首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mating of the dobsonfly, Protohermes grandis (Thunberg), the male attaches the spermatophore externally to the female genitalia. The spermatophore includes a large gelatinous mass which the female detaches and feeds on after mating. While the female consumes this nuptial food gift, sperm is evacuated from the remaining portion of the spermatophore (sperm package) into her reproductive tract. Under laboratory conditions, mated females maintained receptivity throughout their lifetime, and they remated even on the day following copulation. A single insemination may supply enough sperm, as females mated only once deposited fertile eggs throughout life and, when dissected after death, all females had sperm in the spermatheca. There was a positive correlation between longevity and the number of matings. Lifetime fecundity also increased as mating multiplied. However, the size of eggs and hatchlings was not influenced by the number of matings. It seems that large spermatophore consumption by female P. grandis provides nutrients that increase fitness not in offspring quality, but in their quantity.  相似文献   

2.
Females of the swallowtail butterfly Papilio xuthus L. (Lepidoptera: Papilionidae) mate multiply during their life span and use the spermatophores transferred to increase their longevity as well as fecundity. Sperm from different males may be stored in the sperm storage organs (bursa copulatrix and spermatheca). To clarify the pattern of sperm storage and migration in the reproductive tract, mated females are dissected after various intervals subsequent to the first mating, and the type and activity of sperm in the spermatheca are observed. When virgin females are mated with virgin males, the females store sperm in the spermatheca for more than 10 days. Sperm displacement is found in females that are remated 7 days after the first mating. Immediately after remating, these females flush out the sperm of the first male from the spermatheca before sperm migration of the second male has started. However, females receiving a small spermatophore at the second mating show little sperm displacement, and the sperm derived from the small spermatophore might not be able to enter the spermatheca. Females appear to use spermatophore size to monitor male quality.  相似文献   

3.
Females of the predatory miteParasitus fimetorum (Gamasida; Parasitina) inhabiting animal manure indiscriminately copulate with many mates. The sperm competition between the males was estimated by electrophoresis of allozymes and the effects of multiple mating on female reproduction were investigated. When females were forced to mate only once, their fecundity decreased drastically compared to the case of multiple mating (but longevity was unaffected). When one female mated with two males, the outcome of sperm competition depended greatly upon the mating interval. When the second mating occurred immediately after the first, the female fecundity decreased as in the case of single mating and the second male fertilized only a few eggs. However, when there was an interval of 1 day between the two matings, the females achieved normal fecundity and the second male fertilized approximately half the eggs. This suggests that the spermatophore deposited by the first male may act as a short-term copulatory ‘plug’ in the female's genital opening. When one female mated with several males with 1 day intervals, three or more males shared fertilization of the eggs. This study suggests that the multiple mating of females is a necessary stimulus to continue oogenesis and some physiological factors for this stimulation may exist in spermatophores.  相似文献   

4.
Studies were conducted with codling moth, Cydia pomonella L., to evaluate the mating status of male and female moths in apple, Malus domestica (Borkhausen), orchards treated with and without sex pheromone dispensers. Laboratory studies first examined the effect of multiple mating of male and female moths on female fecundity and egg fertility. Females that had mated three times had a significantly higher fecundity than singly mated moths. Sequential mating by male moths had no effect on the fecundity of female moths or egg fertility. However, male moth age did impact female fecundity, with significantly fewer eggs laid after mating with virgin 1- versus 3-d-old males. The mean size of the first spermatophore transferred by males was significantly larger than all subsequent spermatophores. Classifying spermatophores based on size was used in field sampling to categorize the mating status of the female's partner. The proportion of mated females with small spermatophores (partner had previously mated) was significantly higher in treated versus untreated orchards. The proportion of female moths caught in traps baited with pear ester that were virgin was low (相似文献   

