首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Ecdysteroid pulses trigger the major developmental transitions during the Drosophila life cycle. These hormonal responses are thought to be mediated by the ecdysteroid receptor (EcR) and its heterodimeric partner Ultraspiracle (USP). We provide evidence for a second ecdysteroid signaling pathway mediated by DHR38, the Drosophila ortholog of the mammalian NGFI-B subfamily of orphan nuclear receptors. DHR38 also heterodimerizes with USP, and this complex responds to a distinct class of ecdysteroids in a manner that is independent of EcR. This response is unusual in that it does not involve direct binding of ecdysteroids to either DHR38 or USP. X-ray crystallographic analysis of DHR38 reveals the absence of both a classic ligand binding pocket and coactivator binding site, features that seem to be common to all NGFI-B subfamily members. Taken together, these data reveal the existence of a separate structural class of nuclear receptors that is conserved from fly to humans.  相似文献   

2.
Arbeitman MN  Hogness DS 《Cell》2000,101(1):67-77
The steroid hormone 20-hydroxyecdysone coordinates the stages of Drosophila development by activating a nuclear receptor heterodimer consisting of the ecdysone receptor, EcR, and the Drosophila RXR receptor, USP. We show that EcR/USP DNA binding activity requires activation by a chaperone heterocomplex like that required for activation of the vertebrate steroid receptors, but not previously shown to be required for activation of RXR heterodimers. Six proteins normally present in the chaperone complex were individually purified and shown to be sufficient for this activation. We also show that two of the six (Hsp90 and Hsc70) are required in vivo for ecdysone receptor activity, and that EcR is the primary target of the chaperone complex.  相似文献   

3.
4.
5.
昆虫蜕皮激素受体及其类似物的杀虫机制研究进展   总被引:4,自引:2,他引:2  
昆虫的蜕皮、变态和繁殖受到蜕皮激素的严格调控。蜕皮激素作用靶标由蜕皮激素受体(ecdysteroid receptor, EcR)和超气门蛋白(ultraspiracle protein, USP)组成,蜕皮激素与EcR/USP作用启动蜕皮级联反应过程。昆虫EcR具有种类或类群的特异性,研究其结构、功能和调控机理在开发环境友好型新药剂和基因调控开关等方面具有重要指导作用。该文介绍了昆虫EcR的结构和功能特点,蜕皮激素及其类似物与EcR/USP的分子作用方式,以及基于EcR/USP的新杀虫剂创制和基因调控开关设计等方面的重要进展。  相似文献   

6.
7.
The insect ecdysteroid receptor consists of a heterodimer between EcR and the RXR-orthologue, USP. We addressed the question of whether this heterodimer, like all other RXR heterodimers, may be formed in the absence of ligand and whether ligand promotes dimerization. We found that C-terminal protein fragments that comprised the ligand binding, but not the DNA binding domain of EcR and USP and which were equipped with the activation or DNA binding region of GAL4, respectively, exhibit a weak ability to interact spontaneously with each other. Moreover, the heterodimer formation is greatly enhanced upon administration of active ecdysteroids in a dose-dependent manner. This was shown in vivo by a yeast two-hybrid system and in vitro by a modified electromobility shift assay. Furthermore, the EcR fragment expressed in yeast was functional and bound radioactively labelled ecdysteroid specifically. Ligand binding was greatly enhanced by the presence of a USP ligand binding domain. Therefore, ecdysteroids are capable of inducing heterodimer formation between EcR and USP, even when the binding of these receptor proteins to cognate DNA response elements does not occur. This capability may be a regulated aspect of ecdysteroid action during insect development.  相似文献   

8.
Ecdysteroids and juvenile hormones (JH) regulate a variety of developmental, physiological, behavioral, and metabolic processes. Ecdysteroids function through a heterodimeric complex of two nuclear receptors, ecdysone receptor (EcR) and ultraspiracle (USP). An 85 kDa protein identified in Drosophila melanogaster methoprene-tolerant (Met) mutant binds to JH III with high affinity, and the mutant flies are resistant to juvenile hormone analog (JHA), methoprene. Reporter assays using the yeast two-hybrid system were performed in order to study the molecular interactions between EcR, USP and Met. As expected, EcR fused to the B42 activation domain and USP fused to the LexA DNA binding domain interacted with each other and supported induction of the reporter gene in the presence of stable ecdysteroid analog, RG-102240 or steroids, muristerone A and ponasterone A. The USP:USP homodimers supported expression of the reporter gene in the absence of ligand, and there was no significant increase in the reporter activity after addition of a JHA, methoprene. Similarly, Met:Met homodimers as well as Met:EcR and Met:USP heterodimers induced reporter activity in the absence of ligand and addition of ecdysteroid or JH analogs did not increase the reporter activity regulated by either homodimers or heterodimers of Met protein. Two-hybrid assays in insect cells and in vitro pull-down assays confirmed the interaction of Met with EcR and USP. These data suggest that the proteins that are involved in signal transduction of ecdysteroids (EcR and USP) and juvenile hormones (Met) interact to mediate cross-talk between these two important hormones. Arch. Insect Biochem. Physiol. 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

