfabrication hot processing. The findings demonstrate that the polymer crystallinity and absorption coefficient can be effectively controlled by selecting appropriate D and A building blocks, and that NTDT is a novel and versatile A building block for highly efficient thick‐active‐layer PSCs.  相似文献   

18.
One advantage of nonfullerene polymer solar cells (PSCs) is that they can yield high open‐circuit voltage (VOC) despite their relatively low optical bandgaps. To maximize the VOC of PSCs, it is important to fine‐tune the energy level offset between the donor and acceptor materials, but in a way not negatively affecting the morphology of the donor:acceptor (D:A) blends. Here, an effective material design rationale based on a family of D–A1–D–A2 terthiophene (T3) donor polymers is reported, which allows for the effective tuning of energy levels but without any negative impacts on the morphology of the blend. Based on a T3 donor unit combined with difluorobenzothiadiazole (ffBT) and difluorobenzoxadiazole (ffBX) acceptor units, three donor polymers are developed with highly similar morphological properties. This is particularly surprising considering that the corresponding quaterthiophene polymers based on ffBT and ffBX exhibit dramatic differences in their solubility and morphological properties. With the fine‐tuning of energy levels, the T3 polymers yield nonfullerene PSCs with a high efficiency of 9.0% for one case and with a remarkably low energy loss (0.53 V) for another polymer. This work will facilitate the development of efficient nonfullerene PSCs with optimal energy levels and favorable morphology properties.  相似文献   

19.
Side‐chain engineering is an important strategy for optimizing photovoltaic properties of organic photovoltaic materials. In this work, the effect of alkylsilyl side‐chain structure on the photovoltaic properties of medium bandgap conjugated polymer donors is studied by synthesizing four new polymers J70 , J72 , J73 , and J74 on the basis of highly efficient polymer donor J71 by changing alkyl substituents of the alkylsilyl side chains of the polymers. And the photovoltaic properties of the five polymers are studied by fabricating polymer solar cells (PSCs) with the polymers as donor and an n‐type organic semiconductor (n‐OS) m‐ITIC as acceptor. It is found that the shorter and linear alkylsilyl side chain could afford ordered molecular packing, stronger absorption coefficient, higher charge carrier mobility, thus results in higher Jsc and fill factor values in the corresponding PSCs. While the polymers with longer or branched alkyl substituents in the trialkylsilyl group show lower‐lying highest occupied molecular orbital energy levels which leads to higher Voc of the PSCs. The PSCs based on J70 :m‐ITIC and J71 :m‐ITIC achieve power conversion efficiency (PCE) of 11.62 and 12.05%, respectively, which are among the top values of the PSCs reported in the literatures so far.  相似文献   

20.
In this study the thickness of the PTB7‐Th:PC71BM bulk heterojunction (BHJ) film and the PF3N‐2TNDI electron transport layer (ETL) is systematically tuned to achieve polymer solar cells (PSCs) with optimized power conversion efficiency (PCE) of over 9% when an ultrathin BHJ of 50 nm is used. Optical modeling suggests that the high PCE is attributed to the optical spacer effect from the ETL, which not only maximizes the optical field within the BHJ film but also facilitates the formation of a more homogeneously distributed charge generation profile across the BHJ film. Experimentally it is further proved that the extra photocurrent produced at the PTB7‐Th/PF3N‐2TNDI interface also contributes to the improved performance. Taking advantage of this high performance thin film device structure, one step further is taken to fabricate semitransparent PSCs (ST‐PSCs) by using an ultrathin transparent Ag cathode to replace the thick Ag mirror cathode, yielding a series of high performance ST‐PSCs with PCEs over 6% and average visible transmittance between 20% and 30%. These ST‐PSCs also possess remarkable transparency color perception and rendering properties, which are state‐of‐the‐art and fulfill the performance criteria for potential use as power‐generating windows in near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号