5.
Fitness advantage from nuptial gifts in female fireflies   总被引:3,自引:0,他引:3  
Abstract 1. In many insects, males provide nuptial gifts to females in the form of spermatophores, sperm-containing structures produced by male accessory glands.
2. The work reported here examined the influence of both spermatophore number and spermatophore size on female reproductive output in two related firefly beetles, Photinus ignitus and Ellychnia corrusca (Coleoptera: Lampyridae). Based on differences in adult diet, male spermatophores were predicted to increase female reproductive output to a greater extent in P. ignitus than in E. corrusca .
3. Female fecundity was significantly higher in triply mated females than in singly mated females in both species, with no difference between mating treatments in female lifespan or egg hatching success. No effects of second male spermatophore size on fecundity, lifespan, or egg hatching success were detected in either species.
4. These results suggest a direct fitness advantage from multiple mating for females in both species, although enhanced fecundity may be due either to allocation of spermatophore nutrients to eggs or to other substances transferred within the spermatophore acting as oviposition stimulants.  相似文献   

6.
The effects of the second mating on fecundity and fertility of potato tuber moth (PTM) Phthorimaea operculella (Zeller), when females were mated with 450 Gy-irradiated and normal males or vice versa, were studied. The percentage of eggs fertilized by sperm of the second mating (P2 value) was 0.99, indicating that sperm transferred during the last mating were predominantly utilized in egg fertilization. Females, mated first with irradiated males, remated after 2 days, whereas those mated with normal males, remated after 3.3 days. Fecundity of twice-mated females was higher than those mated only once. Females started to lay their eggs 1.9 days after the first mating, regardless of the type of male. However, virgin females did not lay eggs at all. Duration of copulation varied from 102 to 117 min for normal and irradiated males, respectively. The present study elucidated important aspects of mating behaviour of PTM which could improve the efficiency of its control by the sterile insect technique.  相似文献   

7.
Females of the predatory mite Parasitus fimetorum (Gamasida; Parasitina) inhabiting animal manure indiscriminately copulate with many mates. The sperm competition between the males was estimated by electrophoresis of allozymes and the effects of multiple mating on female reproduction were investigated. When females were forced to mate only once, their fecundity decreased drastically compared to the case of multiple mating (but longevity was unaffected). When one female mated with two males, the outcome of sperm competition depended greatly upon the mating interval. When the second mating occurred immediately after the first, the female fecundity decreased as in the case of single mating and the second male fertilized only a few eggs. However, when there was an interval of 1 day between the two matings, the females achieved normal fecundity and the second male fertilized approximately half the eggs. This suggests that the spermatophore deposited by the first male may act as a short-term copulatory plug in the female's genital opening. When one female mated with several males with 1 day intervals, three or more males shared fertilization of the eggs. This study suggests that the multiple mating of females is a necessary stimulus to continue oogenesis and some physiological factors for this stimulation may exist in spermatophores.  相似文献   

8.
Abstract. Mating behaviour, sperm transfer and sperm precedence were studied in the moth Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae). There existed a rhythmic, diel pattern of mating behaviour of this moth during the scotophase, presumably set with respect to an endogenous activity rhythm. Approximately 30 min after copulation had started, the formation of the corpus of the spermatophore began in the bursa copulatrix of the female moth, but full inflation of the corpus was not completed until 45–60 min after mating had started. The mature spermatophore contained about 350 eupyrene sperm bundles and a large number of individual (loose) apyrene spermatozoa. The mating status and the age of the male insect influenced the number of sperm transferred to the female within the spermatophore, and also affected the consequent fertility. There was no evidence of sperm reflux within the male tract. Within the female, dissociation of eupyrene sperm bundles was evident within the spermatophore less than 15 min after the completion of mating. Spermatozoa began to move from the bursa (in which the spermatophore is lodged) into the spermatheca 30–45 min after the end of the copulation, and the quantity of sperm in the spermatheca reached a plateau at 90 min after mating. Apyrene sperm reached the spermatheca first, followed by eupyrene sperm. Examination of total (apyrene plus eupyrene) sperm in the female tract showed that 86% of mated females received an apparently normal amount of total sperm from the male. Examination of eupyrene sperm alone showed that 81% of matings resulted in an apparently normal transfer of eupyrene sperm. A small proportion (approximately 8%) of the matings, however, were identified as transferring a clearly subnormal quantity of eupyrene sperm to the spermatheca. The eggs produced as a result of such pairings displayed much reduced fertility (about 43%) compared to those from matings confirmed to have transferred normal quantities of sperm, which showed about 92% fertility. This shows that the availability of eupyrene sperm in the spermatheca may be an important constraint on fertility in normal populations of insects. In the laboratory, S. litura females exhibited multiple matings. Of the females, 93% mated, and the mean frequency of mating was 1.69. Mating with a fertile male led to the oviposition of an increased number of eggs. This effect continued even when the female subsequently mated with an infertile male. Displacement of sperm from previous matings is known to be an important factor in the evolution of multiple mating strategies. Our results on sperm utilization by S. litura indicated that after a second mating, the sperm utilized for subsequent fertilization were almost exclusively from the last mating with little mixing. The proportion of eggs fertilized by sperm from the second mating (P2) was calculated as 0.95, indicating almost complete sperm precedence from the last mating.  相似文献   