9.
The steroid hormone ecdysone triggers coordinate changes in Drosophila tissue development that result in metamorphosis. To advance our understanding of the genetic regulatory hierarchies controlling this tissue response, we have isolated and characterized a gene, EcR, for a new steroid receptor homolog and have shown that it encodes an ecdysone receptor. First, EcR protein binds active ecdysteroids and is antigenically indistinguishable from the ecdysone-binding protein previously observed in extracts of Drosophila cell lines and tissues. Second, EcR protein binds DNA with high specificity at ecdysone response elements. Third, ecdysone-responsive cultured cells express EcR, whereas ecdysone-resistant cells derived from them are deficient in EcR. Expression of EcR in such resistant cells by transfection restores their ability to respond to the hormone. As expected, EcR is nuclear and found in all ecdysone target tissues examined. Furthermore, the EcR gene is expressed at each developmental stage marked by a pulse of ecdysone.  相似文献   

10.
11.
Escherichia coli vectors were constructed for the production of a protein complex that mimics the native ecdysone receptor (EcR) isolated from Drosophila. The two steroid receptors, ultraspiracle (USP) and EcR, were expressed as truncations, retaining primarily the hormone binding domains. The recombinant receptor complex was able to mimic the pharmacology of the native receptor with respect to both synthetic and natural agonists. USP and EcR fusion proteins could be expressed in separate cell lines and then recombined following isolation to yield a ligand binding preparation with a dissociation constant (K(D)) for Ponasterone A of 1.5 nM and a total yield of 1.9 pmol ligand binding sites/mg protein. Alternatively, the simultaneous coexpression of both receptors increased yields by several orders of magnitude to 6 nmol ligand binding sites/mg protein with a K(D) of 0.6 nM. Chromatographic analysis under native conditions showed that EcR, when expressed alone, migrated as a variety of complexes, mostly coming out in the void volume as denatured, insoluble, aggregate. In contrast, purified extracts of coexpressed EcR and USP eluted as a single peak with a mobility indicating a heterodimer. The majority of the coexpressed fusion receptors, following purification, formed functional steroid binding sites. A detailed scheme is provided for the expression and isolation of milligram quantities of highly purified receptor dimer.  相似文献   

12.
13.
The functional insect ecdysteroid receptor is comprised of the ecdysone receptor (EcR) and Ultraspiracle (USP). The ligand-binding domain (LBD) of USP was fused to the GAL4 DNA-binding domain (GAL4-DBD) and characterized by analyzing the effect of site-directed mutations in the LBD. Normal and mutant proteins were tested for ligand and DNA binding, dimerization, and their ability to induce gene expression. The presence of helix 12 proved to be essential for DNA binding and was necessary to confer efficient ecdysteroid binding to the heterodimer with the EcR (LBD), but did not influence dimerization. The antagonistic position of helix 12 is indispensible for interaction between the fusion protein and DNA, whereas hormone binding to the EcR (LBD) was only partially reduced if fixation of helix 12 was disturbed. The mutation of amino acids, which presumably bind to a fatty acid evoked a profound negative influence on transactivation ability, although enhanced transactivation potency and ligand binding to the ecdysteroid receptor was impaired to varying degrees by mutation of these residues. Mutations of one fatty acid-binding residue within the ligand-binding pocket, 1323, however, evoked enhanced transactivation. The results confirmed that the LBD of Ultraspiracle modifies ecdysteroid receptor function through intermolecular interactions and demonstrated that the ligand-binding pocket of USP modifies the DNA-binding and transactivation abilities of the fusion protein.  相似文献   

14.
15.
16.
17.
18.
19.
20.
The major postembryonic developmental events happening in insect life, including molting and metamorphosis, are regulated and coordinated temporally by pulses of ecdysone. The biological activity of this steroid hormone is mediated by two nuclear receptors: the ecdysone receptor (EcR) and the Ultraspiracle protein (USP). The crystal structure of the ligand-binding domain from the lepidopteran Heliothis virescens USP reported here shows that the loop connecting helices H1 and H3 precludes the canonical agonist conformation. The key residues that stabilize this unique loop conformation are strictly conserved within the lepidopteran USP family. The presence of an unexpected bound ligand that drives an unusual antagonist conformation confirms the induced-fit mechanism accompanying the ligand binding. The ligand-binding pocket exhibits a retinoid X receptor-like anchoring part near a conserved arginine, which could interact with a USP ligand functional group. The structure of this receptor provides the template for designing inhibitors, which could be utilized as a novel type of environmentally safe insecticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号