9.
The timing of mating of females under semi-natural condition, male ejaculate production and their effects on female fecundity were examined inEurema hecabe. Age of the first mating of females varied, and the number of matings increased with age. Male spermatophore production depended on age and body mass. The spermatophore mass at the second mating depended only on the interval between the first and second matings. The timing of the first mating and the spermatophore mass did not affect female fecundity. The timing of mating of females relative to the role of male spermatophores in female fecundity and male mating strategy are discussed.  相似文献   

10.
When both sexes mate with multiple partners, theory predicts that males should adjust their investment in ejaculates in response to the risk and/or intensity of sperm competition. Here, we demonstrate that, in the harlequin beetle riding pseudoscorpion, Cordylochernes scorpioides, males use cues deposited on females by previous males to distinguish between virgin, once‐mated, and multiply‐mated females and adjust sperm allocation accordingly. Sperm number declined in direct proportion to the number of previous males, with virgin females receiving nearly three times more sperm than females exposed to three previous males. Given the lack of first‐male sperm precedence in C. scorpioides, this pattern is not consistent with current sperm competition models and appears best explained by a significant risk of wasting ejaculates on deceitful, mated females. In C. scorpioides, males transfer sperm indirectly to females via a stalked spermatophore deposited on the substrate. Mated females often feign sexual receptivity and cooperate throughout mating, only to reject the sperm packet produced by the male. While indirect sperm transfer facilitates a high level of female deceit and control, females of many species are able to influence the number and fate of sperm transferred during copulation and are likely to conceal their sexual unreceptivity to minimize male retaliation. If males cannot accurately assess female receptivity, increased risk of sperm rejection by mated females could outweigh the risk of sperm competition and favor greater sperm allocation to virgin females.  相似文献   

11.
In insects, spermatophore production represents a non‐trivial cost to a male. Non‐virgin males have been shown to produce small spermatophores at subsequent matings. Particularly in monandrous species, it may be an issue to receive a sufficiently large spermatophore at the first and typically only mating. Females of the monandrous Speckled wood butterfly Pararge aegeria (L.) produce fewer offspring after mating with a non‐virgin male. After mating, females spend all their active time selecting oviposition sites and typically ignore other males. Here, we show that females did not discriminate between a virgin male and a recently mated male in our laboratory experiments. We demonstrate that the number of eupyrene sperm bundles relative to spermatophore mass differed with subsequent male matings. Males transferred a significantly smaller spermatophore after the first copulation, but the spermatophore mass did not decrease further with subsequent matings. However, the number of eupyrene sperm bundles decreased linearly. Therefore, there was proportionally more eupyrene sperm in the male’s second spermatophore compared with the first and the later spermatophores. Such a pattern has been shown in polyandrous species. Hence, it suggests that differences in sperm allocation strategy between polyandrous and monandrous butterflies may be quantitative rather than qualitative. There was also a tendency for females that had mated with a recently mated male to have higher propensity to remate than did females that had mated with a virgin male. We discuss the results relative to the mating system in P. aegeria, including female remating opportunities in the field and male mate‐locating behaviour.  相似文献   

12.
Males of the bushcricket Poecilimon veluchianus pass a large spermatophore to the female during mating. The spermatophore is eaten by the female after copulation. Because females mate with several males during their reproductive life, the competition between spermatozoa of different males affects a male's reproductive success. In order to determine the outcome of sperm competition, the paternity of the progeny of double–mated females was established by DNA fingerprinting with the oligonucleotide (GATA)4. Typical P. veluchianus DNA fingerprints consisted of 15 scoreable fragments per individual. The proportion of bands shared between presumably unrelated bushcrickets was 17%. After the second copulation the second mating male clearly predominated at fertilization. The mean proportion of eggs fertilized by the second male was 90.1%. There was no significant relationship between the level of sperm precedence and the time of ovipositions after the second mating. If female P. veluchianus increase the fitness of their offspring by the incorporation of spermatophore–derived substances in developing eggs, there is little chance for the feeding male to fertilize eggs containing his nutrients, because of the very short mating intervals of females and the observed high level of last–male sperm precedence in this species. Under such conditions the last mating male would fertilize many eggs containing nutrients from a prior male. Because nuptial gifts, like the tettigoniid spermatophore, function only as paternal investment if the donating male's progeny benefit from the gift, a paternal investment function of the P. veluchianus spermatophore seems to be unlikely.  相似文献   

13.
The influence of the intermating interval on sperm number and spermatophore mass was examined in the bushcricket Poecilimon veluchianus. Males that remated after 1 d transferred about 50% of the sperm, but significantly more than 50% of the weight of spermatophores than males that remated after 2 d. Assuming a constant rate of replenishment of sperm and spermatophore material we concluded that available spermatophore material but not available sperm number influences remating interval in P. veluchianus males.  相似文献   

14.
The transfer of spermatophore contents derived from testes during mating greatly stimulates ovipositional activity for long periods of time in the house cricket, Acheta domesticus (L.). Since prostaglandins appear to play a role in reproduction in several insect species, and since prostaglandin synthesis enzymes occur in cricket testes and spermatophores, we investigated the role of prostaglandins in the regulation of long-term oviposition. Inactivation of prostaglandin synthesis enzymes in males or females using specific inhibitors failed to block mating-induced increases in egg laying. However, males lacking sperm because of X-irradiation were unable to induce oviposition even though they mated, transferred spermatophores, and had high levels of prostaglandins in both testes and spermatophores. X-irradiation was also used to generate males with nonfunctional sperm. Females mated to these animals readily laid eggs, which failed to develop. It appeared that sperm or a factor associated with sperm induced long-term oviposition in female house crickets. Prostaglandin synthesis enzymes transferred from the male to females may have other roles in the female, for example, in sperm maintenance in the spermatheca. Previous observations strongly suggest that prostaglandins induce egg laying behavior and activity; they may be synthesized by female enzymes that are regulated by male-derived factors.  相似文献   

15.
I investigated two possible reasons for remating in female Plodia interpunctella: i) females remate to obtain sufficient sperm to maintain fertility; and ii) male investment in non-sperm components increases female fecundity and longevity. The number of sperm and the mass of the spermatophore transferred by males decreases on successive matings. Sperm numbers and potential male investment were varied by allowing females to mate either once or twice with males either on their first or second mating. Females receiving a single small spermatophore containing few sperm (from a male on his second mating) had sufficient sperm to fertilize all their eggs. Females did not show increased fecundity or longevity as a result of obtaining more spermatophore material. I discuss why females remate when they already have sufficient sperm to fertilize all their eggs.  相似文献   

16.
During mating, many male insects transfer sperm packaged within a spermatophore that is produced by reproductive accessory glands. While spermatophores have been documented in some North American fireflies (Coleoptera: Lampyridae), little is known concerning either production or transfer of spermatophores in the aquatic Luciola fireflies widespread throughout Asia. We investigated this process in Japanese Luciola lateralis and L. cruciata by feeding males rhodamine B, a fluorescent dye known to stain spermatophore precursors. We then mated males with virgin females, and dissected pairs at various timepoints after mating. In both of these Luciola species, spermatophores were produced by three pairs of male accessory glands and were transferred to females during the second stage of copulation. Male spermatophores were highly fluorescent, and were covered by a thin outer sheath; a narrow tube leading from an internal sperm-containing sac fit precisely into the female spermathecal duct, presumably for sperm delivery. Both L. lateralis and L. cruciata females have a spherical spermatheca as well as a highly extensible gland where spermatophore breakdown commences by 24h post-mating. Similar reproductive anatomy was observed for both sexes in Luciola ficta from Taiwan. These results suggest that nuptial gifts may play an important role in many firefly-mating systems.  相似文献   

17.
Abstract.  The first objective of the present study is to test the hypothesis that the decrease in the number of eupyrene spermatozoa in the spermatheca is directly associated with the resumption of sexual receptivity in female moths, an aspect that has not been examined in previous studies. The obliquebanded leafroller, Choristoneura rosaceana , is used and females mated with previously mated males have a shorter refractory period than those mated with virgins. This difference is associated with a faster rate of movement of sperm from the spermatheca. Overall, the length of the female refractory period coincides with the mean time required for the number of eupyrene sperm in the spermatheca to drop to approximately 3000, regardless of male mating history. Although such a decline in sperm numbers may be a factor responsible for the resumption of sexual receptivity, this is clearly not the only one because more than 40% of females remate even though sperm numbers in the spermatheca are well above this threshold. Virgin males do not vary the mass or the content of their ejaculate as a function of the female's reproductive status and this may increase the risk of sperm competition if the female is previously mated. The second objective of this study is to examine the effect of previous male mating history on female reproductive potential. Females mated with previously mated males have a significantly lower fecundity than those mated with virgin males. However, in all treatments, remating increases both female longevity and lifetime fecundity. There is also a significant effect of female mass on the length of the refractory period and on lifetime fecundity, with large females resuming sexual receptivity sooner and laying more eggs than small ones, regardless of male mating history.  相似文献   

18.
Sexual selection in both males and females promotes traits and behaviors that allow control over paternity when female mates with multiple males. Nonetheless, mechanisms of cryptic female choice have been consistently overlooked, due to traditional focus on sperm competition as well as difficulty in distinguishing male vs. female influence over processes occurring during and after mating. The first part of this study describes morphology and transformation of Tribolium castaneum spermatophores inferred from dissecting females immediately after normal or interrupted copulations. T. castaneum males are found to transfer spermatophores as an invaginated tube that everts inside the female bursa and which is filled with sperm during copulation. This sequence of events makes it feasible for females to control the sperm quantity transferred in each spermatophore. Through manipulation of the male phenotypic quality (by starvation) and manipulation of female control over sperm transfer (by killing a subset of females), the second part of this study examines whether females use control over transferred sperm quantity as a cryptic choice mechanism. Fed males transferred significantly more sperm per spermatophore than starved males but only when mating with live females. These results suggest an active differentiation by live females against starved males and provide an evidence for the proposed cryptic female choice mechanism.  相似文献   

19.
The mass of the spermatophore transferred by a previously mated Choristoneura rosaceana male increases with time elapsed since the last mating but, even after 4 days, it never reaches the mass of the spermatophore of a virgin male. However, spermatophore mass is clearly not a good indicator of the male reproductive investment as the quantity of sperm in the second ejaculate of a previously mated male is the same as that of his first, if he is allowed a 2 (eupyrene sperm) to 3 day (apyrene sperm) recovery period. The interval between the first two matings had no influence on female fecundity or longevity but significantly affected fertility if the male had only 1 day to recover. The length of the post-copulatory refractory period was also shorter in females mated with previously mated males than in those mated with virgins, regardless of the male's remating interval. Furthermore, a significant variation in the eupyrene sperm content of the spermatophore transferred by virgin males had no influence on the length of the female refractory period. Globally, these results support the hypothesis that a factor, other than sperm numbers in the spermatheca, is responsible for maintaining the inhibition of pheromone production in this species.  相似文献   

20.
We examined the effect of intermating interval on spermatophore size and number of sperm delivered in the simultaneously hermaphroditic land snail, Arianta arbustorum . Snails that remated after 6–7 d transferred smaller spermatophores which contained fewer sperm than snails that remated after eight and more days. This indicates that individuals of A. arbustorum need at least 8 d to completely replenish their sperm reserves after a successful copulation. We suggest that the interval between two copulations is also influenced by the energy costs of the long-lasting courtship behaviour with extensive mucus production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号